851
|
De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N, Szepetowski P, Hammadouche T, Vandenberghe A, Stewart CL, Grid D, Lévy N. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002. [PMID: 11799477 DOI: 10.1086/339274/s0002-9297(07)60274-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1.
Collapse
|
852
|
Abstract
Cardiomyopathies are diseases of heart muscle that may result from a diverse array of conditions that damage the heart and other organs and impair myocardial function, including infection, ischemia, and toxins. However, they may also occur as primary diseases restricted to striated muscle. Over the past decade, the importance of inherited gene defects in the pathogenesis of primary cardiomyopathies has been recognized, with mutations in some 18 genes having been identified as causing hypertrophic cardiomyopathy (HCM) and/or dilated cardiomyopathy (DCM). Defining the role of these genes in cardiac function and the mechanisms by which mutations in these genes lead to hypertrophy, dilation, and contractile failure are major goals of ongoing research. Pathophysiological mechanisms that have been implicated in HCM and DCM include the following: defective force generation, due to mutations in sarcomeric protein genes; defective force transmission, due to mutations in cytoskeletal protein genes; myocardial energy deficits, due to mutations in ATP regulatory protein genes; and abnormal Ca2+ homeostasis, due to altered availability of Ca2+ and altered myofibrillar Ca2+ sensitivity. Improved understanding that will result from these studies should ultimately lead to new approaches for the diagnosis, prognostic stratification, and treatment of patients with heart failure.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Unit, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
853
|
Haase D, Lehmann MH, Körner MM, Körfer R, Sigusch HH, Figulla HR. Identification and validation of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur J Heart Fail 2002; 4:23-31. [PMID: 11812662 DOI: 10.1016/s1388-9842(01)00226-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIMS the etiology of idiopathic dilated cardiomyopathy (IDCM) is unknown, methods such as suppression subtractive hybridization (SSH) and DNA microarray technology can help to identify genes which might be involved in the pathogenesis of this disease. METHODS AND RESULTS we used SSH which compared mRNA populations extracted from the left ventricular tissue of IDCM hearts and from the control tissue to identify sequences which correspond to genes up-regulated in IDCM. We identified ventricular myosin light chain type 2 (MLC2V), skeletal alpha-actin, long-chain-acyl-CoA-synthetase and mRNA for the protein KIAA0465 as differentially up-regulated genes. Expression of MLC2V mRNA was determined by RT-PCR in patients with end-stage heart failure caused by IDCM (n=11) or coronary artery disease (CAD, n=9) who underwent heart transplantation as well as the controls (n=6). MLC2V/GAPDH ratios were 2.95+/-0.32, 0.69+/-0.03 and 0.28+/-0.08 (arbitrary unit) for the IDCM group, the CAD group and controls, respectively (P<0.05). DNA microarray analysis confirmed the finding of MLC2V upregulation in IDCM (3.7- and 1.8-fold increase in MLC2V mRNA). CONCLUSIONS we have demonstrated that SSH is a useful method to identify differential myocardial upregulation of genes. Upregulation of MLC2V can be judged as a specific IDCM related feature, which might be clinically helpful.
Collapse
Affiliation(s)
- Daniela Haase
- Department of Internal Medicine, Division of Cardiology, University of Jena, 07740, Jena, Germany
| | | | | | | | | | | |
Collapse
|
854
|
Mislow JMK, Kim MS, Davis DB, McNally EM. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 2002; 115:61-70. [PMID: 11801724 DOI: 10.1242/jcs.115.1.61] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.
Collapse
Affiliation(s)
- John M K Mislow
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
855
|
Colomer J, Iturriaga C, Bonne G, Schwartz K, Manilal S, Morris GE, Puche M, Fernández-Alvarez E. Autosomal dominant Emery-Dreifuss muscular dystrophy: a new family with late diagnosis. Neuromuscul Disord 2002; 12:19-25. [PMID: 11731280 DOI: 10.1016/s0960-8966(01)00239-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Emery-Dreifuss muscular dystrophy is characterized by the clinical triad of early onset contractures of elbows, Achilles tendons and spine, wasting and weakness with a predominantly humero-peroneal distribution and life-threatening cardiac conduction defects and/or cardiomyopathy. Two main types of inheritance have been described: the X-linked form is caused by mutations in the STA gene on locus Xq28 and the gene for the autosomal dominant form (LMNA gene) has been localized on chromosome 1q11-q23. Recently, mutations in this LMNA gene have been also found to be responsible for the less frequent autosomal recessive form of the disease. Although all forms share a similar clinical presentation, some differences appear to exist between them as has been described recently in a large number of patients. We present the first documented Spanish family genetically confirmed to have autosomal dominant Emery-Dreifuss muscular dystrophy. Clinical, pathological and genetic data are described. We emphasize the difficulties in diagnosis, especially in sporadic cases or young patients in whom the clinical picture is not completely established.
Collapse
Affiliation(s)
- J Colomer
- Servei de Neurologia, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
856
|
Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 2001; 114:4485-98. [PMID: 11792814 DOI: 10.1242/jcs.114.24.4485] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In search of vascular smooth muscle cell differentiation markers, we identified two genes encoding members of a new family of type II integral membrane proteins. Both are ubiquitously expressed, and tissue-specific alternative mRNA initiation and splicing generate at least two major isoforms of each protein, with the smaller isoforms being truncated at the N-terminus. We have named these proteins nesprin-1 and -2 for nuclear envelope spectrin repeat, as they are characterized by the presence of multiple, clustered spectrin repeats, bipartite nuclear localization sequences and a conserved C-terminal, single transmembrane domain. Transient transfection of EGFP-fusion expression constructs demonstrated their localization to the nuclear membrane with a novel C-terminal, TM-domain-containing sequence essential for perinuclear localization. Using antibodies to nesprin-1, we documented its colocalization with LAP1, emerin and lamins at the nuclear envelope, and immunogold labeling confirmed its presence at the nuclear envelope and in the nucleus where it colocalized with heterochromatin. Nesprin-1 is developmentally regulated in both smooth and skeletal muscle and is re-localized from the nuclear envelope to the nucleus and cytoplasm during C2C12 myoblast differentiation. These data and structural analogies with other proteins suggest that nesprins may function as ‘dystrophins of the nucleus’ to maintain nuclear organization and structural integrity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers
- COS Cells
- Cell Differentiation/genetics
- Cells, Cultured
- Cytoskeletal Proteins
- DNA, Complementary/isolation & purification
- Humans
- Immune Sera/chemistry
- In Situ Hybridization, Fluorescence
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Multigene Family
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nerve Tissue Proteins
- Nuclear Envelope/metabolism
- Nuclear Localization Signals/genetics
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Organ Specificity/genetics
- Protein Structure, Tertiary/genetics
- Rats
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Spectrin/metabolism
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Q Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
857
|
Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J, Courvalin JC, Buendia B. Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J Cell Sci 2001; 114:4459-68. [PMID: 11792811 DOI: 10.1242/jcs.114.24.4459] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dunnigan-type familial partial lipodystrophy (FPLD), characterized by an abnormal body fat redistribution with insulin resistance, is caused by missense heterozygous mutations in A-type lamins (lamins A and C). A- and B-type lamins are ubiquitous intermediate filament proteins that polymerize at the inner face of the nuclear envelope. We have analyzed primary cultures of skin fibroblasts from three patients harboring R482Q or R482W mutations. These cells were euploid and able to cycle and divide. A subpopulation of these cells had abnormal blebbing nuclei with A-type lamins forming a peripheral meshwork, which was frequently disorganized. Inner nuclear membrane protein emerin, an A-type lamin-binding protein, strictly colocalized with this abnormal meshwork. Cells from lipodystrophic patients often had other nuclear envelope defects, mainly consisting of nuclear envelope herniations that were deficient in B-type lamins, nuclear pore complexes, lamina-associated protein 2 beta, and chromatin. The mechanical properties of nuclear envelopes were altered, as judged from the extensive deformations observed in nuclei from heat-shocked cells, and from the low stringency of extraction of their components. These structural nuclear alterations were caused by the lamins A/C mutations, as the same changes were introduced in human control fibroblasts by ectopic expression of R482W mutated lamin A.
Collapse
Affiliation(s)
- C Vigouroux
- INSERM U. 402, Faculté de Médecine Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
858
|
Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B. Nuclear envelope defects associated withLMNAmutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci 2001; 114:4447-57. [PMID: 11792810 DOI: 10.1242/jcs.114.24.4447] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear lamin A and C alleles that are linked to three distinct human diseases have been expressed both in HeLa cells and in fibroblasts derived from Lmna null mice. Point mutations that cause dilated cardiomyopathy (L85R and N195K) and autosomal dominant Emery-Dreifuss muscular dystrophy (L530P) modify the assembly properties of lamins A and C and cause partial mislocalization of emerin, an inner nuclear membrane protein, in HeLa cells. At the same time, these mutant lamins interfere with the targeting and assembly of endogenous lamins and in this way may cause significant changes in the molecular organization of the nuclear periphery. By contrast, lamin A and C molecules harboring a point mutation (R482W), which gives rise to a dominant form of familial partial lipodystrophy, behave in a manner that is indistinguishable from wild-type lamins A and C, at least with respect to targeting and assembly within the nuclear lamina. Taken together, these results suggest that nuclear structural defects could contribute to the etiology of both dilated cardiomyopathy and autosomal dominant Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- W H Raharjo
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
859
|
Ostlund C, Bonne G, Schwartz K, Worman HJ. Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 2001; 114:4435-45. [PMID: 11792809 DOI: 10.1242/jcs.114.24.4435] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant Emery-Dreifuss muscular dystrophy is caused by mutations in the LMNA gene, which encodes lamin A and lamin C. Mutations in this gene also give rise to limb girdle muscular dystrophy type 1B, dilated cardiomyopathy with atrioventricular conduction defect and Dunnigan-type partial lipodystrophy. The properties of the mutant lamins that cause muscular dystrophy, lipodystrophy and dilated cardiomyopathy are not known. We transfected C2C12 myoblasts with cDNA encoding wild-type lamin A and 15 mutant forms found in patients affected by these diseases. Immunofluorescence microscopy showed that four mutants, N195K, E358K, M371K and R386K, could have a dramatically aberrant localization, with decreased nuclear rim staining and formation of intranuclear foci. The distributions of endogenous lamin A/C, lamin B1 and lamin B2 were also altered in cells expressing these four mutants and three of them caused a loss of emerin from the nuclear envelope. In the yeast two-hybrid assay, the 15 lamin A mutants studied interacted with themselves and with wild-type lamin A and lamin B1. Pulse-chase experiments showed no decrease in the stability of several representative lamin A mutants compared with wild-type. These results indicate that some lamin A mutants causing disease can be aberrantly localized, partially disrupt the endogenous lamina and alter emerin localization, whereas others localize normally in transfected cells.
Collapse
Affiliation(s)
- C Ostlund
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
860
|
Abstract
The X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by absence, or greatly reduced amounts, of the inner nuclear-membrane protein, emerin. The autosomal dominant form (AD-EDMD) is caused by missense mutations in lamins A and C, two components of the nuclear lamina that interact directly with emerin. Lamin A/C mutations also cause one form of dilated cardiomyopathy (CMD1A) and one form of limb-girdle muscular dystrophy (LGMD1B), both of which have clinical features in common with EDMD, as well as a rare, unrelated form of lipodystrophy (FPLD). Evidence is now emerging that defective assembly of the nuclear lamina is a feature of all these diseases, although not necessarily the direct cause. Why only heart and skeletal muscle, and possibly connective tissue, are affected in EDMD and why expression of the disease is so extremely variable between individuals remains to be explained.
Collapse
Affiliation(s)
- G E Morris
- MRIC Biochemistry Group, The North East Wales Institute, Wrexham, UK LL11 2AW.
| |
Collapse
|
861
|
Abstract
Cardiomyopathies are defined as diseases of the myocardium associated with cardiac dysfunction ranging from lifelong symptomless forms to major health problems such as progressive heart failure, arrhythmia, thromboembolism, and sudden cardiac death. They are classified by morphological characteristics as hypertrophic (HCM), dilated (DCM), arrhythmogenic right ventricular (ARVC), and restrictive cardiomyopathy (RCM). A familial cause has been shown in 50% of patients with HCM, 35% with DCM, and 30% with ARVC. In HCM, nine genetic loci and more than 130 mutations in ten different sarcomeric genes and in the gamma 2 subunit of AMP-activated protein kinase (AMPK) have been identified, suggesting impaired force production associated with inefficient use of ATP as the crucial disease mechanism. In DCM, 16 chromosomal loci with defects of several proteins also involved in the development of skeletal myopathies have been detected. These mutated cytoskeletal and nuclear transporter proteins may alter force transmission or disrupt nuclear function, resulting in cell death. Further DCM mutations have also been identified in sarcomeric genes, which indicates that different defects of the same protein can result in either HCM or DCM. In ARVC, six genetic loci and mutations in the cardiac ryanodine receptor, which controls electromechanical coupling, and in plakoglobin and desmoglobin (molecules involved in desmosomal cell-junction integrity), have been identified. Yet, no genetic linkage has been shown in RCM. Apart from disease-causing mutations, other factors, such as environment, genetic background, and the recently identified modifier genes of the renin-angiotensin, adrenergic, and endothelin systems are likely to result in the wide variety of RCM clinical presentations. Treatment options are symptomatic and are mainly focused on treatment of heart failure and prevention of thromboembolism and sudden death. Identification of patients with high risk for major arrhythmic events is important because implantable cardioverter defibrillators can prevent sudden death. Clinical and genetic risk stratification may lead to prospective trials of primary implantation of cardioverter defibrillators in people with hereditary cardiomyopathy.
Collapse
Affiliation(s)
- W M Franz
- Medizinische Klinik und Poliklinik Grosshadern, Klinikum der Universität München, München, Germany.
| | | | | |
Collapse
|
862
|
Muralikrishna B, Dhawan J, Rangaraj N, Parnaik VK. Distinct changes in intranuclear lamin A/C organization during myoblast differentiation. J Cell Sci 2001; 114:4001-11. [PMID: 11739632 DOI: 10.1242/jcs.114.22.4001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intranuclear lamin foci or speckles have been observed in various cell types. In order to explore the possibility of changes in internal lamin organization during muscle differentiation, we have examined the appearance of A-type lamin speckles that associate with RNA splicing factor speckles in C2C12 myoblasts and myotubes. Lamin speckles were observed in dividing myoblasts but disappeared early during the course of differentiation in postmitotic myocytes, and were absent in myotubes and muscle fibers. However, no changes were seen in the typical peripheral organization of lamins A/C or B1 or in RNA splicing factor speckles. Lamin speckles were also absent in quiescent myoblasts but reappeared as cells were reactivated to enter the cell cycle. These changes were not observed in other quiescent cell types. Immunoblot analysis indicated that the abundance and migration of lamins A and C was not altered in differentiated myoblasts. When myotube or quiescent myoblast nuclei were extracted with nucleases and detergent, a uniformly stained internal lamina was revealed, indicating that lamins A/C were antigenically masked in these cells, probably owing to structural reorganization of the lamina during differentiation or quiescence. Our results suggest that muscle cell differentiation is accompanied by regulated rearrangements in the organization of the A-type lamins.
Collapse
Affiliation(s)
- B Muralikrishna
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
863
|
Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quiñones M, Bachinski LL, Roberts R. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 2001; 104:2188-93. [PMID: 11684629 DOI: 10.1161/hc4301.098285] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial dilated cardiomyopathy (FDCM) and hypertrophic cardiomyopathy (FHCM) are the 2 most common forms of primary cardiac muscle diseases. Studies indicate that mutations in sarcomeric proteins are responsible for FHCM and suggest that mutations in cytoskeletal proteins cause FDCM. Evidence is evolving, however, that such conclusions are premature. METHODS AND RESULTS A novel missense mutation in the cardiac troponin T gene was identified by direct sequencing and confirmed by endonuclease restriction analysis in a large family with FDCM that we had previously mapped to chromosome 1q32. The mutation substitutes tryptophan for a highly conserved amino acid, arginine, at amino acid residue 141 (Arg141Trp). The mutation occurs within the tropomyosin-binding domain of cardiac troponin T and alters the charge of the residue. This mutation cosegregates with the disease, being present in all 14 living affected individuals. The mutation was not found in 100 normal control subjects. Clinical features were congestive heart failure with premature deaths. The age of onset and severity of the disease are highly variable, with incomplete penetrance. Because 15 mutations in troponin T are known to cause FHCM, 219 probands with FHCM were screened, and none had the mutation. CONCLUSIONS Thus, the novel cardiac troponin T mutation Arg141Trp is responsible for FDCM in our family. Because several mutations in troponin T have already been recognized to be responsible for FHCM, it appears that the phenotype, whether it be hypertrophy or dilatation, is determined by the specific mutation rather than the gene.
Collapse
Affiliation(s)
- D Li
- Section of Cardiology, Baylor College of Medicine, M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Abstract
Considerable interest has been focused on the nuclear envelope in recent years following the realization that several human diseases are linked to defects in genes encoding nuclear envelope specific proteins, most notably A-type lamins and emerin. These disorders, described as laminopathies or nuclear envelopathies, include both X-linked and autosomal dominant forms of Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction system defects, limb girdle muscular dystrophy 1B with atrioventricular conduction disturbances, and Dunnigan-type familial partial lipodystrophy. Certain of these diseases are associated with nuclear structural abnormalities that can be seen in a variety of cells and tissues. These observations clearly demonstrate that A-type lamins in particular play a central role, not only in the maintenance of nuclear envelope integrity but also in the large-scale organization of nuclear architecture. What is not obvious, however, is why defects in nuclear envelope proteins that are found in most adult cell types should give rise to pathologies associated predominantly with skeletal and cardiac muscle and adipocytes. The recognition of these various disorders now raises the novel possibility that the nuclear envelope may have functions that go beyond housekeeping and which impact upon cell-type specific nuclear processes.
Collapse
Affiliation(s)
- B Burke
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T21 4 N1, Canada.
| | | | | |
Collapse
|
865
|
Salina D, Bodoor K, Enarson P, Raharjo WH, Burke B. Nuclear envelope dynamics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) provides a semi permeable barrier between the nucleus and cytoplasm and plays a central role in the regulation of macromolecular trafficking between these two compartments. In addition to this transport function, the NE is a key determinant of interphase nuclear architecture. Defects in NE proteins such as A-type lamins and the inner nuclear membrane protein, emerin, result in several human diseases that include cardiac and skeletal myopathies as well as lipodystrophy. Certain disease-linked A-type lamin defects cause profound changes in nuclear organization such as loss of peripheral heterochromatin and redistribution of other nuclear envelope components. While clearly essential in maintenance of nuclear integrity, the NE is a highly dynamic organelle. In interphase it is constantly remodeled to accommodate nuclear growth. During mitosis it must be completely dispersed so that the condensed chromosomes may gain access to the mitotic spindle. Upon completion of mitosis, dispersed NE components are reutilized in the assembly of nuclei within each daughter cell. These complex NE rearrangements are under precise temporal and spatial control and involve interactions with microtubules, chromatin, and a variety of cell-cycle regulatory molecules.Key words: nuclear envelope, lamin, nuclear pore complex, nuclear membranes, mitosis.
Collapse
|
866
|
Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G. Nuclear membrane protein LAP2β mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 2001; 114:3297-307. [PMID: 11591818 DOI: 10.1242/jcs.114.18.3297] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LAP2β is an integral membrane protein of the nuclear envelope involved in chromatin and nuclear architecture. Using the yeast two-hybrid system, we have cloned a novel LAP2β-binding protein, mGCL, which contains a BTB/POZ domain and is the mouse homologue of the Drosophila germ-cell-less (GCL) protein. In Drosophila embryos, GCL was shown to be essential for germ cell formation and was localized to the nuclear envelope. Here, we show that, in mammalian cells, GCL is co-localized with LAP2β to the nuclear envelope. Nuclear fractionation studies reveal that mGCL acts as a nuclear matrix component and not as an integral protein of the nuclear envelope. Recently, mGCL was found to interact with the DP3α component of the E2F transcription factor. This interaction reduced the transcriptional activity of the E2F-DP heterodimer, probably by anchoring the complex to the nuclear envelope. We demonstrate here that LAP2β is also capable of reducing the transcriptional activity of the E2F-DP complex and that it is more potent than mGCL in doing so. Co-expression of both LAP2β and mGCL with the E2F-DP complex resulted in a reduced transcriptional activity equal to that exerted by the pRb protein.
Collapse
Affiliation(s)
- E Nili
- Pediatric Hemato-Oncology Department, Division of Hematology, Chaim Sheba Medical Center, Tel-Hashomer and the Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
867
|
Brown CA, Lanning RW, McKinney KQ, Salvino AR, Cherniske E, Crowe CA, Darras BT, Gominak S, Greenberg CR, Grosmann C, Heydemann P, Mendell JR, Pober BR, Sasaki T, Shapiro F, Simpson DA, Suchowersky O, Spence JE. Novel and recurrent mutations in lamin A/C in patients with Emery-Dreifuss muscular dystrophy. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 102:359-67. [PMID: 11503164 DOI: 10.1002/ajmg.1463] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by slowly progressive muscle wasting and weakness; early contractures of the elbows, Achilles tendons, and spine; and cardiomyopathy associated with cardiac conduction defects. Clinically indistinguishable X-linked and autosomal forms of EDMD have been described. Mutations in the STA gene, encoding the nuclear envelope protein emerin, are responsible for X-linked EDMD, while mutations in the LMNA gene encoding lamins A and C by alternative splicing have been found in patients with autosomal dominant, autosomal recessive, and sporadic forms of EDMD. We report mutations in LMNA found in four familial and seven sporadic cases of EDMD, including seven novel mutations. Nine missense mutations and two small in-frame deletions were detected distributed throughout the gene. Most mutations (7/11) were detected within the LMNA exons encoding the central rod domain common to both lamins A/C. All of these missense mutations alter residues in the lamin A/C proteins conserved throughout evolution, implying an essential structural and/or functional role of these residues. One severely affected patient possesed two mutations, one specific to lamin A that may modify the phenotype of this patient. Mutations in LMNA were frequently identified among patients with sporadic and familial forms of EDMD. Further studies are needed to identify the factors modifying disease phenotype among patients harboring mutations within lamin A/C and to determine the effect of various mutations on lamin A/C structure and function.
Collapse
Affiliation(s)
- C A Brown
- Department of Pediatric Research, Carolinas Medical Center, Charlotte, NC 28232-2861, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
868
|
Jakobs PM, Hanson EL, Crispell KA, Toy W, Keegan H, Schilling K, Icenogle TB, Litt M, Hershberger RE. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J Card Fail 2001; 7:249-56. [PMID: 11561226 DOI: 10.1054/jcaf.2001.26339] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The LMNA gene, one of 6 autosomal disease genes implicated in familial dilated cardiomyopathy, encodes lamins A and C, alternatively spliced nuclear envelope proteins. Mutations in lamin A/C cause 4 diseases: Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy type 1B, Dunnigan-type familial partial lipodystrophy, and dilated cardiomyopathy. METHODS AND RESULTS Two 4-generation white families with autosomal dominant familial dilated cardiomyopathy and conduction system disease were found to have novel mutations in the rod segment of lamin A/C. In family A a missense mutation (nucleotide G607A, amino acid E203K) was identified in 14 adult subjects; disease was manifest as progressive conduction disease in the fourth and fifth decades. Death was caused by heart failure. In family B a nonsense mutation (nucleotide C673T, amino acid R225X) was identified in 10 adult subjects; disease was also manifest as progressive conduction disease but with earlier onset (third and fourth decades), ventricular dysrhythmias, left ventricular enlargement, and systolic dysfunction. Death was caused by heart failure and sudden cardiac death. Skeletal muscle disease was not observed in either family. CONCLUSIONS Novel rod segment mutations in lamin A/C cause variable conduction system disease and dilated cardiomyopathy without skeletal myopathy.
Collapse
Affiliation(s)
- P M Jakobs
- Department of Medicine, Oregon Health Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
869
|
Guillemin K, Williams T, Krasnow MA. A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nat Cell Biol 2001; 3:848-51. [PMID: 11533666 DOI: 10.1038/ncb0901-848] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear lamins are intermediate filaments that compose the nuclear lamina--the filamentous meshwork underlying the inner nuclear membrane--and are required for nuclear assembly, organization and maintenance. Here we present evidence that a nuclear lamin is also required for cytoplasmic organization in two highly polarized cell types. Zygotic loss-of-function mutations in the Drosophila gene encoding the principal lamin (Dm(0)) disrupt the directed outgrowth of cytoplasmic extensions from terminal cells of the tracheal system. Germline mutant clones disrupt dorsal-ventral polarity of the oocyte. In mutant oocytes, transcripts of the dorsal determinant Gurken, a transforming growth factor-alpha homologue, fail to localize properly around the anterodorsal surface of the oocyte nucleus; their ventral spread results in dorsalized eggs that resemble those of the classical dorsalizing mutations squid and fs(1)K10. The requirement of a nuclear lamin for cytoplasmic as well as nuclear organization has important implications for both the cellular functions of lamins and the pathogenesis of human diseases caused by lamin mutations.
Collapse
Affiliation(s)
- K Guillemin
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | |
Collapse
|
870
|
Furuoka H, Yagi S, Murakami A, Honma A, Kobayashi Y, Matsui T, Miyahara K, Taniyama H. Hereditary dilated cardiomyopathy in Holstein-Friesian cattle in Japan: association with hereditary myopathy of the diaphragmatic muscles. J Comp Pathol 2001; 125:159-65. [PMID: 11578132 DOI: 10.1053/jcpa.2001.0494] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This report deals with the pathology and genetic basis of dilated cardiomyopathy in 10 Holstein-Friesian cows aged 3-6 years, a disease similar to that reported in Simmental-Red Holstein and Holstein-Friesian cattle in several other countries. The main clinical signs were associated with systemic circulatory failure, and at necropsy the animals showed cardiomegaly, severe congestion and fibrosis of the liver, and systemic cardiac oedema. Histologically, hypertrophy and vacuolation of the cardiac muscle fibres and severe fibrosis were noted. Electron microscopically, the sarcoplasm of the hypertrophic fibres was seen to be filled with fine structures of low electron-density, together with thin filamentous material, suggesting myofibrillar lysis. The mitochondria showed increased size, an abnormal cristae pattern and vacuolation due to partial loss of cristae. Pedigree analysis of the affected cattle indicated an autosomal recessive mode of inheritance. The family line of this cardiomyopathy overlapped with that of hereditary myopathy of the diaphragmatic muscles in Holstein-Friesian cattle, the pathological aspects and inheritance mode of which were reported previously. The available evidence suggested a genetic association between these two pathologically distinct diseases.
Collapse
Affiliation(s)
- H Furuoka
- Department of Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
871
|
Sewry CA, Brown SC, Mercuri E, Bonne G, Feng L, Camici G, Morris GE, Muntoni F. Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 2001; 27:281-90. [PMID: 11532159 DOI: 10.1046/j.0305-1846.2001.00323.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present our observations on the skeletal muscle pathology of nine cases from seven families of autosomal dominant Emery-Dreifuss muscular dystrophy (ADEDMD) with identified mutations in the lamin A/C gene, aged 2-35 years at the time of biopsy. The severity of pathological change was moderate and the most common features were variation in fibre size (hypertrophy and atrophy), an increase in internal nuclei and smaller diameter fibres with high oxidative enzyme activity. Only one case showed necrosis, which was present in two separate samples taken from the quadriceps and tibialis anterior, at different ages. Immunocytochemistry detected an age-related reduction of laminin beta1 on the muscle fibres in adolescent and adult cases. Antibodies to lamins A and A/C, and emerin did not reveal any detectable differences from controls. Electron microscopy of two out of three cases showed an abnormal distribution of heterochromatin in many fibre nuclei. Our results show that dystrophic changes in skeletal muscle are not a major feature of ADEDMD, and that nuclear abnormalities may be detected with electron microscopy. Immunodetection of reduced laminin beta1 may be a useful secondary marker in adults with this disorder, as immunocytochemistry of lamins is not yet of diagnostic use.
Collapse
Affiliation(s)
- C A Sewry
- Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, UK.
| | | | | | | | | | | | | | | |
Collapse
|
872
|
Schönberger J, Seidman CE. Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am J Hum Genet 2001; 69:249-60. [PMID: 11443548 PMCID: PMC1235300 DOI: 10.1086/321978] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Accepted: 06/11/2001] [Indexed: 01/17/2023] Open
Affiliation(s)
- J Schönberger
- Cardiovascular Division and Howard Hughes Medical Institute, Brigham and Women's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
873
|
Mende U, Semsarian C, Martins DC, Kagen A, Duffy C, Schoen FJ, Neer EJ. Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein alpha(q): lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 2001; 33:1477-91. [PMID: 11448136 DOI: 10.1006/jmcc.2001.1411] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously described a transgenic mouse line (alpha(q)*52) in which cardiac-specific expression of activated G alpha(q)protein (HA alpha(q)*) leads to activation of phospholipase C beta (PLC beta), the immediate downstream target of HA alpha(q)*, with subsequent development of cardiac hypertrophy and dilation. We now describe a second, independent line in the same genetic background (alpha(q)*44h) with lower expression of HA alpha(q)* protein that ultimately results in the same phenotype: dilated cardiomyopathy (DCM) with severely impaired left ventricular systolic function (assessed by M-mode and 2D echocardiography), but with a much delayed disease onset. We asked if PLC activation correlates with the development of the phenotype. At 12-14 months, 65% of alpha(q)*44h mice still had normal cardiac function and ventricular weight/body weight ratios (VW/BW). However, their basal PLC activity, which began to increase in ventricles at 6 months, was threefold higher than in wild-type by 12 months. This increase was even more pronounced than in 2.5-month-old alpha(q)*52 mice, in which a twofold increase was accompanied by a 25% increase in VW/BW. Furthermore, at 12-14 months the increase in PLC activity in alpha(q)*44h mice with and without DCM was comparable. Thus, the delayed time course in alpha(q)*44h mice unmasked a lack of correlation between PLC activation and development of DCM in response to HA alpha(q)* expression, suggesting a role for additional pathways and/or mechanisms. It also revealed a differential temporal regulation of protein kinase C isoform expression. The markedly different ages of disease onset in these two mouse lines provide a model for studying both genetic modifying factors and potential environmental influences in DCM.
Collapse
Affiliation(s)
- U Mende
- Department of Medicine, Cardiovascular Divison, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
874
|
Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M, Morris GE, Whitfield WGF, Hutchison CJ. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 2001; 114:2577-90. [PMID: 11683386 DOI: 10.1242/jcs.114.14.2577] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physical interactions between lamins and emerin were investigated by co-immunoprecipitation of in vitro translated proteins. Emerin interacted with in vitro translated lamins A, B1 and C in co-immunprecipitation reactions. Competition reactions revealed a clear preference for interactions between emerin and lamin C. Structural associations between lamins and emerin were investigated in four human cell lines displaying abnormal expression and/or localisation of lamins A and C. In each cell line absence of lamins A and C from the nuclear envelope (NE) was correlated with mis-localisation of endogenous and exogenous emerin to the ER. In two cell lines that did not express lamin A but did express lamin C, lamin C as well as emerin was mis-localised. When GFP-lamin A was expressed in SW13 cells (which normally express only very low levels of endogenous lamin A and mis-localise endogenous emerin and lamin C), all three proteins became associated with the NE. When GFP-lamin C was expressed in SW13 cells neither the endogenous nor the exogenous lamin C was localised to the NE and emerin remained in the ER. Finally, lamins A and C were selectively eliminated from the NE of HeLa cells using a dominant negative mutant of lamin B1. Elimination of these lamins from the lamina led to the accumulation of emerin as aggregates within the ER. Our data suggest that lamin A is essential for anchorage of emerin to the inner nuclear membrane and of lamin C to the lamina.
Collapse
Affiliation(s)
- A Vaughan
- Department of Biological Sciences, The University of Durham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
875
|
Muralikrishna B, Parnaik VK. SP3 and AP-1 mediate transcriptional activation of the lamin A proximal promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3736-43. [PMID: 11432740 DOI: 10.1046/j.1432-1327.2001.02281.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lamin A is a major component of the nuclear lamina that is expressed in various types of differentiated cells. We have analysed previously the putative promoter sequences of the gene and shown that the rat lamin A proximal promoter contains two essential motifs, a GC box that can bind to Sp1 and Sp3, and an AP-1 motif that can bind to c-Jun and c-Fos. In this study we have investigated the role of Sp1 and Sp3 in transactivation of the promoter. Functional analysis of the promoter in Drosophila SL2 cells has demonstrated that it is inactive in the absence of Sp proteins. Activation by expression of Sp3 is more pronounced than that by Sp1 although both proteins can bind to the GC box in vitro; activation clearly depends on an intact GC box as deduced from mutant analysis. Promoter activity in SL2 cells also requires an intact AP-1 motif, which can bind to endogenous Drosophila Jun and Fos proteins. Furthermore, overexpression of c-Jun and c-Fos results in fourfold activation of the promoter in PCC-4 embryonal carcinoma cells. Our demonstration that activation of the lamin A proximal promoter is mediated by Sp3 and AP-1 transcription factors affords a basis for further studies on the regulation of this important gene during development and disease.
Collapse
|
876
|
Abstract
BACKGROUND About 10 percent of patients who undergo liver transplantation have cryptogenic liver disease. In animal models, the absence of heteropolymeric keratins 8 and 18 or the presence of mutant keratins in hepatocytes causes or promotes liver disease. We have previously described a mutation in the keratin 18 gene in a patient with cryptogenic cirrhosis, but the importance of mutations in the keratin 8 and keratin 18 genes in such patients is unclear. METHODS We tested for mutations in the keratin 8 and keratin 18 genes in purified genomic DNA isolated from 150 explanted livers and 89 peripheral-blood specimens from three groups of patients: 55 patients with cryptogenic liver disease; 98 patients with noncryptogenic liver disease, with causes that included alcohol use, autoimmunity, drug use, and viral infections; and 86 randomly selected inpatients and outpatients who provided blood to the hematology laboratory. RESULTS Of the 55 patients with cryptogenic liver disease, 3 had glycine-to-cysteine mutations at position 61 (a highly conserved glycine) of keratin 8, and 2 had tyrosine-to-histidine mutations at position 53 of keratin 8. These mutations were not detected in the patients with other liver diseases or in the randomly selected patients. We verified the presence of the mutations in specimens of explanted livers by protein analysis and by the detection of unique restriction-enzyme cleavage sites. In transfected cells, the glycine-to-cysteine mutation limited keratin-filament reorganization when the cells were exposed to oxidative stress. In contrast, the tyrosine-to-histidine mutation destabilized keratin filaments when transfected cells were exposed to heat or okadaic acid stress. CONCLUSIONS Mutations in the keratin 8 gene may predispose people to liver disease and may account for cryptogenic liver disease in some patients.
Collapse
Affiliation(s)
- N O Ku
- Gastroenterology Section, Palo Alto Veterans Affairs Medical Center and Stanford University School of Medicine, Calif 94304, USA
| | | | | | | |
Collapse
|
877
|
Spooner PM, Albert C, Benjamin EJ, Boineau R, Elston RC, George AL, Jouven X, Kuller LH, MacCluer JW, Marbán E, Muller JE, Schwartz PJ, Siscovick DS, Tracy RP, Zareba W, Zipes DP. Sudden Cardiac Death, Genes, and Arrhythmogenesis. Circulation 2001; 103:2361-4. [PMID: 11352884 DOI: 10.1161/01.cir.103.19.2361] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Malignant ventricular arrhythmias are the leading mechanism of death in patients with acute and chronic cardiac pathologies. The extent to which inherited mutations and polymorphic variation in genes determining arrhythmogenic mechanisms affect these patients remains unknown, but based on recent population studies, this risk appears significant, deserving much greater investigation. This report summarizes a National Heart, Lung, and Blood Institute workshop that considered sources of genetic variation that may contribute to sudden cardiac death in common cardiac diseases. Evidence on arrhythmogenic mechanisms in recent population studies suggests a significant portion of the risk of sudden cardiac death in such broad populations may be unrelated to traditional risk factors for predisposing conditions such as atherosclerosis, hypertension, and diabetes and instead may involve unrecognized genetic and environmental interactions that influence arrhythmic susceptibility more directly. Additional population and genetic studies directed at discovering the sources of inherited molecular risk that are most directly linked to arrhythmia initiation and propagation, in addition to studies on previously well-described risk factors, would appear to have considerable potential for reducing premature cardiovascular mortality.
Collapse
Affiliation(s)
- P M Spooner
- National Heart, Lung, and Blood Institute, Bethesda, Md, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
878
|
Abstract
BACKGROUND The common insulin resistance syndrome, with obesity, dyslipidemia, hyperglycemia, and hypertension, is associated with increased risk of atherosclerosis. Early atherosclerosis in rare monogenic forms of insulin resistance, however, has not been extensively documented. Cardiovascular end points were thus evaluated in subjects with Dunnigan-type familial partial lipodystrophy (FPLD) due to mutations at LMNA codon 482. METHODS AND RESULTS FPLD subjects >/=35 years old were stratified by genotype for either the LMNA R482Q or R482W mutation. Twenty-three subjects were heterozygous mutation carriers, and 17 were R482/R482 homozygous family control subjects. All LMNA mutation carriers had FPLD with insulin resistance. In addition, LMNA mutation carriers had significantly more type 2 diabetes, hypertension, and dyslipidemia than normal family control subjects. Eight LMNA mutation carriers had coronary heart disease (CHD), compared with 1 normal control subject (OR 5.9, 95% CI 1.2 to 30.2). Six LMNA mutation carriers had CHD end points before age 55 years, and 4 of these, all women, had been hospitalized for CABG surgery between the ages of 35 and 54 years. CONCLUSIONS Rare LMNA mutations that underlie FPLD with insulin resistance and hyperinsulinemia are also associated with early CHD, notably in women. This suggests that abnormalities of the nuclear envelope can result in a phenotype that recapitulates most of the important attributes of the common insulin resistance syndrome, including accelerated cardiovascular disease. FPLD thus appears to be an appropriate human monogenic model for the common insulin resistance syndrome.
Collapse
Affiliation(s)
- R A Hegele
- John P. Robarts Research Institute, London, Ontario, Canada.
| |
Collapse
|
879
|
Vohanka S, Vytopil M, Bednarik J, Lukas Z, Kadanka Z, Schildberger J, Ricotti R, Bione S, Toniolo D. A mutation in the X-linked Emery–Dreifuss muscular dystrophy gene in a patient affected with conduction cardiomyopathy. Neuromuscul Disord 2001; 11:411-3. [PMID: 11369194 DOI: 10.1016/s0960-8966(00)00206-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A screening for mutation in the X-linked Emery-Dreifuss muscular dystrophy (X-EMD) gene was performed among patients affected with severe heart rhythm defects and/or dilated cardiomyopathy. Patients were selected from the database of the Department of Cardiology of the University Hospital Brno. One patient presented a mutation in the X-EMD gene and no emerin in his skeletal muscle. The patient had a severe cardiac disease but a very mild muscle disorder that had not been diagnosed until the mutations was found. This case shows that mutations in X-EMD gene, as it was shown for autosomal-dominant EMD, can cause a predominant cardiac phenotype.
Collapse
Affiliation(s)
- S Vohanka
- Department of Neurology, University Hospital Brno, Jihlavská 20, 63900, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
880
|
Abstract
Arrhythmia and cardiomyopathy frequently accompany muscular dystrophy. In the last year, the cardiovascular consequences of muscular dystrophy gene mutations have been established through studies of murine models. These models have highlighted the potential role of primary defects in cardiac muscle as well as those secondary cardiovascular outcomes that arise from severe muscle disease. This review focuses on three areas. Recent studies using mouse models have shown that the dystrophin-associated proteins, the sarcoglycans and alpha-dystrobrevin, are critical for both cardiac and skeletal muscle membrane function, yet may exert their roles by different molecular mechanisms. New findings have shown that cytoskeletal proteins at the nuclear membrane, such as emerin and lamin AC, cause muscular dystrophy and cardiomyopathy with cardiac conduction system disease. Finally, the mechanism of cardiac and muscle degeneration in myotonic dystrophy has been re-evaluated through a series of studies using murine models. Implications for human therapy are considered in light of these new findings.
Collapse
Affiliation(s)
- A Heydemann
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
881
|
Schmidt HH, Genschel J, Baier P, Schmidt M, Ockenga J, Tietge UJ, Pröpsting M, Büttner C, Manns MP, Lochs H, Brabant G. Dyslipemia in familial partial lipodystrophy caused by an R482W mutation in the LMNA gene. J Clin Endocrinol Metab 2001; 86:2289-95. [PMID: 11344241 DOI: 10.1210/jcem.86.5.7500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Lipatrophic diabetes, also referred to as familial partial lipodystrophy, is a rare disease that is metabolically characterized by hypertriglyceridemia and insulin resistance. Affected patients typically present with regional loss of body fat and muscular hypertrophic appearance. Variable symptoms may comprise pancreatitis and/or eruptive xanthomas due to severe hypertriglyceridemia, acanthosis nigricans, polycystic ovaria, and carpal tunnel syndrome. Mutations within the LMNA gene on chromosome 1q21.2 were recently reported to result in the phenotype of familial partial lipodystrophy. The genetic trait is autosomal dominant. We identified a family with partial lipodystrophy carrying the R482W (Arg(482)Trp) missense mutation within LMNA. Here we present the lipoprotein characteristics in this family in detail. Clinically, the loss of sc fat and muscular hypertrophy especially of the lower extremities started as early as in childhood. Acanthosis and severe hypertriglyceridemia developed later in life, followed by diabetes. The characterization of the lipoprotein subfractions revealed that affected children present with hyperlipidemia. The presence and severity of hyperlipidemia seem to be influenced by age, apolipoprotein E genotype, and the coexistence of diabetes mellitus. In conclusion, dyslipemia is an early and prominent feature in the presented lipodystrophic family carrying the R482W mutation within LMNA.
Collapse
Affiliation(s)
- H H Schmidt
- Charité Campus Mitte, Medizinische Klinik Gastroenterologie, Hepatologie und Endokrinologie, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
882
|
Soejima H, Kawamoto S, Akai J, Miyoshi O, Arai Y, Morohka T, Matsuo S, Niikawa N, Kimura A, Okubo K, Mukai T. Isolation of Novel Heart-Specific Genes Using the BodyMap Database. Genomics 2001; 74:115-20. [PMID: 11374908 DOI: 10.1006/geno.2001.6527] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel heart-specific genes, C3orf3 (chromosome 3 open reading frame 3) and MMGL (myomegalin-like), were isolated using BodyMap, a gene expression database based on site-directed 3' expressed sequence tags (3'-ESTs) which were collected from nonbiased cDNA libraries of various tissues. The cDNA of C3orf3 was 1667 bp and was composed of 12 exons within a 10-kb-long genomic sequence. MMGL consisted of 8 exons within a genomic sequence of over 70 kb, leading to four alternatively spliced transcripts. Both genes were strongly expressed in heart and also in skeletal muscle. C3orf3 and MMGL were mapped to 3p22 and 1q1, respectively. Subcellular localizations of their putative proteins were determined as being in the cytoplasm for C3orf3 and in the cytoplasm and nucleus for MMGL. This study showed that BodyMap is a useful database for the isolation of tissue-specific genes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 3/genetics
- Cytoskeletal Proteins
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Databases, Factual
- Exons
- Expressed Sequence Tags
- Female
- Gene Library
- Genes/genetics
- Humans
- Introns
- Membrane Proteins/genetics
- Molecular Sequence Data
- Muscle Proteins
- Myocardium/metabolism
- Nuclear Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Tissue Distribution
Collapse
Affiliation(s)
- H Soejima
- Department of Biochemistry, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Abstract
Heart failure is a major health problem and is associated with a high mortality and morbidity. Recently, the role of the genetic background in the onset and development of the disease has been evidenced in both heart failure with and without systolic dysfunction, and in familial and non-familial forms of this condition. Familial forms of dilated cardiomyopathy are more frequent than previously thought. Various modes of inheritance and phenotypes have been reported and this condition appears genetically highly heterogenous. Five genes (dystrophin, cardiac actin, desmin, lamin A/C and delta-sarcoglycan), and additional loci, have been identified in families in which dilated cardiomyopathy is isolated or associated with other cardiac or non-cardiac symptoms. It has been postulated that the molecular defect involved could lead to abnormal interactions between cytoskeletal proteins, responsible either for defect in force transmission or for membrane disruption. More recently, the identification of mutations in genes encoding sarcomeric proteins has led to a second hypothesis in which the disease might also result from a force generation defect. In non-monogenic dilated cardiomyopathy, susceptibility genes (role in the development of the disease) and modifier genes (role in the evolution/prognosis of the disease) have so far been identified. Some data suggest that the efficacy of angiotensin converting enzyme inhibitors, and side-effects, might be related to some genetic polymorphisms, such as the I/D polymorphism of the angiotensin converting enzyme gene. Although preliminary, these data are promising and might be the first step towards application of phamacogenetics in heart failure. This is of paramount importance as the medical treatment of heart failure is characterized by the need for polypharmacy. One of the major challenges of the next millenium, therefore, will be to identify genetic factors which might help define responders to major treatment classes, including angiotensin converting enzyme inhibitors, beta-adrenoreceptor antagonists, angiotensin AT1 receptor antagonists, spironolactone, vasopeptidase inhibitors and endothelin receptor antagonists.
Collapse
Affiliation(s)
- P Charron
- Service de Cardiologie, et Association Claude Bernard-Université Paris VI, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75013, Paris, France
| | | |
Collapse
|
884
|
Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 2001; 103:1256-63. [PMID: 11238270 DOI: 10.1161/01.cir.103.9.1256] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in the gene G4.5 result in a wide spectrum of severe infantile cardiomyopathic phenotypes, including isolated left ventricular noncompaction (LVNC), as well as Barth syndrome (BTHS) with dilated cardiomyopathy (DCM). The purpose of this study was to investigate patients with LVNC or BTHS for mutations in G4.5 or other novel genes. METHODS AND RESULTS DNA was isolated from 2 families and 3 individuals with isolated LVNC or LVNC with congenital heart disease (CHD), as well as 4 families with BTHS associated with LVNC or DCM, and screened for mutations by single-strand DNA conformation polymorphism analysis and DNA sequencing. In 1 family with LVNC and CHD, a C-->T mutation was identified at nucleotide 362 of alpha-dystrobrevin, changing a proline to leucine (P121L). Mutations in G4.5 were identified in 2 families with isolated LVNC: a missense mutation in exon 4 (C118R) in 1 and a splice donor mutation (IVS10+2T-->A) in intron 10 in the other. In a family with cardiomyopathies ranging from BTHS or fatal infantile cardiomyopathy to asymptomatic DCM, a splice acceptor mutation in exon 2 of G4.5 (398-2 A-->G) was identified, and a 1-bp deletion in exon 2 of G4.5, resulting in a stop codon after amino acid 41, was identified in a sporadic case of BTHS. CONCLUSIONS These data demonstrate genetic heterogeneity in LVNC, with mutation of a novel gene, alpha-dystrobrevin, identified in LVNC associated with CHD. In addition, these results confirm that mutations in G4.5 result in a wide phenotypic spectrum of cardiomyopathies.
Collapse
Affiliation(s)
- F Ichida
- Department of Pediatrics, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
885
|
Sjaastad O, Lindboe CF, Schaanning J, Brodtkorb E, Kearney M, Hovig T, Salvesen R, Haugnes T, Rokseth R, Smethurst HB, Sand T, Dale LG, Bathen J. Familial mydriasis, cardiac arrhythmia, respiratory failure, muscular weakness and hypohidrosis. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 174:3-31. [PMID: 11140938 DOI: 10.1111/j.1600-0404.2000.tb05864.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To describe a family with some sort of progressive autonomic failure in one generation (2 affected of a sibship of 7 sisters). The main features were: mydriasis, cardiac arrhythmia, cardiomegaly, hypohidrosis, respiratory failure, and muscular weakness. METHODS Pupillometry, evaporimetry, and isokinetic power measurements were carried out. RESULTS The autonomic dysfunction pattern (mainly cardiac abnormalities, mydriasis) seems to differ somewhat from that of progressive autonomic failure (Shy-Drager syndrome). "Lewy body-like" inclusions were present, in particular in substantia nigra, but also in locus ceruleus and raphe nuclei (cell loss only in locus ceruleus). There were no oligodendroglial, cytoplasmatic inclusions, apparently a marker in multiple system atrophy. Proper Lewy bodies were also present. Differences seemed to prevail vs the Shy-Drager syndrome. Various traits: muscular weakness pattern (e.g. preferential peroneal distribution), minor elbow contractures, and arrhythmia were reminiscent of Emery-Dreifuss muscle dystrophy (E-D). Distinguishing features included: hereditary pattern, mydriasis, and hypohidrosis. CONCLUSION Conceivably, this disorder is close to, but still not identical with E-D.
Collapse
Affiliation(s)
- O Sjaastad
- Department of Neurology and the Laboratory for the study of autonomic disorders, Trondheim University Hospital, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
886
|
Abstract
Lipodystrophy is characterized by altered partition of adipose tissue. Despite heterogeneous causes, which include genetic, autoimmune and drug-induced forms, lipodystrophy syndromes have similar metabolic attributes, including insulin resistance, hyperlipidemia and diabetes. The mechanisms underlying the insulin resistance are unknown. One form of lipodystrophy, namely Dunnigan-type familial partial lipodystrophy (FPLD) was shown to result from mutations in the LMNA gene, which encodes nuclear lamins A and C. Although the relationship between the mutations in the nuclear envelope and insulin resistance is unclear at present, these findings might eventually be shown to have relevance for the common insulin resistance syndrome and for drug-associated lipodystrophies.
Collapse
Affiliation(s)
- R A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 406-100 Perth Drive, London, Ontario, Canada N6A 5K8.
| |
Collapse
|
887
|
Holt I, Clements L, Manilal S, Brown SC, Morris GE. The R482Q lamin A/C mutation that causes lipodystrophy does not prevent nuclear targeting of lamin A in adipocytes or its interaction with emerin. Eur J Hum Genet 2001; 9:204-8. [PMID: 11313760 DOI: 10.1038/sj.ejhg.5200609] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 11/06/2000] [Accepted: 11/15/2000] [Indexed: 11/09/2022] Open
Abstract
Most pathogenic missense mutations in the lamin A/C gene identified so far cause autosomal-dominant dilated cardiomyopathy and/or Emery-Dreifuss muscular dystrophy. A few specific mutations, however, cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. We have prepared lamin A with a known FPLD mutation (R482Q) by in vitro mutagenesis. Nuclear targeting of lamin A in transfected COS cells, human skeletal muscle cells or mouse adipocyte cell cultures (pre- and post-differentiation) was not detectably affected by the mutation. Quantitative in vitro measurements of lamin A interaction with emerin using a biosensor also showed no effect of the mutation. The results show that the loss of function of R482 in lamin A/C in FPLD does not involve loss of ability to form a nuclear lamina or to interact with the nuclear membrane protein, emerin.
Collapse
Affiliation(s)
- I Holt
- MRIC Biochemistry Group, North East Wales Institute, Wrexham, LL11 2AW, UK
| | | | | | | | | |
Collapse
|
888
|
Abstract
Simultaneous or temporarily staggered affection of both the skeletal as well as the cardiac muscle (cardiac involvement, CI) is a frequent finding in primary myopathies (MPs). CI leads to impulse generation defects, impulse conduction defects, thickened myocardium, left ventriculalr hypertrabeculation, dilatation of the cardiac cavities, secondary valve insufficiency, reduction of coronary vasodilative reserve, intracardial thrombus formation, and heart failure with systolic and diastolic dysfunction. CI has been found in Duchenne muscular dystrophy (MD), Becker MD, Emery-Dreifuss MD, facioscapulohumeral MD, sarcoglycanopathies, myotubular congenital MD, myotonic dystrophies type 1 and 2, proximal myotonic myopathy, myoadenylate deaminase deficiency, glycogenosis type II, III, IV, VII and IX, carnitine deficiency, mitochondriopathy, desmin MP, nemaline MP, central core disease, multicore MP, congenital fiber-type disproportion MP, Barth syndrome, McLeod syndrome and Bethlem MP. Patients with any of the above-mentioned myopathies should be cardiologically investigated as soon as their diagnosis is established, since sufficient cardiac therapy improves CI in MPs and since management of these patients is influenced by the degree of CI.
Collapse
Affiliation(s)
- J Finsterer
- Ludwig Boltzmann Institute for Research in Epilepsy and Neuromuscular Disorders, Vienna, Austria.
| | | |
Collapse
|
889
|
Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104:557-67. [PMID: 11239412 DOI: 10.1016/s0092-8674(01)00242-2] [Citation(s) in RCA: 731] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J G Seidman
- Department of Genetics and Medicine, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
890
|
Abstract
Heart failure is a major health problem and is associated with a high mortality and morbidity. Recently, the role of the genetic background in the onset and the development of the disease has been evidenced in both heart failure with and without systolic dysfunction, and in familial and non familial forms of this condition. Several genes and loci are know identified as responsible for dilated cardiomyopathies and for hypertrophic cardiomyopathies in familial and monogenic forms. Susceptibility genes and modifier genes are also studied in nonfamilial forms of dilated cardiomyopathies. The analysis of genetic factors that predispose to heart failure looks promising. It should allow to better understand the underlying mechanisms that promote the development and the progression of the disease, to identify subjects at risk for the disease who would benefit of an early medical management and promote the development of pharmacogenetics.
Collapse
Affiliation(s)
- P Charron
- Service de cardiologie, CHU Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
891
|
Schmidt HH, Lochs H. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 2001; 103:E20. [PMID: 11157732 DOI: 10.1161/01.cir.103.4.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
892
|
Towbin JA, Bowles NE. Sarcoglycan, the heart, and skeletal muscles: new treatment, old drug? J Clin Invest 2001; 107:153-4. [PMID: 11160128 PMCID: PMC199185 DOI: 10.1172/jci11998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology, Baylor College of Medicine, One Baylor Plaza, Room 333E, Houston, Texas 77030, USA.
| | | |
Collapse
|
893
|
|
894
|
Sylvius N, Tesson F, Gayet C, Charron P, Bénaïche A, Peuchmaurd M, Duboscq-Bidot L, Feingold J, Beckmann JS, Bouchier C, Komajda M. A new locus for autosomal dominant dilated cardiomyopathy identified on chromosome 6q12-q16. Am J Hum Genet 2001; 68:241-6. [PMID: 11085912 PMCID: PMC1234920 DOI: 10.1086/316929] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Accepted: 11/06/2000] [Indexed: 01/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart-muscle disease characterized by ventricular dilatation and impaired heart contraction and is heterogeneous both clinically and genetically. To date, 12 candidate disease loci have been described for autosomal dominant DCM. We report the identification of a new locus on chromosome 6q12-16 in a French family with 9 individuals affected by the pure form of autosomal dominant DCM. This locus was found by using a genomewide search after exclusion of all reported disease loci and genes for DCM. The maximum pairwise LOD score was 3.52 at recombination fraction 0.0 for markers D6S1644 and D6S1694. Haplotype construction delineated a region of 16.4 cM between markers D6S1627 and D6S1716. This locus does not overlap with two other disease loci that have been described in nonpure forms of DCM and have been mapped on 6q23-24 and 6q23. The phospholamban, malic enzyme 1-soluble, and laminin-alpha4 genes were excluded as candidate genes, using single-strand conformation polymorphism or linkage analysis.
Collapse
Affiliation(s)
- N. Sylvius
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - F. Tesson
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - C. Gayet
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - P. Charron
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - A. Bénaïche
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - M. Peuchmaurd
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - L. Duboscq-Bidot
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - J. Feingold
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - J. S. Beckmann
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - C. Bouchier
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| | - M. Komajda
- Laboratoire Génétique et Insuffisance Cardiaque, Association Claude Bernard/Université Paris VI, and Service de Cardiologie, Pavillon Rambuteau, Groupe hospitalier Pitié-Salpêtrière, IFR 14 “Coeur, Muscles et Vaisseaux,” and Unité de Recherches, INSERM U393, Paris; Service de Cardiologie, Hôpital de la Croix Rousse, Lyon; and URA 1922/Généthon, Evry, France
| |
Collapse
|
895
|
Hutchison CJ, Alvarez-Reyes M, Vaughan OA. Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? J Cell Sci 2001; 114:9-19. [PMID: 11112685 DOI: 10.1242/jcs.114.1.9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear lamina is a filamentous structure composed of lamins that supports the inner nuclear membrane. Several integral membrane proteins including emerin, LBR, LAP1 and LAP2 bind to nuclear lamins in vitro and can influence lamin function and dynamics in vivo. Results from various studies suggest that lamins function in DNA replication and nuclear envelope assembly and determine the size and shape of the nuclear envelope. In addition, lamins also bind chromatin and certain DNA sequences, and might influence chromosome position. Recent evidence has revealed that mutations in A-type lamins give rise to a range of rare, but dominant, genetic disorders, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction-system disease and Dunnigan-type familial partial lipodystrophy. An examination of how lamins A/C, emerin and other integral membrane proteins interact at the INM provides the basis for a novel model for how mutations that promote disease phenotypes are likely to influence these interactions and therefore cause cellular pathology through a combination of weakness of the lamina or altered gene expression.
Collapse
Affiliation(s)
- C J Hutchison
- The Department of Biological Sciences, The University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
896
|
Ikeda Y, Ross J. Models of Cardiac Disease in the Mouse. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 2001. [DOI: 10.1007/978-1-4615-1653-8_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
897
|
Bonne G, Mercuri E, Muchir A, Urtizberea A, B�cane HM, Recan D, Merlini L, Wehnert M, Boor R, Reuner U, Vorgerd M, Wicklein EM, Eymard B, Duboc D, Penisson-Besnier I, Cuisset JM, Ferrer X, Desguerre I, Lacombe D, Bushby K, Pollitt C, Toniolo D, Fardeau M, Schwartz K, Muntoni F. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200008)48:2<170::aid-ana6>3.0.co;2-j] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
898
|
Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 2000; 343:1688-96. [PMID: 11106718 DOI: 10.1056/nejm200012073432304] [Citation(s) in RCA: 507] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The molecular basis of idiopathic dilated cardiomyopathy, a primary myocardial disorder that results in reduced contractile function, is largely unknown. Some cases of familial dilated cardiomyopathy are caused by mutations in cardiac cytoskeletal proteins; this finding implicates defects in contractile-force transmission as one mechanism underlying this disorder. To elucidate this important cause of heart failure, we investigated other genetic causes of dilated cardiomyopathy. METHODS Clinical evaluations were performed in 21 kindreds with familial dilated cardiomyopathy. A genome-wide linkage study prompted a search of the genes encoding beta-myosin heavy chain, troponin T, troponin I, and alpha-tropomyosin for disease-causing mutations. RESULTS A genetic locus for mutations associated with dilated cardiomyopathy was identified at chromosome 14q11.2-13 (maximal lod score, 5.11; theta=0), where the gene for cardiac beta-myosin heavy chain is encoded. Analyses of this and other genes for sarcomere proteins identified disease-causing dominant mutations in four kindreds. Cardiac beta-myosin heavy-chain missense mutations (Ser532Pro and Phe764Leu) and a deletion in cardiac troponin T (deltaLys210) caused early-onset ventricular dilatation (average age at diagnosis, 24 years) and diminished contractile function and frequently resulted in heart failure. Affected persons had neither antecedent cardiac hypertrophy (average maximal left-ventricular-wall thickness, 8.5 mm) nor histopathological findings characteristic of hypertrophy. CONCLUSION Mutations in sarcomere protein genes account for approximately 10 percent of cases of familial dilated cardiomyopathy and are particularly prevalent in families with early-onset ventricular dilatation and dysfunction. Because distinct mutations in sarcomere proteins cause either dilated or hypertrophic cardiomyopathy, the effects of mutant sarcomere proteins on muscle mechanics must trigger two different series of events that remodel the heart.
Collapse
Affiliation(s)
- M Kamisago
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
899
|
Granada J, Uribe W, Chyou PH, Maassen K, Vierkant R, Smith PN, Hayes J, Eaker E, Vidaillet H. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol 2000; 36:2242-6. [PMID: 11127467 DOI: 10.1016/s0735-1097(00)00982-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The goal of our study was to determine the incidence and predictors of atrial flutter in the general population. BACKGROUND Although atrial flutter can now be cured, there are no reports on its epidemiology in unselected patients. METHODS The Marshfield Epidemiological Study Area (MESA), a database that captures nearly all medical care among its 58,820 residents was used to ascertain all new cases of atrial flutter diagnosed from July 1, 1991 to June 30, 1995. To identify predisposing risk factors, we employed an age- and gender-matched case-control study design using eight additional variables. RESULTS A total of 181 new cases of atrial flutter were diagnosed for an overall incidence of 88/100,000 person-years. Incidence rates ranged from 5/100,000 in those <50 years old to 587/100,000 in subjects older than 80. Atrial flutter was 2.5 times more common in men (p < 0.001). The risk of developing atrial flutter increased 3.5 times (p < 0.001) in subjects with heart failure and 1.9 times (p < 0.001) for subjects with chronic obstructive pulmonary disease. Among those with atrial flutter 16% were attributable to heart failure and 12% to chronic obstructive lung disease. Three subjects (1.7%) without identifiable predisposing risks were labeled as having "lone atrial flutter." CONCLUSIONS This study, the first population-based investigation of atrial flutter, suggests this curable condition is much more common than previously appreciated. If our findings were applicable to the entire U.S. population, we estimate 200,000 new cases of atrial flutter in this country annually. At highest risk of developing atrial flutter are men, the elderly and individuals with preexisting heart failure or chronic obstructive lung disease.
Collapse
Affiliation(s)
- J Granada
- Marshfield Clinic and St. Joseph's Hospital, Wisconsin, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
900
|
Abstract
The lipoatrophy syndromes are a heterogeneous group of syndromes characterized by a paucity of adipose tissue. Severe lipoatrophy is associated with insulin-resistant diabetes mellitus (DM). The loss of adipose tissue can have a genetic, immune, or infectious/drug-associated etiology. Causative mutations have been identified in patients for one form of partial lipoatrophy--Dunnigan-type familial partial lipodystrophy. Experiments using lipoatrophic mice demonstrate that the diabetes results from the lack of fat and that leptin deficiency is a contributing factor. Thiazolidinedione therapy improves metabolic control in lipoatrophic patients; the efficacy of leptin treatment is currently being investigated.
Collapse
Affiliation(s)
- M L Reitman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 8N-250, 10 Center Drive, Bethesda, MD 20892-1770, USA.
| | | | | | | |
Collapse
|