851
|
Oh GS, Pae HO, Choi BM, Seo EA, Kim DH, Shin MK, Kim JD, Kim JB, Chung HT. 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett 2004; 205:23-9. [PMID: 15036657 DOI: 10.1016/j.canlet.2003.09.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022]
Abstract
Ginsenosides from Panax ginseng are metabolized by human intestinal bacteria after oral administration of ginseng extract. 20(S)-Protopanaxatriol (PPT) is one of the major metabolites of ginsenosides. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important enzymes that mediate inflammatory processes. Improper up-regulation of iNOS and/or COX-2 has been associated with the pathogenesis of inflammatory diseases and certain types of human cancers. Here, we investigated whether PPT could modulate iNOS and COX-2 expressions in RAW 264.7 macrophages stimulated with the endotoxin lipopolysaccharide (LPS). We found that PPT blocked the increase in LPS-induced iNOS and COX-2 expressions through inactivation of nuclear factor-kappaB by preventing I-kappaBalpha phosphorylation and degradation. Thus, it may be possible to develop PPT as a useful agent for chemoprevention of cancer or inflammatory diseases.
Collapse
Affiliation(s)
- G S Oh
- Medicinal Resources Research Center of Wonkwang University, Iksan, Chonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
852
|
Couthier A, Smith J, McGarr P, Craig B, Gilleard JS. Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 2004; 133:241-53. [PMID: 14698436 DOI: 10.1016/j.molbiopara.2003.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative analysis between Caenorhabditis elegans and other nematode species offers a powerful approach to study gene function. C. elegans also has great potential as a surrogate expression system to study the function of genes from parasitic nematode species where transgenic methodologies are unavailable. However there is little information on the extent to which the biology of C. elegans is conserved with other nematode species and very few parasitic nematode genes have yet been functionally expressed in C. elegans. We have identified and characterised a homologue of the C. elegans GATA transcription factor elt-2, a central regulator of endoderm development, from the parasitic nematode Haemonchus contortus. The H. contortus ELT-2 polypeptide is present in endoderm nuclei throughout embryonic and post-embryonic development, except for in the infective L3 stage, and our experiments reveal that the development of the H. contortus endodermal lineage is strikingly similar to that of C. elegans. Sequence conservation between the H. contortus and C. elegans ELT-2 polypeptides broadly reflects function since the major region of sequence identity corresponds to the DNA binding domain. However, the overall level of sequence identity is remarkably low with the only other major region of identity corresponding to an unusual zinc finger domain. In spite of this, ectopic expression of the H. contortus elt-2 gene in transgenic C. elegans is sufficient to activate a programme of endodermal differentiation demonstrating that function is highly conserved. This approach of ectopic expression using an inducible promoter provides an effective way in which to use C. elegans for the in vivo functional analysis of parasitic nematode genes.
Collapse
Affiliation(s)
- Annabelle Couthier
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
853
|
Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng YC. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res 2004; 64:678-88. [PMID: 14744785 DOI: 10.1158/0008-5472.can-03-1904] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tylophorine and its analogs are phenanthroindolizidine alkaloids, several of which have been isolated from the Tylophora genus of plants. Evaluation of (+)-S-tylophorine [DCB-3500 (NSC-717335)] and its analog DCB-3503 (NSC-716802) in the National Cancer Institute tumor screen showed a fairly uniform and potent inhibition of cell growth in all 60 cell lines (GI(50) approximately 10(-8) M). To further evaluate the antitumor potential of these compounds, we synthesized four tylophorine analogs, designated DCB-3500, DCB-3501, DCB-3502, and DCB-3503. All four tylophorine analogs exerted potent growth-inhibitory effects against HepG2, a human hepatocellular carcinoma cell line, and KB, a human nasopharyngeal carcinoma cell line. HepG2 cells were more sensitive than KB in terms of loss of clonogenicity. KB variants, which are resistant to etoposide, hydroxyurea, or camptothecin, have similar sensitivities to the tylophorine analogs, as do the parental KB cells. Treatment of nude mice bearing HepG2 tumor xenografts by i.p. injections of DCB-3503 at 6 mg/kg every 8 h on days 0 and 3 resulted in significant tumor growth suppression (P < 0.0001). Unlike conventional antitumor drugs, 3 micro M DCB-3503 did not cause DNA breaks or apoptosis in HepG2 cells. Tylophorine analogs induced albumin expression and decreased alpha-fetoprotein expression in HepG2 cells, which suggests that tylophorine analogs could induce HepG2 differentiation. Tylophorine analogs had an inhibitory effect on cyclic AMP response elements, activator protein-1 sites, or nuclear factor-kappaB binding site-mediated transcriptions. In summary, these tylophorine analogs are a unique class of antitumor compounds that have a mode of action different from known antitumor drugs.
Collapse
Affiliation(s)
- Wenli Gao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
854
|
Crinelli R, Bianchi M, Gentilini L, Palma L, Sørensen MD, Bryld T, Babu RB, Arar K, Wengel J, Magnani M. Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity. Nucleic Acids Res 2004; 32:1874-85. [PMID: 15051810 PMCID: PMC390358 DOI: 10.1093/nar/gkh503] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognition are retained. We have previously evaluated the use of locked nucleic acids (LNA) in the design of decoy molecules for the transcription factor kappaB. Oligo nucleotides containing LNA substitutions displayed high resistance to exo- and endonucleolytic degradation, with LNA-DNA mix-mers being more stable than LNA-DNA-LNA gap-mers. However, insertion of internal LNA bases resulted in a loss of affinity for the transcription factor. This latter effect apparently depended on positioning of the internal LNA substitutions. Indeed, here we demonstrate that intra- and inter-strand positioning of internal LNAs has to be carefully considered to maintain affinity and achieve high stability, respectively. Unfortunately, our data also indicate that LNA positioning is not the only parameter affecting transcription factor binding, the interference in part being dependent on the intrinsic conformational properties of this nucleotide analog. To circumvent this problem, the successful use of an alpha-L-ribo- configured LNA is demonstrated, indicating LNA-DNA-alpha-L-LNA molecules as promising new decoy agents.
Collapse
Affiliation(s)
- Rita Crinelli
- Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
855
|
Sawyer TK. Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors. Expert Opin Investig Drugs 2004; 13:1-19. [PMID: 14680449 DOI: 10.1517/13543784.13.1.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cancer metastasis is a significant problem and a tremendous challenge to drug discovery relative to identifying key therapeutic targets as well as developing breakthrough medicines. Recent progress in unravelling the complex molecular circuitry of cancer metastasis, including receptors, intracellular proteins and genes, is highlighted. Furthermore, recent advances in drug discovery to provide novel proof-of-concept ligands, in vivo effective lead compounds and promising clinical candidates, are summarised. Such drug discovery efforts illustrate the integration of functional genomics, cell biology, structural biology, drug design, molecular/cellular screening and chemical diversity (e.g., small molecules, peptides/peptidomimetics, natural products, antisense, vaccines and antibodies). Promising therapeutic targets for cancer metastasis have been identified, including Src, focal adhesion kinase, the integrin receptor, the vascular endothelial growth factor receptor, the epidermal growth factor receptor, Her-2/neu, c-Met, Ras/Rac GTPases, Raf kinase, farnesyl diphosphate synthase (i.e., amino-bisphosphonate therapeutic target) and matrix metalloproteases within the context of their implicated functional roles in cancer growth, invasion, angiogenesis and survival at secondary sites. Clinical and preclinical drug discovery is described and emerging small-molecule inhibitors of protein kinases are highlighted.
Collapse
|
856
|
Ivanov VN, Hei TK. Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 2004; 279:22747-58. [PMID: 15028728 PMCID: PMC4389905 DOI: 10.1074/jbc.m314131200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a well established human carcinogen and is associated with a variety of cancers including those of the skin. Paradoxically, arsenic has also been used, amid at low doses, in the treatment of leukemia for over a century. Here we demonstrate that low to moderate concentrations of arsenite (2-10 microm) that has little or no effect on normal melanocytes may induce apoptosis of human melanomas including highly metastatic ones despite their low surface Fas levels. The two prerequisites that dictate apoptotic response of melanomas upon arsenite treatment are low nuclear NF-kappaB activity and an endogenous expression of tumor necrosis factor alpha. Under these conditions, melanoma cells acquired sensitivity to tumor necrosis factor alpha-mediated killing. On the other hand, signaling pathways including those of phosphatidylinositol 3-kinase-AKT, MEK-ERK, and JNK play a protective role against arsenite-induced oxidative stress and apoptosis in melanoma cells. Suppression of these pathways dramatically accelerates arsenite-induced apoptosis. Taken together, these data could provide potential approaches to sensitize melanomas to the cytotoxic effects of arsenite through modulating the signaling pathways.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Center for Radiological Research, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
857
|
Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F, Groner B. The Interaction of Specific Peptide Aptamers With the DNA Binding Domain and the Dimerization Domain of the Transcription Factor Stat3 Inhibits Transactivation and Induces Apoptosis in Tumor Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.170.2.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The transcription factor signal transducer and activator of transcription (Stat) 3 is activated through the interleukin-6 family of cytokines and by binding of growth factors to the epidermal growth factor (EGF) receptor. It plays an essential role in embryonic development and assumes specialized tasks in many differentiated tissues. Constitutively activated Stat3 has been found in tumor cell lines and primary tumors and plays a crucial role in tumor cell survival and proliferation. To inhibit the oncogenic action of Stat3 in tumor cells, we have selected short peptides, so-called peptide aptamers, which specifically interact with defined functional domains of this transcription factor. The peptide aptamers were selected from a peptide library of high complexity by an adaptation of the yeast two-hybrid procedure. Peptide aptamers specifically interacting with the Stat3 dimerization domain caused inhibition of DNA binding activity and suppression of transactivation by Stat3 in EGF-responsive cells. Similarly, a peptide aptamer selected for its ability to recognize the Stat3 DNA binding domain inhibited DNA binding and transactivation by Stat3 following EGF stimulation of cells. Peptide aptamers were expressed in bacteria as fusion proteins with a protein transduction domain and introduced into human myeloma cells. This resulted in dose-dependent growth inhibition, down-regulation of Bcl-xL expression, and induction of apoptosis. The inhibition of Stat3 functions through the interaction with peptide aptamers counteracts the transformed phenotype and could become useful in targeted tumor therapy.
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- 1Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany and
| | - Claudia Buerger
- 1Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany and
| | - Ilka Wittig
- 1Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany and
| | - Karin Butz
- 2Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Felix Hoppe-Seyler
- 2Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Bernd Groner
- 1Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany and
| |
Collapse
|
858
|
Turkson J, Kim JS, Zhang S, Yuan J, Huang M, Glenn M, Haura E, Sebti S, Hamilton AD, Jove R. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.261.3.3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The critical role of signal transducer and activator of transcription 3 (Stat3) in the growth and survival of human tumor cells identifies it as a promising target for cancer drug discovery. We previously identified a Stat3 SH2 domain-binding phosphopeptide, PY*LKTK, and its tripeptide derivatives, PY*L and AY*L (where Y* represents phosphotyrosine), which inhibit Stat3 biochemical activity and biological function. Here, we report novel peptidomimetic compounds based on PY*L (or AY*L) with substitution of the Y-1 residue by benzyl, pyridyl, or pyrazinyl derivatives that are selective and greater than 5-fold more potent in disrupting Stat3 activity in vitro than lead tripeptides. The biological activities of these derivatives mirror that originally observed for peptides. In this context, the representative peptidomimetic ISS 610 with 4-cyanobenzoate substitution inhibits constitutive Stat3 activity in Src-transformed mouse fibroblasts and human breast and lung carcinoma cells. This effect is not evident with the non-phosphorylated counterpart, ISS 610NP, consistent with interaction of peptidomimetics with the SH2 domain of Stat3. Moreover, ISS 610 induces cell growth inhibition and apoptosis of Src-transformed fibroblasts that contain persistently active Stat3. We present the first report of a peptidomimetic approach to design of small-molecule inhibitors of Stat3 that are also among the first examples of disruptors of transcription factor dimerization with the potential for novel cancer therapy.
Collapse
Affiliation(s)
- James Turkson
- 1Molecular Oncology and
- 3Interdisciplinary Oncology, Departments of
| | - Joon S. Kim
- 6Department of Chemistry, Yale University, New Haven, CT
| | - Shumin Zhang
- 1Molecular Oncology and
- 3Interdisciplinary Oncology, Departments of
| | - Jing Yuan
- 1Molecular Oncology and
- 3Interdisciplinary Oncology, Departments of
| | - Mei Huang
- 1Molecular Oncology and
- 3Interdisciplinary Oncology, Departments of
| | - Matthew Glenn
- 6Department of Chemistry, Yale University, New Haven, CT
| | - Eric Haura
- 3Interdisciplinary Oncology, Departments of
| | - Said Sebti
- 2Drug Discovery Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
- 3Interdisciplinary Oncology, Departments of
- 4Biochemistry and Molecular Biology, and
| | | | - Richard Jove
- 1Molecular Oncology and
- 3Interdisciplinary Oncology, Departments of
- 4Biochemistry and Molecular Biology, and
- 5Pathology, University of South Florida College of Medicine, Tampa, FL; and
| |
Collapse
|
859
|
Jin G, Klika A, Callahan M, Faga B, Danzig J, Jiang Z, Li X, Stark GR, Harrington J, Sherf B. Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci U S A 2004; 101:2028-33. [PMID: 14766965 PMCID: PMC357046 DOI: 10.1073/pnas.0307314101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The NF-kappaB pathway plays a critical role in regulating cellular processes such as immune responses, stress responses, apoptosis, proliferation and differentiation, whereas dysfunction of this pathway has been associated with numerous cancer and immune disorders. We have applied our Random Activation of Gene Expression technology to an NF-kappaB reporter cell line to facilitate the discovery of positive regulators of NF-kappaB activation. A small protein expression library, corresponding to approximately 0.1x genome coverage, was generated and screened for clones exhibiting constitutive activation of NF-kappaB. After isolation of cellular clones displaying the relevant phenotypes, we identified two known components of the NF-kappaB pathway and a hypothetical gene that we have designated the human ortholog of Xenopus TAK1-binding protein 3 (TAB3). Overexpression of human TAB3 was found to activate both NF-kappaB and AP-1 transcription factors. Furthermore, the activation of NF-kappaB by TAB3 was blocked by the NF-kappaB inhibitor, SN50, and by expression of dominant-negative forms of tumor necrosis factor alpha-associated factor 6 and transforming growth factor beta-activated kinase. Taken together, these data demonstrate that TAB3 transforming growth factor is a constituent of the NF-kappaB pathway functioning upstream of tumor necrosis factor alpha-associated factor 6/transforming growth factor beta-activated kinase. Interestingly, increased expression of TAB3 was found in some cancer tissues, and its overexpression in NIH 3T3 cells resulted in cellular transformation, thus establishing a causative link between elevated TAB3 expression, constitutive NF-kappaB activation, and oncogenesis.
Collapse
Affiliation(s)
- Ge Jin
- Athersys, Inc., 3201 Carnegie Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
860
|
Affiliation(s)
- Hua Yu
- Immunology Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, College of Medicine, Tampa, 33612, USA.
| | | |
Collapse
|
861
|
Kumar D, Gokhale P, Broustas C, Chakravarty D, Ahmad I, Kasid U. Expression of SCC-S2, an antiapoptotic molecule, correlates with enhanced proliferation and tumorigenicity of MDA-MB 435 cells. Oncogene 2004; 23:612-6. [PMID: 14724590 DOI: 10.1038/sj.onc.1207123] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SCC-S2/GG2-1/NDED is a recently discovered antiapoptotic molecule induced by the activation of the transcription factor NF-kappaB. Here we have examined a role of SCC-S2 in cell growth regulation in vitro and in vivo. Western blotting using an antipeptide antibody revealed endogenous SCC-S2 as a approximately 21 kDa cytosolic protein in human breast cancer cells (MDA-MB 231) and renal carcinoma cells (RCC-RS). The immunofluorescence detection method showed the cytosolic localization of FLAG-tagged human SCC-S2 in COS-1 transfectants. MDA-MB 435 human cancer cells stably transfected with the FLAG-tagged SCC-S2 cDNA exhibited increased growth rate as compared to control vector transfectants, as measured by the cell viability (>twofold; n=3; P<0.005) and thymidine-labeling procedures ( approximately sixfold; n=3; P<0.0001). SCC-S2 transfectants also displayed an increase in cell migration in collagen I as compared to control transfectants ( approximately twofold; n=3; P<0.005). In athymic mice, SCC-S2 transfectants showed significantly enhanced tumor growth as compared to control transfectants (mean tumor volumes, day 16: control, 56.86+/-19.82 mm(3); SCC-S2, 127.54+/-18.78 mm(3); n=5; P<0.03). The examination of a limited number of clinical specimens revealed higher expression levels of SCC-S2 protein in certain human tumor tissues as compared to the matched normal adjacent tissues. Taken together, the present studies demonstrate SCC-S2 as a novel oncogenic factor in cancer cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Radiation Medicine, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
862
|
Gibson SB. Epidermal growth factor and trail interactions in epithelial-derived cells. VITAMINS AND HORMONES 2004; 67:207-27. [PMID: 15110179 DOI: 10.1016/s0083-6729(04)67012-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In healthy tissues, there is a balance between cell survival and death. This balance ensures epithelial cells survive in the right milieu, but undergo programmed cell death (apoptosis) when the environment is no longer supportive. Cells sense these changes primarily through receptors on the cell surface that bind to specific ligands present in the extracellular environment. These receptors, through signal transduction pathways, lead to promotion of cell survival or induction of cell death. One of the most important types of receptors regulating cell survival is the epidermal growth factor (EGF) receptors, while one of the most important types of receptors regulating apoptosis is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors. EGF receptors activate survival signaling pathways including PI3K/AKT, Ras/MAPK, and JAK/STAT signaling pathways leading to cell survival. TRAIL activates apoptotic signaling pathways leading to caspase activation and mitochondrial dysfunction. The balance between these two signaling pathways determine whether a cell survives or dies. In disease states, this balance is altered. For example, epithelial-derived cancer cells often have increased expression of EGF receptors and are resistant to apoptosis. Understanding the interactions between survival and apoptotic signaling pathways mediated by EGF receptors and TRAIL death receptors will be essential to explain the role these pathways play in healthy and diseased cells.
Collapse
Affiliation(s)
- Spencer Bruce Gibson
- Department of Biochemistry and Medical Genetics Manitoba Institute of Cell Biology, University of Manitoba Winnipeg, Manitoba R3E 0V9, Canada
| |
Collapse
|
863
|
Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 2004; 119:139-73. [PMID: 15164877 DOI: 10.1007/1-4020-7847-1_8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Shishir Shishodia
- Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
864
|
Luker KE, Piwnica-Worms D. Optimizing Luciferase Protein Fragment Complementation for Bioluminescent Imaging of Protein–Protein Interactions in Live Cells and Animals. Methods Enzymol 2004; 385:349-60. [PMID: 15130748 DOI: 10.1016/s0076-6879(04)85019-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kathryn E Luker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
865
|
Abstract
Leptin, the long-sought satiety factor of adipocytes origin, has emerged as one of the major signals that relay the status of fat stores to the hypothalamus and plays a significant role in energy homeostasis. Understanding the mechanisms of leptin signaling in the hypothalamus during normal and pathological conditions, such as obesity, has been the subject of intensive research during the last decade. It is now established that leptin action in the hypothalamus in regulation of food intake and body weight is mediated by a neural circuitry comprising of orexigenic and anorectic signals, including NPY, MCH, galanin, orexin, GALP, alpha-MSH, NT, and CRH. In addition to the conventional JAK2-STAT3 pathway, it has become evident that PI3K-PDE3B-cAMP pathway plays a critical role in leptin signaling in the hypothalamus. It is now established that central leptin resistance contributes to the development of diet-induced obesity and ageing associated obesity. Central leptin resistance also occurs due to hyperleptinimia produced by exogenous leptin infusion. A defective nutritional regulation of leptin receptor gene expression and reduced STAT3 signaling may be involved in the development of leptin resistance in DIO. However, leptin resistance in the hypothalamic neurons may occur despite an intact JAK2-STAT3 pathway of leptin signaling. Thus, in addition to defective JAK2-STAT3 pathway, defects in other leptin signaling pathways may be involved in leptin resistance. We hypothesize that defective regulation of PI3K-PDE3B-cAMP pathway may be one of the mechanisms behind the development of central leptin resistance seen in obesity.
Collapse
Affiliation(s)
- Abhiram Sahu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
866
|
Abstract
Double-helical DNA accelerates the rate of ligation of two six-ring hairpin polyamides which bind adjacent sites in the minor groove via a 1,3-dipolar cycloaddition to form a tandem dimer. The rate of the templated reaction is dependent on DNA sequence as well as on the distance between the hairpin-binding sites. The tandem dimer product of the DNA-templated reaction has improved binding properties with respect to the smaller hairpin fragments. Since cell and nuclear uptake of DNA-binding polyamides will likely be dependent on size, this is a minimum first step toward the design of self-assembling small gene-regulating fragments to produce molecules of increasing complexity with more specific genomic targeting capabilities.
Collapse
Affiliation(s)
- Adam T Poulin-Kerstien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
867
|
Abstract
Although the genetic basis of tumorigenesis may vary greatly between different cancer types, the cellular and molecular steps required for metastasis are similar for all cancer cells. Not surprisingly, the molecular mechanisms that propel invasive growth and metastasis are also found in embryonic development, and to a less perpetual extent, in adult tissue repair processes. It is increasingly apparent that the stromal microenvironment, in which neoplastic cells develop, profoundly influences many steps of cancer progression, including the ability of tumor cells to metastasize. In carcinomas, the influences of the microenvironment are mediated, in large part, by bidirectional interactions (adhesion, survival, proteolysis, migration, immune escape mechanisms lymph-/angiogenesis, and homing on target organs) between epithelial tumor cells and neighboring stromal cells, such as fibroblasts as well as endothelial and immune cells. In this review, we summarize recent advances in understanding the molecular mechanisms that govern this frequently lethal metastatic progression along an axis from primary tumor to regional lymph nodes to distant organ sites. Affected proteins include growth factor signaling molecules, chemokines, cell-cell adhesion molecules (cadherins, integrins) as well as extracellular proteases (matrix metalloproteinases). We then discuss promising new therapeutic approaches targeting the microenvironment. We note, however, that there is still too little knowledge of how the many events are coordinated and integrated by the cancer cell, with conspiratorial help by the stromal component of the host. Before drug development can proceed with a legitimate chance of success, significant gaps in basic knowledge need to be filled.
Collapse
|
868
|
Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AEB, Al-Shabrawey M, Platt DH, Caldwell RW. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 2003; 19:442-55. [PMID: 14648803 DOI: 10.1002/dmrr.415] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal neovascularization and macular edema are central features of diabetic retinopathy, the major cause of blindness in the developed world. Current treatments are limited in their efficacy and are associated with significant adverse effects. Characterization of the molecular and cellular processes involved in vascular growth and permeability has led to the recognition that the angiogenic growth factor and vascular permeability factor vascular endothelial growth factor (VEGF) plays a pivotal role in the retinal microvascular complications of diabetes. Therefore, VEGF represents an exciting target for therapeutic intervention in diabetic retinopathy. This review highlights the current understanding of the mechanisms that regulate VEGF gene expression and mediate its biological effects and how these processes may become altered during diabetes. The cellular and molecular alterations that characterize experimental models of diabetes are considered in relation to the influence of high glucose-mediated oxidative stress on VEGF expression and on the mechanisms of VEGF's actions under hyperglycemic induction. Finally, potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological effects in the diabetic retina are considered.
Collapse
Affiliation(s)
- Ruth B Caldwell
- Vascular Biology Center, The Medical College of Georgia Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
869
|
Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S. NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2003; 18:11-7. [PMID: 14574329 DOI: 10.1038/sj.leu.2403171] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of NF-kappaB/Rel transcription factors can downmodulate apoptosis in normal and neoplastic cells of the hematologic and other compartments, contributing in maintaining neoplastic clone survival and impairing response to therapy. Alterations in nfkappab or ikappaB genes are documented in some hematologic neoplasias, while in others dysfunction in NF-kappaB/Rel-activating signaling pathways can be recognized. The prosurvival properties of NF-kappaB/Rel appear to rely on the induced expression of molecules (caspase inhibitors, Bcl2 protein family members, etc.), which interfere with the apoptosis pathway. Constitutive NF-kappaB/Rel activity in some hematologic malignancies could be advantageous for neoplastic clone expansion by counteracting stress stimuli (consumption of growth factors and metabolites) and immune system-triggered apoptosis; it is furthermore likely to play a central role in determining resistance to therapy. Based on this evidence, NF-kappaB/Rel-blocking approaches have been introduced in antineoplastic strategies. The identification of NF-kappaB/Rel target genes relevant for survival in specific neoplasias is required in order to address tailored therapies and avoid possible detrimental effects due to widespread NF-kappaB/Rel inhibition. Moreover, comparative analyses of normal hematopoietic progenitors and neoplastic cell sensitivities to inhibitors of NF-kappaB/Rel and their target genes will allow to evaluate the impact of these tools on normal bone marrow.
Collapse
Affiliation(s)
- M C Turco
- Department of Experimental Medicine, University of Catanzaro, Italy.
| | | | | | | | | | | |
Collapse
|
870
|
Lerner L, Henriksen MA, Zhang X, Darnell JE. STAT3-dependent enhanceosome assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-macroglobulin gene. Genes Dev 2003; 17:2564-77. [PMID: 14522952 PMCID: PMC218150 DOI: 10.1101/gad.1135003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a detailed time course of the assembly and disassembly of a STAT3-dependent, glucocorticoid-supplemented enhanceosome for the alpha2-macroglobulin (alpha2-M) gene and compare this with a detailed time course of transcription of the gene by run-on analysis. The glucocorticoid receptor (GR) can associate with the enhanceosome without STAT3. Furthermore, the enhanceosome contains c-Jun/c-Fos and OCT-1 constitutively. All of these factors (GR, c-Jun, OCT-1) have transcription activation domains, but STAT3 is required for the observed transcriptional increase. The time course of enhanceosome occupation by GR and tyrosine-phosphorylated STAT3 shows that these transcription factors precede by approximately 5-10 min the arrival of RNA polymerase II (Pol II). The enhanceosome remains assembled for approximately 90 min in the continued presence of both inducers. When IL-6 and Dex are removed (after 30 min of treatment), the disappearance within an additional 30 min of the established enhanceosome indicates that renewal of STAT3 and GR binding must occur in the continued presence of IL-6+Dex. Compared with the total nuclear tyrosine-phosphorylated STAT3 capable of binding DNA, the chromatin-associated STAT3 resists dephosphorylation and appears to recycle to maintain the enhanceosome. Run-on transcription shows a lag after full enhanceosome occupation that can be largely but not completely explained by the approximately 30 min transit time of Pol II across the alpha2-Mlocus.
Collapse
Affiliation(s)
- Lorena Lerner
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
871
|
Leduc AM, Trent JO, Wittliff JL, Bramlett KS, Briggs SL, Chirgadze NY, Wang Y, Burris TP, Spatola AF. Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci U S A 2003; 100:11273-8. [PMID: 13679575 PMCID: PMC208747 DOI: 10.1073/pnas.1934759100] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Indexed: 11/18/2022] Open
Abstract
The interaction between nuclear receptors and coactivators provides an arena for testing whether protein-protein interactions may be inhibited by small molecule drug candidates. We provide evidence that a short cyclic peptide, containing a copy of the LXXLL nuclear receptor box pentapeptide, binds tightly and selectively to estrogen receptor alpha. Furthermore, as shown by x-ray analysis, the disulfide-bridged nonapeptide, nonhelical in aqueous solutions, is able to adopt a quasihelical conformer while binding to the groove created by ligand attachment to estrogen receptor alpha. An i, i+3 linked analog, H-Lys-cyclo(d-Cys-Ile-Leu-Cys)-Arg-Leu-Leu-Gln-NH2 (peptidomimetic estrogen receptor modulator 1), binds with a Ki of 25 nM, significantly better than an i, i+4 bridged cyclic amide, as predicted by molecular modeling design criteria. The induction of helical character, effective binding, and receptor selectivity exhibited by this peptide analog provide strong support for this strategy. The stabilization of minimalist surface motifs may prove useful for the control of other macromolecular assemblies, especially when an amphiphilic helix is crucial for the strong binding interaction between two proteins.
Collapse
Affiliation(s)
- Anne-Marie Leduc
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Resnick MA, Inga A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci U S A 2003; 100:9934-9. [PMID: 12909720 PMCID: PMC187891 DOI: 10.1073/pnas.1633803100] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Indexed: 12/17/2022] Open
Abstract
There are many sources of genetic diversity, ranging from programmed mutagenesis in antibody genes to random mutagenesis during species evolution or development of cancer. We propose that mutations in DNA sequence-specific transcription factors that target response elements (REs) in many genes can also provide for rapid and broad phenotypic diversity, if the mutations lead to altered binding affinities at individual REs. To test this concept, we examined the in vivo transactivation capacity of wild-type human and murine p53 and 25 partial function mutants. The p53s were expressed in yeast from a rheostatable promoter, and the transactivation capacities toward >15 promoter REs upstream of a reporter gene were measured. Surprisingly, there was wide variation in transactivation by the mutant p53s toward the various REs. This is the first study to address directly the impact of mutations in a sequence-specific transcription factor on transactivation from a wide array of REs. We propose a master gene hypothesis for phenotypic diversity where the master gene is a single transcriptional activator (or repressor) that regulates many genes through different REs. Mutations of the master gene can lead to a variety of simultaneous changes in both the selection of targets and the extent of transcriptional modulation at the individual targets, resulting in a vast number of potential phenotypes that can be created with minimal mutational changes without altering existing protein-protein interactions.
Collapse
Affiliation(s)
- Michael A Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
873
|
Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M, Franklin WA. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer 2003; 41 Suppl 1:S29-42. [PMID: 12867060 DOI: 10.1016/s0169-5002(03)00137-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Erb-B family of receptors plays an important role in lung carcinogenesis and tumor development, and EGFR and HER2 are highly expressed in bronchial preneoplasia. In invasive tumors, EGFR are expressed in 50-90%, and mostly in squamous cell carcinomas, but also in adenocarcinomas and large cell carcinomas, while HER2 is less frequently expressed (20-30%) and mostly expressed in adenocarcinomas. Bronchioloalveolar cell carcinomas may present a distinct EGFR profile compared to the other NSCLCs and evidence and consequences are discussed. The genetic mechanisms responsible for overexpression of EGFR and HER2 proteins might be numerous, including gene dosage (overrepresentation or amplification) as well as translational and post-translational mechanisms. However, for EGFR and HER2 there is a positive correlation between gene copy numbers and level of protein expression demonstrated by fluorescence in situ hybridization analysis and immunochemistry. Gene amplification for EGFR and HER2 is demonstrated in only 5-10% of the tumors. The treatment status and therapeutic limitation with trastuzumab (Herceptin) in lung cancer compared to breast cancer is discussed.
Collapse
Affiliation(s)
- Fred R Hirsch
- University of Colorado Cancer Center, Departments of Medicine/Medical Oncology and Pathology, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
874
|
Luo Y, Zhou H, Mizutani M, Mizutani N, Reisfeld RA, Xiang R. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci U S A 2003; 100:8850-5. [PMID: 12857959 PMCID: PMC166402 DOI: 10.1073/pnas.1033132100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN-gamma and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/pharmacology
- Dendritic Cells/immunology
- Female
- Genetic Vectors
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interleukin-18/genetics
- Interleukin-2/biosynthesis
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/prevention & control
- Peyer's Patches/immunology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/immunology
- Salmonella typhimurium/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- Yunping Luo
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
875
|
Fechter EJ, Dervan PB. Allosteric inhibition of protein--DNA complexes by polyamide--intercalator conjugates. J Am Chem Soc 2003; 125:8476-85. [PMID: 12848553 DOI: 10.1021/ja030125e] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequence-specific inhibition of essential protein-DNA contacts in the promoter of a gene is a central issue for the regulation of gene expression by chemical methods. Hairpin polyamides have been shown to inhibit protein-DNA complexes in some but not all cases. For example, polyamides co-occupy the same DNA sequence in the minor groove in the presence of major-groove binding bZip proteins. Four hairpin polyamide-acridine conjugates were synthesized and shown to bind the minor groove of DNA with high affinity in a sequence-specific manner. The polyamide-acridine conjugates were shown to unwind DNA (phi = 14-15 degrees), evidence for intercalation by the acridine moiety. Importantly, the polyamide-intercalator conjugates, which combine sequence-specific groove binding with proximal local unwinding, inhibit major-groove DNA binding by the GCN4 bZip protein. This class of DNA binding molecules creates a sequence-specific allosteric change in DNA structure and has the potential to be a general inhibitor of transcription factor binding independent of the specific protein-DNA structure.
Collapse
Affiliation(s)
- Eric J Fechter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
876
|
Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:88-95. [PMID: 12816986 DOI: 10.4049/jimmunol.171.1.88] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Constitutive activation of the NF-kappaB has been documented to be involved in the pathogenesis of many human malignancies, including hemopoietic neoplasms. In this study, we examined the status of NF-kappaB in two non-Hodgkin's lymphoma cell lines derived from mantle cell lymphoma (MCL) samples and in patient MCL biopsy specimens by EMSA and confocal microscopic analysis. We observed that NF-kappaB is constitutively activated in both the MCL cell lines and in the MCL patient biopsy cells. Since NF-kappaB has been shown to play an important role in a variety of cellular processes, including cell cycle regulation and apoptosis, targeting the NF-kappaB pathways for therapy may represent a rational approach in this malignancy. In the MCL cell lines, inhibition of constitutive NF-kappaB by the proteasome inhibitor PS-341 or a specific pIkappaBalpha inhibitor, BAY 11-7082, led to cell cycle arrest in G(1) and rapid induction of apoptosis. Apoptosis was associated with the down-regulation of bcl-2 family members bcl-x(L) and bfl/A1, and the activation of caspase 3, that mediates bcl-2 cleavage, resulting in the release of cytochrome c from the mitochondria. PS-341or BAY 11-induced G(1) cell cycle arrest was associated with the inhibition of cyclin D1 expression, a molecular genetic marker of MCL. These studies suggest that constitutive NF-kappaB expression plays a key role in the growth and survival of MCL cells, and that PS-341 and BAY 11 may be useful therapeutic agents for MCL, a lymphoma that is refractory to most current chemotherapy regimens.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
877
|
Abstract
Cathepsin B is a papain-family cysteine protease that is normally located in lysosomes, where it is involved in the turnover of proteins and plays various roles in maintaining the normal metabolism of cells. This protease has been implicated in pathological conditions, e.g., tumor progression and arthritis. In disease conditions, increases in the expression of cathepsin B occur at both the gene and protein levels. At the gene level, the altered expression results from gene amplification, elevated transcription, use of alternative promoters and alternative splicing. These molecular changes lead to increased cathepsin B protein levels and in turn redistribution, secretion and increased activity. Here we focus on the molecular regulation of cathepsin B and attendant implications for tumor progression and arthritis. The potential of cathepsin B as a therapeutic target is also discussed.
Collapse
Affiliation(s)
- Shiqing Yan
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | |
Collapse
|
878
|
Abstract
A series of kinases, the mitogen-activated protein (MAP) kinases, serves to regulate cellular responses to various environmental influences in metazoans. Three major pathways have been described, each with some overlap in substrate specificity that causes activation of parallel pathways. The activation of one of these, the Jun kinase pathway, has been implicated in apoptotic responses to DNA damage, cell stress and cytotoxic drugs. Under most circumstances in non-malignant cells it appears that c-Jun N-terminal kinase (JNK) activation is a pro-apoptotic event that results in turn in activation of pro-apoptotic members of Bcl-2 family and cytochrome c release from mitochondria. In cells with dysregulated/mutated proliferation or cell cycle controls, the role of JNK and of c-Jun is more controversial. We distinguish between the transcriptional effects of JNK and other protein interactions in which it participates. The initiation of mitochondrial apoptosis pathways by JNK is independent of its transcriptional effects for the most part. In certain cell types, c-Jun overexpression is clearly a basis for resistance to DNA-damaging drugs, and resistance reversal has been observed using c-jun antisense. This preliminary evidence suggests that c-jun may have a role in drug resistance, but additional work with patient tumor samples is required to validate the potential of the JNK pathway as a target.
Collapse
Affiliation(s)
- Irina Vasilevskaya
- University of Pennsylvania Cancer Center, 51 N. 39th Street, MAB-103, Philadelphia, PA 19014, USA
| | | |
Collapse
|
879
|
Abstract
Many diseases, such as cancer, are related to aberrant gene expression. Regulating transcription by chemical methods could be important in human medicine. Minor groove-binding polyamides offer one chemical approach to DNA recognition.
Collapse
Affiliation(s)
- Peter B Dervan
- Division of Chemistry and Chemical Engineering, and Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
880
|
Ulane CM, Rodriguez JJ, Parisien JP, Horvath CM. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol 2003; 77:6385-93. [PMID: 12743296 PMCID: PMC155014 DOI: 10.1128/jvi.77.11.6385-6393.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mumps virus is a common infectious agent of humans, causing parotitis, meningitis, encephalitis, and orchitis. Like other paramyxoviruses in the genus Rubulavirus, mumps virus catalyzes the proteasomal degradation of cellular STAT1 protein, a means for escaping antiviral responses initiated by alpha/beta and gamma interferons. We demonstrate that mumps virus also eliminates cellular STAT3, a protein that mediates transcriptional responses to cytokines, growth factors, nonreceptor tyrosine kinases, and a variety of oncogenic stimuli. STAT1 and STAT3 are independently targeted by a single mumps virus protein, called V, that assembles STAT-directed ubiquitylation complexes from cellular components, including STAT1, STAT2, STAT3, DDB1, and Cullin4A. Consequently, mumps virus V protein prevents responses to interleukin-6 and v-Src signals and can induce apoptosis in STAT3-dependent multiple myeloma cells and transformed murine fibroblasts. These findings demonstrate a unique cytokine and oncogene evasion property of mumps virus that provides a molecular basis for its observed oncolytic properties.
Collapse
Affiliation(s)
- Christina M Ulane
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
881
|
Abstract
Impaired ability to undergo programmed cell death in response to a wide range of external stimuli acquires melanomas a selective advantage for progression and metastasis as well as their notorious resistance to therapy. Better understanding of mechanisms that govern apoptosis has enabled identification of diverse routes by which melanomas manage to escape stimuli of apoptosis. Changes at genomic, transcriptional and post-translational levels of G-proteins and protein kinases (Ras, B-Raf) and their transcription factor effectors (c-Jun, ATF2, Stat3 and NF-kappaB) affects TNF, Fas and TRAIL receptors, which play important roles in acquiring melanoma's resistance to apoptosis. Here, we summarize our current understanding of changes that alters the regulation of death receptors during melanoma development.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
882
|
Rabbitts TH, Stocks MR. Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med 2003; 9:383-6. [PMID: 12669051 DOI: 10.1038/nm0403-383] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
883
|
|
884
|
Abstract
The V protein of Sendai virus (SeV) is nonessential to virus replication in cell culture but indispensable to viral pathogenicity in mice. The highly conserved cysteine-rich zinc finger-like domain in its carboxyl terminus is believed to be responsible for this viral pathogenicity. In the present study, we showed that the cysteine-rich domain of the SeV V protein could actually bind zinc by using glutathione-S-transferase fusion proteins. When the seven conserved cysteine residues at positions 337, 341, 353, 355, 358, 362, and 365 were replaced individually, the zinc-binding capacities of the mutant proteins were greatly impaired, ranging from 22 to 68% of that of the wild type. We then recovered two mutant SeVs from cDNA, which have V-C(341)S and V-C(365)R mutations and represent maximal and minimal zinc-binding capacities among the corresponding mutant fusion proteins, respectively. The mutant viruses showed viral protein synthesis and growth patterns similar to those of wild-type SeV in cultured cells. However, the mutant viruses were strongly attenuated in mice in a way similar to that of SeV V(DeltaC), which has a truncated V protein lacking the cysteine-rich domain, by exhibiting earlier viral clearance from the mouse lung and less virulence to mice. We therefore conclude that the zinc-binding capacity of the V protein is involved in viral pathogenesis.
Collapse
Affiliation(s)
- Curt M Horvath
- Immunobiology Center, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1630, New York, NY 10029, USA.
| |
Collapse
|