851
|
Perspectives on the use of stem cells for autism treatment. Stem Cells Int 2013; 2013:262438. [PMID: 24222772 PMCID: PMC3810518 DOI: 10.1155/2013/262438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
852
|
Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy 2013; 15:1549-62. [PMID: 24100132 DOI: 10.1016/j.jcyt.2013.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/11/2013] [Accepted: 06/05/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Pre-clinical evidence indicates that autologous bone marrow-derived mesenchymal stromal cell (BM-MSC) transplantation improves motor function in patients with central nervous system disorders. METHODS After providing informed consent, 52 patients with cerebral palsy (CP) who met the study criteria received BM-MSC transplantation. Gross motor function was assessed using the Gross Motor Function Measure (GMFM)-88 and GMFM-66 scales at baseline (before transplantation) and at 1 month, 6 months and 18 months post-transplantation. The participants completed the trial without visible side effects. The GMFM-66 percentile (motor growth curves) was used as the control index of motor function to exclude the interference of improvement with age. RESULTS The score domains A, B, C and D and the total GMFM-88 and GMFM-66 scores in participants increased at 1 month, 6 months and 18 months post-transplantation compared with the baseline value (P < 0.01). The scores of domain E also increased at 6 months and 18 months post-transplantation, although they were not significantly increased at 1 month post-transplantation. There were significant increases in the GMFM-66 score and the GMFM-66 percentile corresponding to patient age and Gross Motor Function Classification System level after cell transplantation. CONCLUSIONS Autologous BM-MSC transplantation appears to be a feasible, safe and effective therapy for patients with CP. The treatment improved the development of children with CP with regard to motor function.
Collapse
|
853
|
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70:3871-82. [PMID: 23456256 PMCID: PMC11113366 DOI: 10.1007/s00018-013-1290-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs' secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
854
|
Chang W, Park SI, Jun SY, Lee EJ, Ham HJ, Bae Y, Kim R, Park MS, Chung YA, Im N, Yoo SS, Lee MY, Kim J, Hwang KC, Yoon C, Maeng LS. Therapeutic potential of autologous mesenchymal stem cells derived from synovial fluid in patients with degenerative arthritis. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.832705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
855
|
Lin P, Correa D, Kean TJ, Awadallah A, Dennis JE, Caplan AI. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol Ther 2013; 22:160-8. [PMID: 24067545 DOI: 10.1038/mt.2013.221] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/15/2013] [Indexed: 12/24/2022] Open
Abstract
It has been hypothesized that mesenchymal stem cells (MSCs) home to sites of injury. Nevertheless, efficient delivery of MSCs to target organs and description of their ultimate fate remain major challenges. We provide evidence that intra-arterially (IA) injected MSCs selectively engraft from the circulation as perivascular cells in the bone marrow (BM) after a localized radiation injury. Luciferase-expressing MSCs, derived from a conditionally immortalized clone (BMC-9) representing a pure population of cells, were arterially delivered into mice irradiated in one leg. Cell distribution was measured by bioluminescent imaging and final destination assessed by luciferase immunolocalization. IA injections resulted in engraftment only in the irradiated leg where cells localize and proliferate abluminal to the BM vasculature, a phenomenon not replicated with intravenous injections or with IA injections of kidney cells harvested from the same donor used for MSCs. Furthermore, MSCs harvested from the engrafted marrow and serially transplanted retain the ability to selectively engraft at sites of injury. This study demonstrates that MSCs can serially engraft at sites of injury from the circulation, that they reside in the perivascular space, and that arterial delivery is more efficient than venous delivery for cell engraftment.
Collapse
Affiliation(s)
- Paul Lin
- 1] Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA [2] Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Diego Correa
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas J Kean
- Benaroya Research Institute, Seattle, Washington, USA
| | - Amad Awadallah
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
856
|
Carrion B, Kong YP, Kaigler D, Putnam AJ. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor. Exp Cell Res 2013; 319:2964-76. [PMID: 24056178 DOI: 10.1016/j.yexcr.2013.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 01/31/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis.
Collapse
Affiliation(s)
- Bita Carrion
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | | |
Collapse
|
857
|
de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D'Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013; 19:2459-73. [PMID: 23278600 PMCID: PMC3788322 DOI: 10.2174/1381612811319130015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.
Collapse
Affiliation(s)
- Laura de Girolamo
- Laboratorio di Biotecnologie applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
858
|
Huleihel L, Levine M, Rojas M. The potential of cell-based therapy in lung diseases. Expert Opin Biol Ther 2013; 13:1429-40. [PMID: 23984902 DOI: 10.1517/14712598.2013.833603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Many lung diseases have high morbidity and mortality rates and there are no cures or treatments apart from mechanical ventilation or transplantation. Cell-based therapies are currently an area of intense research, and many groups are working to translate successful in vitro results into treatments that are safe for patients. AREAS COVERED This review discusses several types of stem and progenitor cells that have been proven likely candidates for cell therapies, as well as their applications so far in specific acute and chronic lung diseases, focusing on their mechanisms of action and how best they can be directed toward clinical aims. EXPERT OPINION The research on cell therapies for the lung, particularly regarding mesenchymal stem cells (MSCs), is promising, but there is still much uncertainty surrounding the mechanisms of MSC action and the factors relevant to clinical applications such as the optimal timing of dosage. Future studies will focus on the microenvironment of the stem cells, including the role of microRNAs and extracellular vesicles.
Collapse
Affiliation(s)
- Luai Huleihel
- University of Pittsburgh, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pulmonary, Allergy, and Critical Care Medicine , Pittsburgh, PA , USA
| | | | | |
Collapse
|
859
|
Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy. PLoS One 2013; 8:e74478. [PMID: 23991222 PMCID: PMC3753309 DOI: 10.1371/journal.pone.0074478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have recently been recognized as a potential source for cell-based therapy in various preclinical animal models, such as Parkinson's disease, cerebral ischemia, spinal cord injury, and liver failure; however, the precise cellular and molecular mechanisms underlying the beneficial outcomes remain under investigation. There is a growing concern regarding rejection and alteration of genetic code using this xenotransplantation approach. In this study, a novel strain of murine MSCs derived from the umbilical cord of wild-type and green fluorescent protein (GFP) transgenic mice have been successfully isolated, expanded, and characterized. After 10 passages, the mUC-MSCs developed a rather homogeneous, triangular, spindle-shaped morphology, and were sub-cultured up to 7 months (over 50 passages) without overt changes in morphology and doubling time. Cell surface markers are quite similar to MSCs isolated from other tissue origins as well as hUC-MSCs. These mUC-MSCs can differentiate into osteoblasts, adipocytes, neurons, and astrocytes in vitro, as well as hematopoietic lineage cells in vivo. mUC-MSCs also possess therapeutic potential against two disease models, focal ischemic stroke induced by middle cerebral artery occlusion (MCAo) and acute hepatic failure. Subtle differences in the expression of cytokine-related genes exist between mUC-MSCs and hUC-MSCs, which may retard and jeopardize the advance of cell therapy. Allografts of these newly established mUC-MSCs into various mouse disease models may deepen our insights into the development of more effective cell therapy regimens.
Collapse
|
860
|
Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10:106. [PMID: 23971414 PMCID: PMC3765323 DOI: 10.1186/1742-2094-10-106] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have shown beneficial effects of mesenchymal stem cell (MSC) transplantation in central nervous system (CNS) injuries, including traumatic brain injury (TBI). Potential repair mechanisms involve transdifferentiation to replace damaged neural cells and production of growth factors by MSCs. However, few studies have simultaneously focused on the effects of MSCs on immune cells and inflammation-associated cytokines in CNS injury, especially in an experimental TBI model. In this study, we investigated the anti-inflammatory and immunomodulatory properties of MSCs in TBI-induced neuroinflammation by systemic transplantation of MSCs into a rat TBI model. Methods/results MSCs were transplanted intravenously into rats 2 h after TBI. Modified neurologic severity score (mNSS) tests were performed to measure behavioral outcomes. The effect of MSC treatment on neuroinflammation was analyzed by immunohistochemical analysis of astrocytes, microglia/macrophages, neutrophils and T lymphocytes and by measuring cytokine levels [interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor-α, interferon-γ, RANTES, macrophage chemotactic protein-1, macrophage inflammatory protein 2 and transforming growth factor-β1] in brain homogenates. The immunosuppression-related factors TNF-α stimulated gene/protein 6 (TSG-6) and nuclear factor-κB (NF-κB) were examined by reverse transcription-polymerase chain reaction and Western blotting. Intravenous MSC transplantation after TBI was associated with a lower density of microglia/macrophages and peripheral infiltrating leukocytes at the injury site, reduced levels of proinflammatory cytokines and increased anti-inflammatory cytokines, possibly mediated by enhanced expression of TSG-6, which may suppress activation of the NF-κB signaling pathway. Conclusions The results of this study suggest that MSCs have the ability to modulate inflammation-associated immune cells and cytokines in TBI-induced cerebral inflammatory responses. This study thus offers a new insight into the mechanisms responsible for the immunomodulatory effect of MSC transplantation, with implications for functional neurological recovery after TBI.
Collapse
Affiliation(s)
- Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
861
|
Ribeiro-Samy S, Silva NA, Correlo VM, Fraga JS, Pinto L, Teixeira-Castro A, Leite-Almeida H, Almeida A, Gimble JM, Sousa N, Salgado AJ, Reis RL. Development and Characterization of a PHB-HV-based 3D Scaffold for a Tissue Engineering and Cell-therapy Combinatorial Approach for Spinal Cord Injury Regeneration. Macromol Biosci 2013; 13:1576-92. [DOI: 10.1002/mabi.201300178] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Silvina Ribeiro-Samy
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas, Guimarães Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Nuno A. Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas, Guimarães Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Vitor M. Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Joana S. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Jeffrey M. Gimble
- Pennington Biomedical Research Center; Louisiana State University System; Baton Rouge Louisiana USA
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences; University of Minho-Campus de Gualtar; 4710-057 Braga Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B's-Associate Laboratory; PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
862
|
Zhang L, Li K, Liu X, Li D, Luo C, Fu B, Cui S, Zhu F, Zhao RC, Chen X. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cells Dev 2013; 22:3074-86. [PMID: 23844841 DOI: 10.1089/scd.2013.0142] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can alleviate acute kidney injury and promote kidney cell regeneration and repair. To investigate the role of ASCs in diabetic nephropathy (DN), Sprague-Dawley rats were made diabetic by intraperitoneal injection of streptozotocin (STZ) after uninephrectomy. After 12 weeks, proteinuria was well established. Five times of 5×10(6) human ASCs repeatedly injected through a tail vein at 4 weekly intervals. A reduction in proteinuria was not observed in diabetic rats until 24 weeks. However, urinary protein excretion was significantly suppressed at 28 weeks and persisted up to 32 weeks after STZ treatment. ASC treatment significantly attenuated glomerulus hypertrophy and tubular interstitial injury, and led to the downregulation of WT-1 and synaptopodin expression. CFSE labeled ASCs were injected into DN rats via the tail vein. Within 24 h after injection, the cells were detected in lung, spleen, and peritubular regions, but rarely in pancreas. Human Alu gene expression was detected in lung and spleen up to 4 weeks after ASCs injection. ASC treatment did not improve hyperglycemia or pancreatic damage. In vitro, recombinant human glial cell line-derived neurotrophic factor (GDNF) prevented podocyte injury by high glucose similarly to ASC-conditioned medium. After blocking GDNF in ASC-CM with neutralizing antibody, the therapeutic effect of ASC-CM was significantly decreased. ASCs cocultured with podocytes restored the downregulation of synaptopodin expression, which was weakened by GDNF-RNA interfering. These findings indicate that repeated intravenous ASC can reduce diabetic kidney damage in rats even at the progressive stage, and promote podocyte recovery via GDNF secretion.
Collapse
Affiliation(s)
- Li Zhang
- 1 State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College , Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
863
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
864
|
Abstract
Because of their high proliferative capacity, resistance to cryopreservation, and ability to differentiate into hepatocyte-like cells, stem and progenitor cells have recently emerged as attractive cell sources for liver cell therapy, a technique used as an alternative to orthotopic liver transplantation in the treatment of various hepatic ailments ranging from metabolic disorders to end-stage liver disease. Although stem and progenitor cells have been isolated from various tissues, obtaining them from the liver could be an advantage for the treatment of hepatic disorders. However, the techniques available to isolate these stem/progenitor cells are numerous and give rise to cell populations with different morphological and functional characteristics. In addition, there is currently no established consensus on the tests that need to be performed to ensure the quality and safety of these cells when used clinically. The purpose of this review is to describe the different types of liver stem/progenitor cells currently reported in the literature, discuss their suitability and limitations in terms of clinical applications, and examine how the culture and transplantation techniques can potentially be improved to achieve a better clinical outcome.
Collapse
Affiliation(s)
- Catherine A. Lombard
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Julie Prigent
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Etienne M. Sokal
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| |
Collapse
|
865
|
Lange-Consiglio A, Rossi D, Tassan S, Perego R, Cremonesi F, Parolini O. Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev 2013; 22:3015-24. [PMID: 23795963 DOI: 10.1089/scd.2013.0214] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have recently demonstrated that heterologous transplantation of horse amniotic membrane-derived mesenchymal cells (AMCs) can be useful for cell therapy applications in tendon diseases, and hypothesized that these cells may promote tendon repair via paracrine-acting molecules targeting inflammatory processes. To test this hypothesis, here we examined the immunomodulatory characteristics of AMCs and of their conditioned medium (AMC-CM) in vitro, and studied the potential therapeutic effect of AMC-CM in thirteen different spontaneous horse tendon and ligament injuries in vivo. Our results demonstrate that AMCs are capable of inhibiting peripheral blood mononuclear cell (PBMC) proliferation after allogenic stimulation either when cocultured in cell-to-cell contact, or when the two cell types are physically separated by a transwell membrane, suggesting that soluble factors are implicated in this phenomenon. Our hypothesis is further supported by the demonstration that PBMC proliferation is inhibited by AMC-CM. In our in vivo studies, no significant adverse effects were observed in treated tendons, and clinical and ultrasonographical evaluation did not reveal evidence of inappropriate tissue or tumor formation. Clinical outcomes were favorable and the significantly lower rate (15.38%) of reinjuries observed compared to untreated animals, suggests that treatment with AMC-CM is very efficacious. In conclusion, this study identifies AMC-CM as a novel therapeutic biological cell-free product for treating horse tendon and ligament diseases.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- 1 Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano , Lodi, Italy
| | | | | | | | | | | |
Collapse
|
866
|
Sémont A, Demarquay C, Bessout R, Durand C, Benderitter M, Mathieu N. Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration. PLoS One 2013; 8:e70170. [PMID: 23922953 PMCID: PMC3726425 DOI: 10.1371/journal.pone.0070170] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023] Open
Abstract
Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation.
Collapse
Affiliation(s)
- Alexandra Sémont
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Raphaëlle Bessout
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Christelle Durand
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Laboratory of Radiopathology and Experimental Therapeutics, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
867
|
Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler KE, Baumberger T, Doursounian L, Berenbaum F, Duprez D. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 2013; 123:3564-76. [PMID: 23863709 DOI: 10.1172/jci67521] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro-engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies.
Collapse
|
868
|
Melly LF, Marsano A, Frobert A, Boccardo S, Helmrich U, Heberer M, Eckstein FS, Carrel TP, Giraud MN, Tevaearai HT, Banfi A. Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels. Hum Gene Ther Methods 2013; 23:346-56. [PMID: 23075102 DOI: 10.1089/hgtb.2012.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Collapse
Affiliation(s)
- Ludovic F Melly
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, 4031 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
869
|
Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med 2013; 32:763-7. [PMID: 23863927 PMCID: PMC3812243 DOI: 10.3892/ijmm.2013.1444] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a process of neovascular formation from pre-existing blood vessels, which consists of sequential steps for vascular destabilization, angiogenic sprouting, lumen formation and vascular stabilization. Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin, Notch, transforming growth factor-β (TGF-β), Hedgehog and WNT signaling cascades orchestrate angiogenesis through the direct or indirect regulation of quiescence, migration and the proliferation of endothelial cells. Small-molecule compounds and human/humanized monoclonal antibodies interrupting VEGF signaling have been developed as anti-angiogenic therapeutics for cancer and neovascular age-related macular degeneration (AMD). Gene or protein therapy delivering VEGF, FGF2 or FGF4, as well as cell therapy using endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been developed as pro-angiogenic therapeutics for ischemic heart disease and peripheral vascular disease. Anti-angiogenic therapy for cancer and neovascular AMD is more successful than pro-angiogenic therapy for cardiovascular diseases, as VEGF-signal interruption is technically feasible compared with vascular re-construction. Common and rare genetic variants are detected using array-based technology and personal genome sequencing, respectively. Drug and dosage should be determined based on personal genotypes of VEGF and other genes involved in angiogenesis. As epigenetic alterations give rise to human diseases, polymer-based hydrogel film may be utilized for the delivery of drugs targeting epigenetic processes and angiogenesis as treatment modalities for cardiovascular diseases. Circulating microRNAs (miRNAs) in exosomes and microvesicles are applied as functional biomarkers for diagnostics and prognostics, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. A more profound understanding of the spatio-temporal interactions of regulatory signaling cascades and advances in personal genotyping and miRNA profiling are required for the optimization of targeted therapy.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, Tokyo 104-0045, Japan.
| |
Collapse
|
870
|
A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Exp Neurol 2013; 248:343-59. [PMID: 23867131 DOI: 10.1016/j.expneurol.2013.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023]
Abstract
This study assessed the potential of highly purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) in combination with the anti-scarring protein decorin to repair the injured spinal cord (SC). Donor hMPCs isolated from spinal cord injury (SCI) patients were transplanted into athymic rats as a suspension graft, alone or after previous treatment with, core (decorin(core)) and proteoglycan (decorin(pro)) isoforms of purified human recombinant decorin. Decorin was delivered via mini-osmotic pumps for 14 days following sub-acute (7 day) or chronic (1 month) SCI. hMPCs were delivered to the spinal cord at 3 weeks or 6 weeks after the initial injury at T9 level. Behavioral and anatomical analysis in this study showed statistically significant improvement in functional recovery, tissue sparing and cyst volume reduction following hMPC therapy. The combination of decorin infusion followed by hMPC therapy did not improve these measured outcomes over the use of cell therapy alone, in either sub-acute or chronic SCI regimes. However, decorin infusion did improve tissue sparing, reduce spinal tissue cavitation and increase transplanted cell survivability as compared to controls. Immunohistochemical analysis of spinal cord sections revealed differences in glial, neuronal and extracellular matrix molecule expression within each experimental group. hMPC transplanted spinal cords showed the increased presence of serotonergic (5-HT) and sensory (CGRP) axonal growth within and surrounding transplanted hMPCs for up to 2 months; however, no evidence of hMPC transdifferentiation into neuronal or glial phenotypes. The number of hMPCs was dramatically reduced overall, and no transplanted cells were detected at 8 weeks post-injection using lentiviral GFP labeling and human nuclear antigen antibody labeling. The presence of recombinant decorin in the cell transplantation regimes delayed in part the loss of donor cells, with small numbers remaining at 2 months after transplantation. In vitro co-culture experiments with embryonic dorsal root ganglion explants revealed the growth promoting properties of hMPCs. Decorin did not increase axonal outgrowth from that achieved by hMPCs. We provide evidence for the first time that (Stro-1(+)) hMPCs provide: i) an advantageous source of allografts for stem cell transplantation for sub-acute and chronic spinal cord therapy, and (ii) a positive host microenvironment that promotes tissue sparing/repair that subsequently improves behavioral outcomes after SCI. This was not measurably improved by recombinant decorin treatment, but does provide important information for the future development and potential use of decorin in contusive SCI therapy.
Collapse
|
871
|
Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I. Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 2013; 17:1969-83. [PMID: 23846214 DOI: 10.1007/s00784-013-1030-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Stem cell-based therapies are considered to be a promising treatment method for several clinical conditions such as Alzheimer's disease, Parkinson's disease, spinal cord injury, and many others. However, the ideal stem cell type for stem cell-based therapy remains to be elucidated. DISCUSSION Stem cells are present in a variety of tissues in the embryonic and adult human body. Both embryonic and adult stem cells have their advantages and disadvantages concerning the isolation method, ethical issues, or differentiation potential. The most described adult stem cell population is the mesenchymal stem cells due to their multi-lineage (trans)differentiation potential, high proliferative capacity, and promising therapeutic values. Recently, five different cell populations with mesenchymal stem cell characteristics were identified in dental tissues: dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle precursor cells, and stem cells from apical papilla. CONCLUSION Each dental stem cell population possesses specific characteristics and advantages which will be summarized in this review. Furthermore, the neural characteristics of dental pulp stem cells and their potential role in (peripheral) neural regeneration will be discussed.
Collapse
Affiliation(s)
- W Martens
- Biomedical Research Institute, Laboratory of Morphology, Hasselt University, Campus Diepenbeek, Agoralaan, Building C, 3590, Diepenbeek, Belgium,
| | | | | | | | | |
Collapse
|
872
|
Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:28-39. [PMID: 23678952 DOI: 10.1089/ten.teb.2013.0100] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.
Collapse
|
873
|
Nair AM, Tsai YT, Shah KM, Shen J, Weng H, Zhou J, Sun X, Saxena R, Borrelli J, Tang L. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials 2013; 34:7364-71. [PMID: 23831188 DOI: 10.1016/j.biomaterials.2013.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.
Collapse
Affiliation(s)
- Ashwin M Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
874
|
Huh JE, Lee SY. IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2608-2616. [PMID: 23830919 DOI: 10.1016/j.bbamcr.2013.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 01/23/2023]
Abstract
Although Toll-like receptors (TLRs) have been implicated in the regulation of stem cell functions, their role in osteogenic differentiation of adipose-derived stromal cells (ASCs) has not been reported. We found that ASCs express a restricted subset of TLRs, including TLR1-TLR5, and that TLR agonists such as Pam3CSK4 (TLR1/2 agonist), polyinosinic:polycytidylic acid (TLR3 agonist), lipopolysaccharide (TLR4 agonist), and flagellin (TLR5 agonist), but not R848 (TLR7/8 agonist), consistently induced osteogenic differentiation in murine-derived ASCs, which coincided with the TLR expression pattern of ASCs. Cytokine expression profiles induced by TLR agonists and results from subsequent functional assays indicated that interleukin-6 (IL-6) together with soluble IL-6 receptor (sIL-6R) enhanced osteogenic differentiation of ASCs by activating STAT3. Small interfering RNA (siRNA)-mediated STAT3-silencing blunted osteogenesis and the expression of osteogenic markers, whereas STAT3 overexpression resulted in an increase in osteogenesis. Consistently, STAT3 inhibitor treatment reduced osteogenesis, STAT3 phosphorylation, and expression of osteogenic markers including osterix. Chromatin immunoprecipitation (ChIP) assays indicated that STAT3 binding to the STAT3-binding sites on the osterix promoter increased during IL-6-stimulated osteogenesis. Our results thus establish TLRs as novel regulators of ASCs which signal through IL-6/STAT3 pathway and induce osterix expression as a part of the osteogenesis.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
875
|
CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell–derived factor-1. Cytotherapy 2013; 15:840-9. [DOI: 10.1016/j.jcyt.2013.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/06/2013] [Accepted: 02/16/2013] [Indexed: 12/13/2022]
|
876
|
Wegmeyer H, Bröske AM, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, Wiechmann K, Kuhlen J, von Schwerin C, Stein C, Knothe S, Funk J, Huss R, Neubauer M. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev 2013; 22:2606-18. [PMID: 23676112 DOI: 10.1089/scd.2013.0016] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. However, source-dependent and donor-dependent differences of MSC properties, including implications on their clinical application are still largely unknown. We evaluated MSCs derived from perinatal tissues umbilical cord (UC) and amniotic membrane (AM) in comparison to adult MSCs from bone marrow (BM), which were used as gold standard. We found genetic background-independent differences between MSCs from UC and AM. While AM- and UC-MSCs were closer to each other than to BM-MSCs, they also exhibited differences between each other. AM-MSCs from different donors but not UC-MSCs displayed high interdonor variability. In addition, we show that although all MSCs expressed similar surface markers, MSC populations from UC and AM showed differential profiles of gene expression and paracrine factor secretion to BM-derived MSCs. Notably, pathway analysis of gene expression data revealed intriguing differences between MSCs suggesting that MSCs from UC and AM possess in general a higher potential of immunomodulatory capacity, whereas BM-MSCs showed a higher potential of supporting regenerative processes as exemplified by neuronal differentiation and development. These differences between perinatal and BM-derived MSCs may be relevant for clinical applications.
Collapse
Affiliation(s)
- Heike Wegmeyer
- 1 Roche Diagnostics GmbH , pharma Research and Early Development (pRED), Penzberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
877
|
Xi J, Yan X, Zhou J, Yue W, Pei X. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future. BURNS & TRAUMA 2013; 1:13-20. [PMID: 27574617 PMCID: PMC4994498 DOI: 10.4103/2321-3868.113330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of mesenchymal progenitor cells within bone marrow has been known since the late nineteenth century. To date, mesenchymal stem cells (MSCs) have been isolated from several different connective tissues, such as adipose tissue, muscle, placenta, umbilical cord matrix, blood, liver, and dental pulp. Bone marrow, however, is still one of the major sources of MSCs for preclinical and clinical research. MSCs were first evaluated for regenerative applications and have since been shown to directly influence the immune system and to promote neovascularization of ischemic tissues. These observations have prompted a new era of MSC transplantation as a treatment for various diseases. In this review, we summarize the important studies that have investigated the use of MSCs as a therapeutic agent for regenerative medicine, immune disorders, cancer, and gene therapy. Furthermore, we discuss the mechanisms involved in MSC-based therapies and clinical-grade MSC manufacturing.
Collapse
Affiliation(s)
- Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Xinlong Yan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| |
Collapse
|
878
|
Liu J, Yang X, Shi W. Overexpression of CXCR4 in tracheal epithelial cells promotes their proliferation and migration to a stromal cell-derived factor-1 gradient. Exp Biol Med (Maywood) 2013; 238:144-50. [PMID: 23576796 DOI: 10.1177/1535370213477598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tracheal reconstruction has been an important issue in clinic, but it is limited for the ability of epithelial regeneration. Several reports have shown that stromal cell-derived factor-1 (SDF-1) and chemokine receptor CXCR4 play an important role in cell proliferation and migration of multiple cell types. But there is no report of SDF-1 and CXCR4 in tracheal cells. In this paper, the rat tracheal epithelial cells covered with cilium were isolated and cultured using two enzyme digestions, and CXCR4 lentivirus was constructed and infected to the tracheal cells successfully. The results showed that the expression of CXCR4 which was covered on cellular membrane majorly was low in normal cells, and the cell proliferation was increased accompanied with the increase in SDF-1 concentration. The cell proliferation, migration and intracellular free calcium were increased significantly in CXCR4 lentivirus infected groups in a dose-dependent manner, and these effects could be inhibited after CXCR4 inhibitor AMD3100 treated because the expression of CXCR4 was decreased. Our findings indicate that the activation of CXCR4 may promote tracheal cell proliferation and migration to the sites of airway injury where SDF-1 is regulated.
Collapse
Affiliation(s)
- Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
879
|
Andreeva ER, Buravkova LB. Paracrine activity of multipotent mesenchymal stromal cells and its modulation in hypoxia. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s0362119713030043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
880
|
Maumus M, Manferdini C, Toupet K, Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P, Jorgensen C, Lisignoli G, Noël D. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 2013; 11:834-44. [PMID: 23811540 DOI: 10.1016/j.scr.2013.05.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/05/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022] Open
Abstract
Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases.
Collapse
Affiliation(s)
- Marie Maumus
- Inserm, U 844, Hôpital Saint-Eloi, Montpellier F-34295, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
881
|
Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 2013; 95:2229-34. [PMID: 23685070 DOI: 10.1016/j.biochi.2013.04.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/26/2013] [Indexed: 12/17/2022]
Abstract
Over the last decades, mesenchymal stem cells (MSCs) have been extensively studied with regard to their potential applications in regenerative medicine. In rheumatic diseases, MSC-based therapy is the subject of great expectations for patients who are refractory to proposed treatments such as rheumatoid arthritis (RA), or display degenerative injuries without possible curative treatment, such as osteoarthritis (OA). The therapeutic potential of MSCs has been demonstrated in several pre-clinical models of OA or RA and both the safety and efficacy of MSC-based therapy is being evaluated in humans. The predominant mechanism by which MSCs participate to tissue repair is through a paracrine activity. Via the production of a multitude of trophic factors with various properties, MSCs can reduce tissue injury, protect tissue from further degradation and/or enhance tissue repair. However, a thorough in vivo examination of MSC-derived secretome and strategies to modulate it are still lacking. The present review discusses the current understanding of the MSC secretome as a therapeutic for treatment of inflammatory or degenerative pathologies focusing on rheumatic diseases. We provide insights on and perspectives for future development of the MSC secretome with respect to the release of extracellular vesicles that would have certain advantages over injection of living MSCs or administration of a single therapeutic factor or a combination of factors.
Collapse
Affiliation(s)
- Marie Maumus
- Inserm U844, Hôpital Saint-Eloi, Montpellier, F-34091 France; Université MONTPELLIER 1, UFR de Médecine, Montpellier, F-34000 France.
| | | | | |
Collapse
|
882
|
Hong SH, Maghen L, Kenigsberg S, Teichert AM, Rammeloo AW, Shlush E, Szaraz P, Pereira S, Lulat A, Xiao R, Yie SM, Gauthier-Fisher A, Librach CL. Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev 2013; 22:2425-39. [PMID: 23557155 DOI: 10.1089/scd.2012.0552] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human umbilical cord-derived perivascular cells (PVCs) are a recently characterized source of mesenchymal stromal cells that has gained much interest in the field of cellular therapeutics. However, very little is known about the changes in fate potential and restrictions that these cells undergo during gestational development. This study is the first to examine the phenotypic, molecular, and functional properties of first trimester (FTM)-derived PVCs, outlining properties that are unique to this population when compared to term (TERM) counterparts. FTM- and TERM-PVCs displayed analogous mesenchymal, perivascular, and immunological immunophenotypes. Both PVCs could be maintained in culture without alteration to these phenotypes or mesenchymal lineage differentiation potential. Some unique features of FTM-PVCs were uncovered in this study: (1) while the gene signatures of FTM- and TERM-PVCs were similar, key differences were observed, namely, that the Oct4A and Sox17 proteins were detected in FTM-PVCs, but not in TERM counterparts; (2) FTM-PVCs exhibited a greater proliferative potential; and (3) FTM-PVCs were more efficient in their in vitro differentiation toward selective mesenchymal cell types, including the chondrogenic and adipogenic lineages, as well as toward neuronal- and hepatocyte-like lineages, when compared to TERM-PVCs. Both PVCs were able to generate osteocytes and cardiomyocyte-like cells with similar efficiencies in vitro. Overall, FTM-PVCs show more plasticity than TERM-PVCs with regard to fate acquisition, suggesting that a restriction in multipotentiality is imposed on PVCs as gestation progresses. Taken together, our findings support the idea that PVCs from earlier in gestation may be better than later sources of multipotent stromal cells (MSCs) for some regenerative medicine applications.
Collapse
Affiliation(s)
- Seok-Ho Hong
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Zgheib A, Lamy S, Annabi B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem 2013; 288:13378-13386. [PMID: 23548906 PMCID: PMC3650376 DOI: 10.1074/jbc.m113.456533] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CSF-2 and CSF-3 confer proangiogenic and immunomodulatory properties to mesenchymal stromal cells (MSCs). RESULTS Transcriptional regulation of CSF-2 and CSF-3 in concanavalin A-activated MSCs requires MT1-MMP signaling and is inhibited by EGCG. CONCLUSION The chemopreventive properties of diet-derived EGCG alter MT1-MMP-mediated intracellular signaling. SIGNIFICANCE Pharmacological targeting of MSCs proangiogenic functions may prevent their contribution to tumor development. Epigallocatechin gallate (EGCG), a major form of tea catechins, possesses immunomodulatory and antiangiogenic effects, both of which contribute to its chemopreventive properties. In this study, we evaluated the impact of EGCG treatment on the expression of colony-stimulating factors (CSF) secreted from human bone marrow-derived mesenchymal stromal cells (MSCs), all of which also contribute to the immunomodulatory and angiogenic properties of these cells. MSCs were activated with concanavalin A (ConA), a Toll-like receptor (TLR)-2 and TLR-6 agonist as well as a membrane type 1 matrix metalloproteinase (MT1-MMP) inducer, which increased granulocyte macrophage-CSF (GM-CSF, CSF-2), granulocyte CSF (G-CSF, CSF-3), and MT1-MMP gene expression. EGCG antagonized the ConA-induced CSF-2 and CSF-3 gene expression, and this process required an MT1-MMP-mediated sequential activation of the Src and JAK/STAT pathways. Gene silencing of MT1-MMP expression further demonstrated its requirement in the phosphorylation of Src and STAT3, whereas overexpression of a nonphosphorylatable MT1-MMP mutant (Y573F) abrogated CSF-2 and CSF-3 transcriptional increases. Given that MSCs are recruited within vascularizing tumors and are believed to contribute to tumor angiogenesis, possibly through secretion of CSF-2 and CSF-3, our study suggests that diet-derived polyphenols such as EGCG may exert chemopreventive action through pharmacological targeting of the MT1-MMP intracellular signaling.
Collapse
Affiliation(s)
- Alain Zgheib
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| | - Sylvie Lamy
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| | - Borhane Annabi
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| |
Collapse
|
884
|
Characterization of in vitro cultured bone marrow and adipose tissue-derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biol Int 2013; 36:1239-49. [PMID: 22994924 DOI: 10.1042/cbi20110618] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MSCs (mesenchymal stem cells) have attracted attention as a promising tool for regenerative medicine and transplantation therapy. MSCs exert neuroprotective effects by secreting a number of factors in vitro and in vivo. Similar characteristics are found in ADSCs (adipose-derived stem cells) and BMSCs (bone marrow stromal cells). Multipotent capability, easy accessibility and rapid proliferation of ADSCs have been established. Our main objective was to compare cell viability, growth rate, expression of neurotrophic factors and nestin genes in ADSCs and BMSCs. Cell doubling time and proliferation rate indicate that ADSCs has a higher proliferation rate than BMSCs. ADSCs and BMSCs express a similar pattern of CD71 and CD90 markers. Nestin immunostaining showed that ADSCs and BMSCs are immunopositive. The expression of neurotrophic factors genes in ADSCs proved similar to that of BMSCs genes. Thus adipose tissue stem cells with a high proliferation rate can express nestin and neurotrophic factor genes. Therefore ADSCs may be useful in future cell replacement therapies and help improve neurodegenerative diseases.
Collapse
|
885
|
Zeppieri M, Salvetat ML, Beltrami AP, Cesselli D, Bergamin N, Russo R, Cavaliere F, Varano GP, Alcalde I, Merayo J, Brusini P, Beltrami CA, Parodi PC. Human adipose-derived stem cells for the treatment of chemically burned rat cornea: preliminary results. Curr Eye Res 2013; 38:451-463. [PMID: 23373736 DOI: 10.3109/02713683.2012.763100] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Adipose-derived stem cells (ADSC) are multipotent, safe, non-immunogenic and can differentiate into functional keratocytes in situ. The topical use of ADSC derived from human processed lipoaspirate was investigated for treating injured rat cornea. METHODS A total of 19 rats were used. Six animals initially underwent corneal lesion experiments with 0.5 N NaOH (right eye) and 0.2 N (left). The 0.2 NaOH protocol was then used in 13 rats. All 26 eyes of 13 rats eyes received topical azythromycin bid for 3 d and divided into five treatment groups (n = 5 eyes/group), which included: control, stem cells, serum, stem + serum and adipose (raw human lipoaspirate). The four treatment groups received topical treatment three times daily for 3 d. Stem cells were isolated and harvested from human lipoaspirate. Topical eye drops were prepared daily with 1 × 10(5) cells/treatment. Fluorescein positive defect area and light microscope assessment was performed at 20, 28, 45, 50 and 74 h. Animals were sacrificed at 74 h for histological evaluation. Data were statistically analyzed for differences amongst groups. RESULTS The stem cell-treated eyes had significantly smaller epithelial defects at each time point compared to control- and adipose-treated eyes (p < 0.05). This group showed slightly better epithelium healing than the serum and combined group, yet not significantly different. Histology showed that stem cell-treated corneas had complete re-epithelization, with less inflammatory cells and limited fibroblast activation structure compared with the control eyes. CONCLUSIONS Our preliminary results show that topical treatment with ADSC seems to improve corneal wound healing.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Animals
- Burns, Chemical/pathology
- Burns, Chemical/physiopathology
- Burns, Chemical/surgery
- Disease Models, Animal
- Epithelium, Corneal/pathology
- Epithelium, Corneal/physiology
- Epithelium, Corneal/surgery
- Eye Burns/pathology
- Eye Burns/physiopathology
- Eye Burns/surgery
- Fluorescent Dyes
- Humans
- Male
- Pilot Projects
- Rats
- Rats, Wistar
- Staining and Labeling
- Statistics, Nonparametric
- Stem Cell Transplantation/methods
- Transplantation, Heterologous
- Wound Healing/physiology
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, Azienda Ospedaliero Universitaria Santa Mariadella Misericordia, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
886
|
Ma S, Zhong D, Chen H, Zheng Y, Sun Y, Luo J, Li H, Li G, Yin Y. The immunomodulatory effect of bone marrow stromal cells (BMSCs) on interleukin (IL)-23/IL-17-mediated ischemic stroke in mice. J Neuroimmunol 2013; 257:28-35. [DOI: 10.1016/j.jneuroim.2013.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 02/01/2023]
|
887
|
Chung BH, Lim SW, Doh KC, Piao SG, Heo SB, Yang CW. Human adipose tissue derived mesenchymal stem cells aggravate chronic cyclosporin nephrotoxicity by the induction of oxidative stress. PLoS One 2013; 8:e59693. [PMID: 23555748 PMCID: PMC3608559 DOI: 10.1371/journal.pone.0059693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/17/2013] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to investigate whether hATMSCs protect against cyclosporine (CsA)-induced renal injury. CsA (7.5 mg/kg) and hATMSCs (3×106/5 mL) were administered alone and together to rats for 4 weeks. The effect of hATMSCs on CsA-induced renal injury was evaluated by assessing renal function, interstitial fibrosis, infiltration of inflammatory cells, and apoptotic cell death. Four weeks of CsA-treatment produced typical chronic CsA-nephropathy. Combined treatment with CsA and hATMSCs did not prevent these effects and showed a trend toward further renal deterioration. To evaluate why hATMSCs aggravated CsA-induced renal injury, we measured oxidative stress, a major mechanism of CsA-induced renal injury. Both urine and serum 8-hydroxydeoxyguanosine(8-OHdG) levels were higher in the CsA+hATMSCs group than in the CsA group (P<0.05). An in vitro study showed similar results. Although the rate of apoptosis did not differ significantly between HK-2 cells cultured in hATMSCs-conditioned medium and those cultured in DMEM, addition of CsA resulted in greater apoptosis in HK-2 cells cultured in hATMSCs-conditioned medium. Addition of CsA increased oxidative stress in the hATMSCs-conditioned medium. The results of our study suggest that treatment with hATMSCs may aggravate CsA-induced renal injury because hATMSCs cause oxidative stress in the presence of CsA.
Collapse
Affiliation(s)
- Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoung Chan Doh
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shang Guo Piao
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong Beom Heo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
888
|
Bae SH. Recent achievements in stem cell therapy for pediatric gastrointestinal tract disease. Pediatr Gastroenterol Hepatol Nutr 2013; 16:10-6. [PMID: 24010100 PMCID: PMC3746046 DOI: 10.5223/pghn.2013.16.1.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/24/2022] Open
Abstract
The field of stem cell research has been rapidly expanding. Although the clinical usefulness of research remains to be ascertained through human trials, the use of stem cells as a therapeutic option for currently disabling diseases holds fascinating potential. Many pediatric gastrointestinal tract diseases have defect in enterocytes, enteric nervous system cells, smooth muscles, and interstitial cells of Cajal. Various kinds of therapeutic trials using stem cells could be applied to these diseases. This review article focuses on the recent achievements in stem cell applications for pediatric gastrointestinal tract diseases.
Collapse
Affiliation(s)
- Sun Hwan Bae
- Department of Pediatrics, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
889
|
Arrigoni E, de Girolamo L, Di Giancamillo A, Stanco D, Dellavia C, Carnelli D, Campagnol M, Domeneghini C, Brini AT. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J Orthop Sci 2013; 18:331-9. [PMID: 23344932 DOI: 10.1007/s00776-012-0349-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the last few years, several attempts have been made to treat large bone loss, including the use of tissue engineering with osteoinductive scaffolds and cells. This study highlights the role of mesenchymal stem cells from adipose tissue (ASCs; adipose-derived stem cells) in a rabbit bone regeneration model. METHODS We compared the neoformed bone tissues achieved by treating critical tibial defects with either hydroxyapatite alone (HA, group I) or hydroxyapatite-autologous ASC constructs (ASCs-HA, group II), investigating their histomorphometric, immunohistochemical and biomechanical properties. RESULTS After eight weeks of follow-up, we observed advanced maturation and a spatial distribution of new bone that was more homogeneous in the inner parts of the pores in group II, not just along the walls (as seen in group I). The new tissue expressed osteogenic markers, and biomechanical tests suggested that the newly formed bone in group II had a higher mineral content than that in group I. Although variability in differentiation was observed among the different cell populations in vitro, no differences in bone healing were observed in vivo; the variability seen in vitro was probably due to local microenvironment effects. CONCLUSIONS Tibial defects treated with rabbit ASCs-HA showed an improved healing process when compared to the process that occurred when only the scaffold was used. We suggest that implanted ASCs ameliorate the bone reparative process either directly or by recruiting resident progenitor cells.
Collapse
Affiliation(s)
- Elena Arrigoni
- Department of Biomedical, Surgical, Dental Sciences, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
890
|
Lai RC, Yeo RWY, Tan KH, Lim SK. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 2013; 8:197-209. [DOI: 10.2217/rme.13.4] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
891
|
Zubkova ES, Semenkova LN, Dudich IV, Dudich EI, Khromykh LM, Makarevich PI, Parfenova EV, Men'shikov MI. [Recombinant human alpha-fetoprotein as a regulator of adipose tissue stromal cell activity]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:524-34. [PMID: 23342486 DOI: 10.1134/s1068162012050147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombinant human alpha-fetoprotein (rhAFP) expressed in yeast system as a glycoprotein, was isolated and purified to 98% by multistep method. The testing of the rhAFP in the culture of adipose tissue stromal cells (hASC) has revealed its ability to enhance hASC proliferation and migration as well as vascular endothelial growth factor production, with no significant influence on cell invasion and matrix metalloproteinase-2 and -9 secretion. It has been also estimated that rhAFP is internalized in hASC via clathrin-dependent mechanism. A study in the murine experimental model of hindlimb ischemia has shown the capability of rhAFP to enhance blood flow recovery. These data suggest that rhAFP is a promising agent for enhancement of the hASC regenerative ability.
Collapse
|
892
|
Bulman SE, Barron V, Coleman CM, Barry F. Enhancing the Mesenchymal Stem Cell Therapeutic Response: Cell Localization and Support for Cartilage Repair. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:58-68. [DOI: 10.1089/ten.teb.2012.0101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sarah E. Bulman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
- Smith&Nephew, York Science Park, Heslington, York, United Kingdom
| | - Valerie Barron
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Cynthia M. Coleman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| |
Collapse
|
893
|
de Oliveira FM, Lucena-Araujo AR, Favarin MDC, Bonini Palma PV, Rego EM, Falcão RP, Covas DT, Fontes AM. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol 2013; 41:198-208. [DOI: 10.1016/j.exphem.2012.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/17/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
|
894
|
Akram KM, Samad S, Spiteri MA, Forsyth NR. Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res 2013; 14:9. [PMID: 23350749 PMCID: PMC3598763 DOI: 10.1186/1465-9921-14-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/22/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. Methods To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC. Results We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and –independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model. Conclusion These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders.
Collapse
Affiliation(s)
- Khondoker M Akram
- Institute for Science and Technology in Medicine, School of Postgraduate Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | |
Collapse
|
895
|
Veraitch O, Kobayashi T, Imaizumi Y, Akamatsu W, Sasaki T, Yamanaka S, Amagai M, Okano H, Ohyama M. Human induced pluripotent stem cell-derived ectodermal precursor cells contribute to hair follicle morphogenesis in vivo. J Invest Dermatol 2013; 133:1479-88. [PMID: 23321923 DOI: 10.1038/jid.2013.7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Well-orchestrated epithelial-mesenchymal interactions are crucial for hair follicle (HF) morphogenesis. In this study, ectodermal precursor cells (EPCs) with the capacity to cross talk with hair-inductive dermal cells were generated from human induced pluripotent stem cells (hiPSCs) and assessed for HF-forming ability in vivo. EPCs derived from three hiPSC lines generated with 4 or 3 factors (POU5F1, SOX2, KLF4 +/- MYC) mostly expressed keratin 18, a marker of epithelial progenitors. When cocultured with human dermal papilla (DP) cells, a 4 factor 201B7 hiPSC-EPC line upregulated follicular keratinocyte (KC) markers more significantly than normal human adult KCs (NHKCs) and other hiPSC-EPC lines. DP cells preferentially increased DP biomarker expression in response to this line. Interestingly, 201B7 hiPSCs were shown to be ectodermal/epithelial prone, and the derived EPCs were putatively in a wingless-type MMTV integration site family (WNT)-activated state. Importantly, co-transplantation of 201B7 hiPSC-EPCs, but not NHKCs, with trichogenic mice dermal cells into immunodeficient mice resulted in HF formation. Human HF stem cell markers were detected in reconstituted HFs; however, a low frequency of human-derived cells implied that hiPSC-EPCs contributed to HF morphogenesis via direct repopulation and non-cell autonomous activities. The current study suggests a, to our knowledge, previously unrecognized advantage of using hiPSCs to enhance epithelial-mesenchymal interactions in HF bioengineering.
Collapse
Affiliation(s)
- Ophelia Veraitch
- Department of Dermatology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
896
|
Penna C, Perrelli MG, Karam JP, Angotti C, Muscari C, Montero-Menei CN, Pagliaro P. Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival. J Cell Mol Med 2013; 17:192-204. [PMID: 23305078 PMCID: PMC3823149 DOI: 10.1111/j.1582-4934.2012.01662.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/10/2012] [Indexed: 01/22/2023] Open
Abstract
Resistance of transplanted mesenchymal stem cells (MSCs) in post-ischemic heart is limited by their poor vitality. Vascular-endothelial-growth-factor-A (VEGF-A) as such or slowly released by fibronectin-coated pharmacologically-active-microcarriers (FN-PAM-VEGF) could differently affect survival kinases and anti-apoptotic mediator (e.g. Bcl-2). Therefore VEGF-A or FN-PAM-VEGF could differently enhance cell proliferation, and/or resistance to hypoxia/reoxygenation (H/R) of MSCs. To test these hypotheses MSCs were incubated for 6-days with VEGF-A alone or with FN-PAM-VEGF. In addition, MSCs pre-treated for 24-hrs with VEGF-A or FN-PAM-VEGF were subsequently exposed to H/R (72-hrs 3% O2 and 3-hrs of reoxygenation). Cell-proliferation and post-hypoxic vitality were determined. Kinases were studied at 30-min., 1- and 3-days of treatment. Cell-proliferation increased about twofold (P < 0.01) 6-days after VEGF-A treatment, but by a lesser extent (55% increase) with FN-PAM-VEGF (P < 0.05). While MSC pre-treatment with VEGF-A confirmed cell-proliferation, pre-treatment with FN-PAM-VEGF protected MSCs against H/R. In the early phase of treatments, VEGF-A increased phospho-Akt, phospho-ERK-1/2 and phospho-PKCε compared to the untreated cells or FN-PAM-VEGF. Afterword, kinase phosphorylations were higher with VGEF, except for ERK-1/2, which was similarly increased by both treatments at 3 days. Only FN-PAM-VEGF significantly increased Bcl-2 levels. After H/R, lactate dehydrogenase release and cleaved Caspase-3 levels were mainly reduced by FN-PAM-VEGF. While VEGF-A enhances MSC proliferation in normoxia, FN-PAM-VEGF mainly hampers post-hypoxic MSC death. These different effects underscore the necessity of approaches suited to the various conditions. The use of FN-PAM-VEGF could be considered as a novel approach for enhancing MSC survival and regeneration in hostile environment of post-ischemic tissues.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
897
|
Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant 2013; 19:538-46. [PMID: 23295166 DOI: 10.1016/j.bbmt.2013.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 01/02/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSC) attenuate albuminuria and preserve normal renal histology in diabetic mice. However, the effects of MSC on glomerular podocyte injury remain uncertain. The aim of this study was to evaluate the effects of MSC on podocyte injury in streptozotocin (STZ)-induced diabetic rats. Thirty days after diabetes induction by STZ injection (65 mg/kg, intraperitoneally) in Sprague-Dawley rats, the diabetic rats received medium or 2 × 10(6) enhanced green fluorescent protein-labeled MSC via the renal artery. In vivo tracking of MSC was followed by immunofluorescence analysis. Diabetes-related physical and biochemical parameters were measured on day 60 after the MSC infusion. The expression of podocyte markers (nephrin and podocin), podocyte survival factors (VEGF and BMP-7), and the ultrastructural pathology of podocytes were also assessed. MSC were only detected in the glomeruli from the left kidney receiving MSC infusion. Compared with medium-treated diabetic rats, rats treated with MSC showed a suppressed increase in kidney weight, kidney to body weight index, creatinine clearance rate, and urinary albumin to creatinine ratio; however, the treatment had no effect on blood glucose or body weight levels. Furthermore, the MSC treatment reduced the loss of podocytes, effacement of foot processes, widening of foot processes, thickening of glomerular basal membrane (GBM), and loss of glomerular nephrin and podocin. Most important, MSC-injected kidneys expressed higher levels of BMP-7 but not of VEGF. Our results clearly demonstrated that intra-arterial administration of MSC prevented the development of albuminuria as well as any damage to or loss of podocytes, though there was no improvement in blood sugar levels. The protective effects of MSC may be mediated in part by increasing BMP-7 secretion.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
898
|
Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS One 2013; 8:e52997. [PMID: 23301012 PMCID: PMC3536808 DOI: 10.1371/journal.pone.0052997] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022] Open
Abstract
Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm) fluorescently labeled (Dragon Green) superparamagnetic iron oxide particles (M-SPIO particles); and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.
Collapse
|
899
|
Ricco' S, Renzi S, Del Bue M, Conti V, Merli E, Ramoni R, Lucarelli E, Gnudi G, Ferrari M, Grolli S. Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells in Combination with Platelet Rich Plasma are Safe and Effective in the Therapy of Superficial Digital Flexor Tendonitis in the Horse. Int J Immunopathol Pharmacol 2013; 26:61-8. [DOI: 10.1177/03946320130260s108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S. Ricco'
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - S. Renzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell‘ Emilia Romagna, 25121 Brescia, Italy
| | - M. Del Bue
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - V. Conti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - E. Merli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - R. Ramoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - E. Lucarelli
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - G. Gnudi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - M. Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell‘ Emilia Romagna, 25121 Brescia, Italy
| | - S. Grolli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
900
|
Liu G, Deng C, Zhang Y. Urine-Derived Stem Cells: Biological Characterization and Potential Clinical Applications. STEM CELLS: CURRENT CHALLENGES AND NEW DIRECTIONS 2013. [DOI: 10.1007/978-1-4614-8066-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|