851
|
Ishiai M, Sato K, Tomida J, Kitao H, Kurumizaka H, Takata M. Activation of the FA pathway mediated by phosphorylation and ubiquitination. Mutat Res 2017; 803-805:89-95. [PMID: 28552166 DOI: 10.1016/j.mrfmmm.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary condition that impacts genome integrity, leading to clinical features such as skeletal and visceral organ malformations, attrition of bone marrow stem cells, and carcinogenesis. At least 21 proteins, when absent or defective, have been implicated in this disorder, and they together constitute the FA pathway, which functions in detection and repair of, and tolerance to, endogenous DNA damage. The damage primarily handled by the FA pathway has been assumed to be related to DNA interstrand crosslinks (ICLs). The FA pathway is activated upon ICL damage, and a hallmark of this activation is the mono-ubiquitination events of the key FANCD2-FANCI protein complex. Recent data have revealed unexpectedly complex details in the regulation of FA pathway activation by ICLs. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via protein modifications.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kitao
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
852
|
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006379. [PMID: 28475612 PMCID: PMC5435356 DOI: 10.1371/journal.ppat.1006379] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion. One of the most common motifs that binds calcium to transduce intracellular signals is called an EF hand- named after the globular domain structure first characterized in ovalbumin. A conserved cluster of four EF hands, each of which that binds one calcium atom, is a conserved feature of calmodulin, centrins, and calmodulin-like proteins, including myosin light chains. Although the presence of EF hands is predictive of calcium binding, it alone does not allow classification of biological function as this set of conserved proteins have very diverse functions. Here we used modified editing procedures based on CRISPR/Cas9 combined with a plant-like degradation system to define the roles of three calmodulin-like proteins in T. gondii. These proteins all localized to a specialized apical structure called the conoid where they overlap with the motor protein called MyoH. Additionally, biochemical and genetic studies suggest they coordinately regulate cell invasion. These new genomic editing tools, combined with an efficient system for protein degradation, expand the functional tool kit for an analysis of essential genes and proteins in T. gondii.
Collapse
|
853
|
Abstract
Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cytosolic in Toxoplasma gondii. To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii. By combining AID regulation with genome editing strategies, we determined that PKGI is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKGII is functionally insufficient and dispensable in the presence of PKGI. The difference in functionality mapped to the first 15 residues of PKGI, containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondii. Toxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii. We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii.
Collapse
|
854
|
Sun W, Zhang W, Zhang C, Mao M, Zhao Y, Chen X, Yang Y. Light-induced protein degradation in human-derived cells. Biochem Biophys Res Commun 2017; 487:241-246. [DOI: 10.1016/j.bbrc.2017.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
855
|
Vasileva V, Gierlinski M, Yue Z, O'Reilly N, Kitamura E, Tanaka TU. Molecular mechanisms facilitating the initial kinetochore encounter with spindle microtubules. J Cell Biol 2017; 216:1609-1622. [PMID: 28446512 PMCID: PMC5461016 DOI: 10.1083/jcb.201608122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The initial kinetochore (KT) encounter with a spindle microtubule (MT) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. This study reveals how multiple factors cooperate to facilitate the KT encounter with a spindle MT. In particular, it highlights the important roles of KT-derived MTs in this process. The initial kinetochore (KT) encounter with a spindle microtubule (MT; KT capture) is one of the rate-limiting steps in establishing proper KT–MT interaction during mitosis. KT capture is facilitated by multiple factors, such as MT extension in various directions, KT diffusion, and MT pivoting. In addition, KTs generate short MTs, which subsequently interact with a spindle MT. KT-derived MTs may facilitate KT capture, but their contribution is elusive. In this study, we find that Stu1 recruits Stu2 to budding yeast KTs, which promotes MT generation there. By removing Stu2 specifically from KTs, we show that KT-derived MTs shorten the half-life of noncaptured KTs from 48–49 s to 28–34 s. Using computational simulation, we found that multiple factors facilitate KT capture redundantly or synergistically. In particular, KT-derived MTs play important roles both by making a significant contribution on their own and by synergistically enhancing the effects of KT diffusion and MT pivoting. Our study reveals fundamental mechanisms facilitating the initial KT encounter with spindle MTs.
Collapse
Affiliation(s)
- Vanya Vasileva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.,Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola O'Reilly
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, England, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
856
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
857
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
858
|
Leonaitė B, Han Z, Basquin J, Bonneau F, Libri D, Porrua O, Conti E. Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. EMBO J 2017; 36:1590-1604. [PMID: 28408439 PMCID: PMC5452015 DOI: 10.15252/embj.201696174] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
The superfamily 1B (SF1B) helicase Sen1 is an essential protein that plays a key role in the termination of non‐coding transcription in yeast. Here, we identified the ~90 kDa helicase core of Saccharomyces cerevisiae Sen1 as sufficient for transcription termination in vitro and determined the corresponding structure at 1.8 Å resolution. In addition to the catalytic and auxiliary subdomains characteristic of the SF1B family, Sen1 has a distinct and evolutionarily conserved structural feature that “braces” the helicase core. Comparative structural analyses indicate that the “brace” is essential in shaping a favorable conformation for RNA binding and unwinding. We also show that subdomain 1C (the “prong”) is an essential element for 5′‐3′ unwinding and for Sen1‐mediated transcription termination in vitro. Finally, yeast Sen1 mutant proteins mimicking the disease forms of the human orthologue, senataxin, show lower capacity of RNA unwinding and impairment of transcription termination in vitro. The combined biochemical and structural data thus provide a molecular model for the specificity of Sen1 in transcription termination and more generally for the unwinding mechanism of 5′‐3′ helicases.
Collapse
Affiliation(s)
- Bronislava Leonaitė
- Max Planck Institute of Biochemistry, Munich, Germany.,Graduate School of Quantitative Biosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Zhong Han
- Institut Jacques Monod, Centre Nationale pour la Recherche Scientifique (CNRS), UMR 7592 Université Paris Diderot, Paris, France.,Université Paris-Saclay, Gif sur Yvette, France
| | | | | | - Domenico Libri
- Institut Jacques Monod, Centre Nationale pour la Recherche Scientifique (CNRS), UMR 7592 Université Paris Diderot, Paris, France
| | - Odil Porrua
- Institut Jacques Monod, Centre Nationale pour la Recherche Scientifique (CNRS), UMR 7592 Université Paris Diderot, Paris, France
| | - Elena Conti
- Max Planck Institute of Biochemistry, Munich, Germany
| |
Collapse
|
859
|
Zhang X, Schnorrer F. AIDing-targeted protein degradation in Drosophila. FEBS J 2017; 284:1178-1181. [PMID: 28382696 DOI: 10.1111/febs.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conditional protein depletion is highly desirable for investigating protein functions in complex organisms. In this issue, Bence and colleagues combined auxin-inducible degradation with CRISPR, establishing an elegant tool to control protein levels. They achieve precise spatio-temporal control of protein degradation during Drosophila oogenesis and early embryogenesis by combining suitable GAL4 drivers (spatial control) with auxin feeding protocols (temporal control).
Collapse
Affiliation(s)
- Xu Zhang
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Developmental Biology Institute of Marseille (IBDM), CNRS, UMR 7288, Aix-Marseille Université, France
| |
Collapse
|
860
|
Abstract
Precise modifications of the Saccharomyces cerevisiae genome use marker cassettes, most often in the form of "knockout" (KO) marker cassettes, to delete genes. Many different KO marker cassettes exist, some of which require strains with specific genotypes, such as auxotrophic mutations, and others that have no strain genotype requirements, such as selections for drug resistance and one of two selections for nitrogen source utilization. This introduction focuses on the most frequently used family of KO cassettes-the MX cassettes. In particular, we focus on and describe the different types of MX cassettes and selections; specifically, selections for prototrophy; selections for utilization of cytosine or acetamide as sole nitrogen sources; and selections for resistance to six different drugs. The use of cassettes to place genes under regulated control is briefly discussed. Also discussed are strain genotype requirements (where applicable); media requirements; how to "recycle" or "pop out" cassettes; and counterselections against specific KO cassettes.
Collapse
|
861
|
Maric M, Mukherjee P, Tatham MH, Hay R, Labib K. Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication. Cell Rep 2017; 18:3033-3042. [PMID: 28355556 PMCID: PMC5382235 DOI: 10.1016/j.celrep.2017.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 "segregase". Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction.
Collapse
Affiliation(s)
- Marija Maric
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Progya Mukherjee
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michael H Tatham
- Gene Regulation and Expression Division, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ronald Hay
- Gene Regulation and Expression Division, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
862
|
Kubik S, Bruzzone MJ, Shore D. Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. Bioessays 2017; 39. [PMID: 28345796 DOI: 10.1002/bies.201600237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvements in deep sequencing, together with methods to rapidly deplete essential transcription factors (TFs) and chromatin remodelers, have recently led to a more detailed picture of promoter nucleosome architecture in yeast and its relationship to transcriptional regulation. These studies revealed that ∼40% of all budding yeast protein-coding genes possess a unique promoter structure, where we propose that an unusually unstable nucleosome forms immediately upstream of the transcription start site (TSS). This "fragile" nucleosome (FN) promoter architecture relies on the combined action of the essential RSC (Remodels Structure of Chromatin) nucleosome remodeler and pioneer transcription factors (PTFs). FNs are associated with genes whose expression is high, coupled to cell growth, and characterized by low cell-to-cell variability (noise), suggesting that they may promote these features. Recent studies in metazoans suggest that the presence of dynamic nucleosomes upstream of the TSS at highly expressed genes may be conserved throughout evolution.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
863
|
Fong KK, Sarangapani KK, Yusko EC, Riffle M, Llauró A, Graczyk B, Davis TN, Asbury CL. Direct measurement of the strength of microtubule attachment to yeast centrosomes. Mol Biol Cell 2017; 28:1853-1861. [PMID: 28331072 PMCID: PMC5541836 DOI: 10.1091/mbc.e17-01-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
Laser trapping is used to manipulate single attached microtubules in vitro. Direct mechanical measurement shows that attachment of microtubule minus ends to yeast spindle pole bodies is extraordinarily strong. Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Krishna K Sarangapani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Aida Llauró
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
864
|
Czapiński J, Kiełbus M, Kałafut J, Kos M, Stepulak A, Rivero-Müller A. How to Train a Cell-Cutting-Edge Molecular Tools. Front Chem 2017; 5:12. [PMID: 28344971 PMCID: PMC5344921 DOI: 10.3389/fchem.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.
Collapse
Affiliation(s)
- Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of WarsawWarsaw, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi UniversityTurku, Finland
- Department of Biosciences, Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
865
|
Bence M, Jankovics F, Lukácsovich T, Erdélyi M. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins. FEBS J 2017; 284:1056-1069. [PMID: 28207183 DOI: 10.1111/febs.14042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in nonplant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unraveling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa.
Collapse
Affiliation(s)
- Melinda Bence
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
866
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
867
|
Hoffmann S, Fachinetti D. A time out for CENP-A. Mol Cell Oncol 2017; 4:e1293596. [PMID: 28616571 DOI: 10.1080/23723556.2017.1293596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 01/30/2023]
Abstract
Proper chromosome segregation relies on a functional centromere-kinetochore interface. We showed that chromatin containing CENtromere Protein A (CENP-A) is essential for centromere assembly, but dispensable for chromosome segregation in the presence of CENP-B-bound DNA sequences. This demonstrates the existence of two contact points between the DNA and the kinetochore to mediate successful chromosome segregation.
Collapse
Affiliation(s)
- S Hoffmann
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| |
Collapse
|
868
|
McKinley KL, Cheeseman IM. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Dev Cell 2017; 40:405-420.e2. [PMID: 28216383 DOI: 10.1016/j.devcel.2017.01.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/23/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
869
|
Borrie MS, Campor JS, Joshi H, Gartenberg MR. Binding, sliding, and function of cohesin during transcriptional activation. Proc Natl Acad Sci U S A 2017; 114:E1062-E1071. [PMID: 28137853 PMCID: PMC5320966 DOI: 10.1073/pnas.1617309114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast Saccharomyces cerevisiae, the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs. Despite the wealth of information about where cohesin binds, little is known about cohesion at individual chromosomal binding sites and how transcription affects cohesion when cohesin complexes redistribute. In this study, we generated extrachromosomal DNA circles to study cohesion in response to transcriptional induction of a model gene, URA3. Functional cohesin complexes loaded onto the locus via a poly(dA:dT) tract in the gene promoter and mediated cohesion before induction. Upon transcription, the fate of these complexes depended on whether the DNA was circular or not. When gene activation occurred before DNA circularization, cohesion was lost. When activation occurred after DNA circularization, cohesion persisted. The presence of a convergently oriented gene also prevented transcription-driven loss of functional cohesin complexes, at least in M phase-arrested cells. The results are consistent with cohesin binding chromatin in a topological embrace and with transcription mobilizing functional complexes by sliding them along DNA.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Binding Sites
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/ultrastructure
- DNA, Circular/metabolism
- DNA, Fungal/genetics
- DNA-Binding Proteins/metabolism
- Extrachromosomal Inheritance
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Reporter
- Genes, Synthetic
- Metaphase
- Multiprotein Complexes/metabolism
- Poly dA-dT/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcriptional Activation/physiology
- Cohesins
Collapse
Affiliation(s)
- Melinda S Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - John S Campor
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Hansa Joshi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854;
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
870
|
Kim JO, Zelter A, Umbreit NT, Bollozos A, Riffle M, Johnson R, MacCoss MJ, Asbury CL, Davis TN. The Ndc80 complex bridges two Dam1 complex rings. eLife 2017; 6. [PMID: 28191870 PMCID: PMC5354518 DOI: 10.7554/elife.21069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/11/2017] [Indexed: 12/18/2022] Open
Abstract
Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex's ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital.
Collapse
Affiliation(s)
- Jae Ook Kim
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Athena Bollozos
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
871
|
Bresson S, Tuck A, Staneva D, Tollervey D. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast. Mol Cell 2017; 65:787-800.e5. [PMID: 28190770 PMCID: PMC5344683 DOI: 10.1016/j.molcel.2017.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/10/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability. Changes in nuclear surveillance factor binding very rapidly follow nutritional shift Downregulated genes frequently show strongly increased surveillance factor binding Upregulated genes are protected against elevated surveillance factor binding The behavior of functionally related genes indicates posttranscriptional coregulation
Collapse
MESH Headings
- Adaptation, Physiological
- Binding Sites
- Cell Nucleus/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation, Fungal
- Glucose/deficiency
- Glucose/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Desislava Staneva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland.
| |
Collapse
|
872
|
Tools for attenuation of gene expression in malaria parasites. Int J Parasitol 2017; 47:385-398. [PMID: 28153780 DOI: 10.1016/j.ijpara.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
An understanding of the biology of Plasmodium parasites, which are the causative agents of the disease malaria, requires study of gene function. Various reverse genetic tools have been described for determining gene function. These tools can be broadly grouped as trans- and cis-acting. Trans-acting tools control gene functions through synthetic nucleic acid probe molecules matching the sequence of the gene of interest. Once delivered to the parasite, the probe engages with the mRNA of the target gene and attenuates its function. Cis-acting tools control gene function through elements introduced into the gene of interest by DNA transfection. The expression of the modified gene can be controlled using external agents, typically small molecule ligands. In this review, we discuss the strengths and weaknesses of these tools to guide researchers in selecting the appropriate tool for studies of gene function, and for guiding future refinements of these tools.
Collapse
|
873
|
Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication. Genes (Basel) 2017; 8:genes8020052. [PMID: 28134787 PMCID: PMC5333041 DOI: 10.3390/genes8020052] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/21/2017] [Indexed: 11/23/2022] Open
Abstract
During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.
Collapse
|
874
|
Ogasawara Y, Kira S, Mukai Y, Noda T, Yamamoto A. Ole1, fatty acid desaturase, is required for Atg9 delivery and isolation membrane expansion during autophagy in Saccharomyces cerevisiae. Biol Open 2017; 6:35-40. [PMID: 27881438 PMCID: PMC5278431 DOI: 10.1242/bio.022053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023] Open
Abstract
Macroautophagy, a major degradation pathway of cytoplasmic components, is carried out through formation of a double-membrane structure, the autophagosome. Although the involvement of specific lipid species in the formation process remains largely obscure, we recently showed that mono-unsaturated fatty acids (MUFA) generated by stearoyl-CoA desaturase 1 (SCD1) are required for autophagosome formation in mammalian cells. To obtain further insight into the role of MUFA in autophagy, in this study we analyzed the autophagic phenotypes of the yeast mutant of OLE1, an orthologue of SCD1. Δole1 cells were defective in nitrogen starvation-induced autophagy, and the Cvt pathway, when oleic acid was not supplied. Defects in elongation of the isolation membrane led to a defect in autophagosome formation. In the absence of Ole1, the transmembrane protein Atg9 was not able to reach the pre-autophagosomal structure (PAS), the site of autophagosome formation. Thus, autophagosome formation requires Ole1 during the delivery of Atg9 to the PAS/autophagosome from its cellular reservoir.
Collapse
Affiliation(s)
- Yuta Ogasawara
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Kira
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Mukai
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Takeshi Noda
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate school of Frontier Bioscience, Osaka University, 1-8 Yamadaoka, Suita, Japan
| | - Akitsugu Yamamoto
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
875
|
Prajapati HK, Rizvi SMA, Rathore I, Ghosh SK. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast. Mol Microbiol 2017; 103:1046-1064. [PMID: 28004422 DOI: 10.1111/mmi.13608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
Abstract
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self-encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid-borne proteins Rep1, Rep2 and a cis-acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co-segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub-nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule-associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.
Collapse
Affiliation(s)
- Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
876
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
877
|
Taxis C. Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light. Methods Mol Biol 2017; 1596:241-255. [PMID: 28293891 DOI: 10.1007/978-1-4939-6940-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In eukaryotic cells, virtually all regulatory processes are influenced by proteolysis. Thus, synthetic control of protein stability is a powerful approach to influence cellular behavior. To achieve this, selected target proteins are modified with a conditional degradation sequence (degron) that responds to a distinct signal. For development of a synthetic degron, an appropriate sensor domain is fused with a degron such that activity of the degron is under control of the sensor. This chapter describes the development of a light-activated, synthetic degron in the model organism Saccharomyces cerevisiae. This photosensitive degron module is composed of the light-oxygen-voltage (LOV) 2 photoreceptor domain of Arabidopsis thaliana phototropin 1 and a degron derived from murine ornithine decarboxylase (ODC). Excitation of the photoreceptor with blue light induces a conformational change that leads to exposure and activation of the degron. Subsequently, the protein is targeted for degradation by the proteasome. Here, the strategy for degron module development and optimization is described in detail together with experimental aspects, which were pivotal for successful implementation of light-controlled proteolysis. The engineering of the photosensitive degron (psd) module may well serve as a blueprint for future development of sophisticated synthetic switches.
Collapse
Affiliation(s)
- Christof Taxis
- Department of Biology/Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany.
- Department of Chemistry/Biochemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany.
| |
Collapse
|
878
|
Tungadi EA, Ito A, Kiyomitsu T, Goshima G. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J Cell Sci 2017; 130:3676-3684. [DOI: 10.1242/jcs.203703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022] Open
Abstract
Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, using CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein CDK5RAP2 (also called CEP215) in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly.
Collapse
Affiliation(s)
- Elsa A. Tungadi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ami Ito
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
879
|
Hara M, Fukagawa T. Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:29-57. [PMID: 28840232 DOI: 10.1007/978-3-319-58592-5_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kinetochore is a large protein complex, which is assembled at the centromere of a chromosome to ensure faithful chromosome segregation during M-phase. The centromere in most eukaryotes is epigenetically specified by DNA sequence-independent mechanisms. The constitutive centromere-associated network (CCAN) is a subcomplex in the kinetochore that localizes to the centromere throughout the cell cycle. The CCAN has interfaces bound to the centromeric chromatin and the spindle microtubule-binding complex; therefore, it functions as a foundation of kinetochore formation. Here, we summarize recent progress in our understanding of the structure and organization of the CCAN. We also discuss an additional role of the CCAN in the maintenance of centromere position and dynamic reorganization of the CCAN.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
880
|
Gómez-Sánchez R, Sánchez-Wandelmer J, Reggiori F. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 2017; 588:323-365. [DOI: 10.1016/bs.mie.2016.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
881
|
Ode KL, Ukai H, Susaki EA, Narumi R, Matsumoto K, Hara J, Koide N, Abe T, Kanemaki MT, Kiyonari H, Ueda HR. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1. Mol Cell 2017; 65:176-190. [DOI: 10.1016/j.molcel.2016.11.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
882
|
Rothblum LI, Rothblum K, Chang E. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression. Gene 2016; 612:55-60. [PMID: 28042089 DOI: 10.1016/j.gene.2016.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the absence of ectopic gene expression, the gene products of both endogenous genes were expressed, irrespective of whether they were partially mutant proteins or not.
Collapse
Affiliation(s)
- Lawrence I Rothblum
- Depoartment of Cell Biology, The University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States.
| | - Katrina Rothblum
- Depoartment of Cell Biology, The University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States
| | - Eugenie Chang
- Depoartment of Cell Biology, The University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States
| |
Collapse
|
883
|
Papagiannakis A, Niebel B, Wit EC, Heinemann M. Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle. Mol Cell 2016; 65:285-295. [PMID: 27989441 DOI: 10.1016/j.molcel.2016.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bastian Niebel
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ernst C Wit
- Probability and Statistics, Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
884
|
Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H, Fachinetti D, Page DC, Cleveland DW. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 2016; 19:68-75. [PMID: 27918550 DOI: 10.1038/ncb3450] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Abstract
Chromosome missegregation into a micronucleus can cause complex and localized genomic rearrangements known as chromothripsis, but the underlying mechanisms remain unresolved. Here we developed an inducible Y centromere-selective inactivation strategy by exploiting a CENP-A/histone H3 chimaera to directly examine the fate of missegregated chromosomes in otherwise diploid human cells. Using this approach, we identified a temporal cascade of events that are initiated following centromere inactivation involving chromosome missegregation, fragmentation, and re-ligation that span three consecutive cell cycles. Following centromere inactivation, a micronucleus harbouring the Y chromosome is formed in the first cell cycle. Chromosome shattering, producing up to 53 dispersed fragments from a single chromosome, is triggered by premature micronuclear condensation prior to or during mitotic entry of the second cycle. Lastly, canonical non-homologous end joining (NHEJ), but not homology-dependent repair, is shown to facilitate re-ligation of chromosomal fragments in the third cycle. Thus, initial errors in cell division can provoke further genomic instability through fragmentation of micronuclear DNAs coupled to NHEJ-mediated reassembly in the subsequent interphase.
Collapse
Affiliation(s)
- Peter Ly
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Levi S Teitz
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Dong H Kim
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ofer Shoshani
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Helen Skaletsky
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Daniele Fachinetti
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - David C Page
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
885
|
Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T. Synthetic biology routes to bio-artificial intelligence. Essays Biochem 2016; 60:381-391. [PMID: 27903825 PMCID: PMC5264507 DOI: 10.1042/ebc20160014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022]
Abstract
The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI).
Collapse
Affiliation(s)
- Darren N Nesbeth
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Alexey Zaikin
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, U.K
- Institute for Women's Health, University College London, London WC1E 6AU, U.K
| | - Yasushi Saka
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - M Carmen Romano
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
- Department of Physics, Institute for Complex Systems and Mathematical Biology, Meston Building, Old Aberdeen, Aberdeen, U.K
| | - Claudiu V Giuraniuc
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Oleg Kanakov
- Oscillation Theory Department, Lobachevsky State University of Nizhniy Novgorod, Novgorod, Russia
| | - Tetyana Laptyeva
- Department of Control Theory and Systems Dynamics, Lobachevsky State University of Nizhniy Novgorod, Novgorod, Russia
| |
Collapse
|
886
|
Rodriguez J, Lee L, Lynch B, Tsukiyama T. Nucleosome occupancy as a novel chromatin parameter for replication origin functions. Genome Res 2016; 27:269-277. [PMID: 27895110 PMCID: PMC5287232 DOI: 10.1101/gr.209940.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/17/2016] [Indexed: 11/01/2022]
Abstract
Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Laura Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Bryony Lynch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
887
|
Albert B, Knight B, Merwin J, Martin V, Ottoz D, Gloor Y, Bruzzone MJ, Rudner A, Shore D. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis. Mol Cell 2016; 64:720-733. [PMID: 27818142 DOI: 10.1016/j.molcel.2016.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/12/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
Abstract
Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription.
Collapse
Affiliation(s)
- Benjamin Albert
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Britta Knight
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Jason Merwin
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Victoria Martin
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Diana Ottoz
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Yvonne Gloor
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Adam Rudner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Shore
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
888
|
Abstract
Macroautophagy, a highly conserved process in eukaryotic cells, is initiated in response to stress, especially nutrient starvation. Macroautophagy helps cells survive by engulfing proteins and organelles into an unusual double-membraned structure called the autophagosome, which then fuses with the lysosome. Upon degradation of the engulfed contents, the building blocks are recycled for synthesis of new macromolecules. Recent work has demonstrated that construction of the autophagosome requires a variety of small GTPases in variations of their normal roles in membrane traffic. In this Commentary, we review our own recent findings with respect to 2 different GTPases, Arl1, a member of the Arf/Arl/Sar family, and Ypt6, a member of the Rab family, in the yeast S. cerevisiae in light of other information from the literature and discuss future directions for further discerning the roles of small GTPases in autophagy.
Collapse
Affiliation(s)
- Shu Yang
- a Department of Biology , Georgetown University , Washington, DC , USA
| | - Anne Rosenwald
- a Department of Biology , Georgetown University , Washington, DC , USA
| |
Collapse
|
889
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
890
|
Delorme-Axford E, Klionsky DJ. A missing piece of the puzzle: Atg11 functions as a scaffold to activate Atg1 for selective autophagy. Autophagy 2016; 11:2139-41. [PMID: 26566077 DOI: 10.1080/15548627.2015.1116672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The mechanism regulating Atg1 kinase activity for the initiation of selective macroautophagy (hereafter autophagy) under nutrient-rich conditions has been a long-standing question. Canonically in yeast, nutrient starvation or rapamycin treatment repress TOR complex 1 and stimulate the Atg1 complex (including at least Atg1, Atg13, Atg17, Atg29 and Atg31), which allows the recruitment of downstream autophagy-related (Atg) components to the phagophore assembly site (PAS), culminating in phagophore formation, and, subsequently, autophagosome biogenesis. Atg1 also functions under conditions promoting selective autophagy that do not necessarily require nutrient deprivation for induction. However, there has been some debate as to whether Atg1 catalytic activity plays a more important role under conditions of nutrient starvation-induced autophagy (i.e., bulk autophagy) vs. selective autophagy (e.g., the cytoplasm-to-vacuole targeting [Cvt] pathway). A recent paper by Kamber and colleagues investigates the mechanism regulating Atg1 activity during selective autophagy.
Collapse
Affiliation(s)
| | - Daniel J Klionsky
- a Life Sciences Institute ; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
891
|
Falk JE, Campbell IW, Joyce K, Whalen J, Seshan A, Amon A. LTE1 promotes exit from mitosis by multiple mechanisms. Mol Biol Cell 2016; 27:3991-4001. [PMID: 27798238 PMCID: PMC5156540 DOI: 10.1091/mbc.e16-08-0563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
In budding yeast, the spindle position checkpoint ensures that cells exit from mitosis only when their spindle is properly aligned along the mother–bud axis. Exit from mitosis is controlled by both negative signals in the mother cell compartment and positive signals in the bud. In budding yeast, alignment of the anaphase spindle along the mother–bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell–restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway’s GTPase activity.
Collapse
Affiliation(s)
- Jill E Falk
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelsey Joyce
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Jenna Whalen
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
892
|
Abstract
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.
Collapse
Affiliation(s)
- Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| |
Collapse
|
893
|
Wood L, Booth DG, Vargiu G, Ohta S, deLima Alves F, Samejima K, Fukagawa T, Rappsilber J, Earnshaw WC. Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biol 2016; 6:150230. [PMID: 26791246 PMCID: PMC4736828 DOI: 10.1098/rsob.150230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most studies using knockout technologies to examine protein function have relied either on shutting off transcription (conventional conditional knockouts with tetracycline-regulated gene expression or gene disruption) or destroying the mature mRNA (RNAi technology). In both cases, the target protein is lost at a rate determined by its intrinsic half-life. Thus, protein levels typically fall over at least 1-3 days, and cells continue to cycle while exposed to a decreasing concentration of the protein. Here we characterise the kinetochore proteome of mitotic chromosomes isolated from a cell line in which the essential kinetochore protein CENP-T is present as an auxin-inducible degron (AID) fusion protein that is fully functional and able to support the viability of the cells. Stripping of the protein from chromosomes in early mitosis via targeted proteasomal degradation reveals the dependency of other proteins on CENP-T for their maintenance in kinetochores. We compare these results with the kinetochore proteome of conventional CENP-T/W knockouts. As the cell cycle is mostly formed from G1, S and G2 phases a gradual loss of CENP-T/W levels is more likely to reflect dependencies associated with kinetochore assembly pre-mitosis and upon entry into mitosis. Interestingly, a putative super-complex involving Rod-Zw10-zwilch (RZZ complex), Spindly, Mad1/Mad2 and CENP-E requires the function of CENP-T/W during kinetochore assembly for its stable association with the outer kinetochore, but once assembled remains associated with chromosomes after stripping of CENP-T during mitosis. This study highlights the different roles core kinetochore components may play in the assembly of kinetochores (upon entry into mitosis) versus the maintenance of specific components (during mitosis).
Collapse
Affiliation(s)
- Laura Wood
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Daniel G Booth
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Shinya Ohta
- Center for Innovative and Translational Medicine, Kochi University, Kochi, Japan
| | - Flavia deLima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Suita 565-0871, Japan
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Institute of Bioanalytics, Department of Biotechnology, Technische Universität Berlin, Berlin 13353, Germany
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
894
|
Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport. PLoS Genet 2016; 12:e1006324. [PMID: 27689885 PMCID: PMC5045159 DOI: 10.1371/journal.pgen.1006324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed "Insoluble PrOtein Deposit (IPOD)", but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and "SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)" protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104 disaggregation machinery.
Collapse
|
895
|
Tsabar M, Hicks WM, Tsaponina O, Haber JE. Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast. DNA Repair (Amst) 2016; 47:21-29. [PMID: 27720308 DOI: 10.1016/j.dnarep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Abstract
Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - Wade M Hicks
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - Olga Tsaponina
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.
| |
Collapse
|
896
|
Takagi M, Natsume T, Kanemaki MT, Imamoto N. Perichromosomal protein Ki67 supports mitotic chromosome architecture. Genes Cells 2016; 21:1113-1124. [DOI: 10.1111/gtc.12420] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Toyoaki Natsume
- Division of Molecular Cell Engineering; National Institute of Genetics, ROIS; and Department of Genetics, SOKENDAI; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Masato T. Kanemaki
- Division of Molecular Cell Engineering; National Institute of Genetics, ROIS; and Department of Genetics, SOKENDAI; Yata 1111 Mishima Shizuoka 411-8540 Japan
- PRESTO; Japan Science and Technology Agency; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
897
|
In B cells, phosphatidylinositol 5-phosphate 4-kinase-α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proc Natl Acad Sci U S A 2016; 113:10571-6. [PMID: 27601656 DOI: 10.1073/pnas.1522478113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are enigmatic lipid kinases with physiological functions that are incompletely understood, not the least because genetic deletion and cell transfection have led to contradictory data. Here, we used the genetic tractability of DT40 cells to create cell lines in which endogenous PI5P4Kα was removed, either stably by genetic deletion or transiently (within 1 h) by tagging the endogenous protein genomically with the auxin degron. In both cases, removal impacted Akt phosphorylation, and by leaving one PI5P4Kα allele present but mutating it to be kinase-dead or have PI4P 5-kinase activity, we show that all of the effects on Akt phosphorylation were dependent on the ability of PI5P4Kα to synthesize phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] rather than to remove PI5P. Although stable removal of PI5P4Kα resulted in a pronounced decrease in Akt phosphorylation at Thr308 and Ser473, in part because of reduced plasma membrane PIP3, its acute removal led to an increase in Akt phosphorylation only at Ser473. This process invokes activation primarily of mammalian target of rapamycin complex 2 (mTORC2), which was confirmed by increased phosphorylation of other mTORC2 substrates. These findings establish PI5P4Kα as a kinase that synthesizes a physiologically relevant pool of PI(4,5)P2 and as a regulator of mTORC2, and show a phenomenon similar to the "butterfly effect" described for phosphatidylinositol 3-kinase Iα [Hart JR, et al. (2015) Proc Natl Acad Sci USA 112(4):1131-1136], whereby through apparently the same underlying mechanism, the removal of a protein's activity from a cell can have widely divergent effects depending on the time course of that removal.
Collapse
|
898
|
Ryu HY, Wilson NR, Mehta S, Hwang SS, Hochstrasser M. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes Dev 2016; 30:1881-94. [PMID: 27585592 PMCID: PMC5024685 DOI: 10.1101/gad.282194.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
The SUMO protease Ulp2 modulates many of the SUMO-dependent processes in budding yeast. Ryu et al. discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. Extra copies of ChrI and ChrXII can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI—CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4–Not deadenylase complex, respectively—suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, Connecticut 06520, USA
| | - Soo Seok Hwang
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
899
|
Navarro R, Chen LC, Rakhit R, Wandless TJ. A Novel Destabilizing Domain Based on a Small-Molecule Dependent Fluorophore. ACS Chem Biol 2016; 11:2101-4. [PMID: 27243964 DOI: 10.1021/acschembio.6b00234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tools that can directly regulate the activity of any protein-of-interest are valuable in the study of complex biological processes. Herein, we describe the development of a novel protein domain that exhibits small molecule-dependent stability and fluorescence based on the bilirubin-inducible fluorescent protein, UnaG. When genetically fused to any protein-of-interest, this fluorescent destabilizing domain (FDD) confers its instability to the entire fusion protein, facilitating the rapid degradation of the fusion. In the presence of its cognate ligand bilirubin (BR), the FDD fusion becomes stable and fluorescent. This new chemical genetic tool allows for rapid, reversible, and tunable control over the stability and fluorescence of a wide range of protein targets.
Collapse
|
900
|
Pakchuen S, Ishibashi M, Takakusagi E, Shirahige K, Sutani T. Physical Association of Saccharomyces cerevisiae Polo-like Kinase Cdc5 with Chromosomal Cohesin Facilitates DNA Damage Response. J Biol Chem 2016; 291:17228-46. [PMID: 27325700 PMCID: PMC5016123 DOI: 10.1074/jbc.m116.727438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Indexed: 12/03/2022] Open
Abstract
At the onset of anaphase, a protease called separase breaks the link between sister chromatids by cleaving the cohesin subunit Scc1. This irreversible step in the cell cycle is promoted by degradation of the separase inhibitor, securin, and polo-like kinase (Plk) 1-dependent phosphorylation of the Scc1 subunit. Plk could recognize substrates through interaction between its phosphopeptide interaction domain, the polo-box domain, and a phosphorylated priming site in the substrate, which has been generated by a priming kinase beforehand. However, the physiological relevance of this targeting mechanism remains to be addressed for many of the Plk1 substrates. Here, we show that budding yeast Plk1, Cdc5, is pre-deposited onto cohesin engaged in cohesion on chromosome arms in G2/M phase cells. The Cdc5-cohesin association is mediated by direct interaction between the polo-box domain of Cdc5 and Scc1 phosphorylated at multiple sites in its middle region. Alanine substitutions of the possible priming phosphorylation sites (scc1-15A) impair Cdc5 association with chromosomal cohesin, but they make only a moderate impact on mitotic cell growth even in securin-deleted cells (pds1Δ), where Scc1 phosphorylation by Cdc5 is indispensable. The same scc1-15A pds1Δ double mutant, however, exhibits marked sensitivity to the DNA-damaging agent phleomycin, suggesting that the priming phosphorylation of Scc1 poses an additional layer of regulation that enables yeast cells to adapt to genotoxic environments.
Collapse
Affiliation(s)
- Sujiraporn Pakchuen
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and the Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Mai Ishibashi
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Emi Takakusagi
- the Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Katsuhiko Shirahige
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Takashi Sutani
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| |
Collapse
|