851
|
Herold J, Tillmanns H, Xing Z, Strasser RH, Braun-Dullaeus RC. Isolation and transduction of monocytes: promising vehicles for therapeutic arteriogenesis. Langenbecks Arch Surg 2006; 391:72-82. [PMID: 16565857 DOI: 10.1007/s00423-006-0033-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/03/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Augmentation of collateral vessel growth (arteriogenesis) is of particular clinical interest for the treatment of vascular occlusive disease. Monocytes play a key role for arteriogenesis. They localize to areas of collateral development and create a highly arteriogenic environment. "Homing" of ex vivo genetically engineered monocytes could therapeutically be exploited for augmentation of arteriogenesis. However, isolation and ex vivo transduction of monocytes is problematic. METHODS In this study, we established a valid method of monocyte isolation from peripheral blood and evaluated different in vitro transduction methods. RESULTS Our results revealed that liposomes and electroporation were unsuccessful for monocyte transduction. However, high-efficiency gene transfer (almost 95%) was achieved by adenoviral infection. Subsequent homing of virally transduced monocytes to sites of arteriogenesis could be demonstrated. CONCLUSION Our study may offer a new method for the augmentation of arteriogenesis, all of which makes the ultimate goal of applying this strategy to humans for therapy of vascular disease eminently attractive.
Collapse
Affiliation(s)
- Joerg Herold
- Department of Internal Medicine II/Cardiology, University of Technology, Fetscherstrasse 76, Dresden, 01307, Germany.
| | | | | | | | | |
Collapse
|
852
|
Fürstenberger G, von Moos R, Lucas R, Thürlimann B, Senn HJ, Hamacher J, Boneberg EM. Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 2006; 94:524-31. [PMID: 16450002 PMCID: PMC2361171 DOI: 10.1038/sj.bjc.6602952] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circulating endothelial cells (CECs) as well as bone-marrow-derived endothelial precursor cells (EPC) play an important role in neovascularisation and tumour growth. To study the impact of neoadjuvant chemotherapy on the amounts of CEC and their precursor cells, mature CEC and their progenitors were quantified by flow cytometry in peripheral blood of breast cancer patients during anthracycline and/or taxane based neoadjuvant chemotherapy and subsequent surgery in comparison to age-matched healthy controls. Cell numbers were tested for correlation with serum levels of angiopoietin-2, erythropoietin, endostatin, endoglin, VEGF and sVCAM-1 as well as clinical and pathological features of breast cancer disease. Circulating endothelial cells were significantly elevated in breast cancer patients and decreased during chemotherapy, whereas EPC (CD34+/VEGFR-2+) as well as their progenitor cell population CD133+/CD34+ and the population of CD34+ stem cells increased. Concomitantly with the increase of progenitor cells an increase of VEGF, erythropoietin and angiopoietin-2 was observed. These data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy. Since this mobilisation of EPC may contribute to tumour neovascularisation an early antiangiogenic therapy in combination with chemotherapy could be beneficial for the success of cancer therapy.
Collapse
Affiliation(s)
- G Fürstenberger
- Center for Tumor Detection and Prevention, Rorschacherstrasse 150, 9006 St Gallen, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
853
|
|
854
|
Nishiyama K, Takaji K, Kataoka K, Kurihara Y, Yoshimura M, Kato A, Ogawa H, Kurihara H. Id1 gene transfer confers angiogenic property on fully differentiated endothelial cells and contributes to therapeutic angiogenesis. Circulation 2006; 112:2840-50. [PMID: 16267257 DOI: 10.1161/circulationaha.104.516898] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transplantation of endothelial progenitor cells has been proposed as a potential strategy for therapeutic revascularization. However, the limited endogenous cell pool and the related technical difficulties constitute clinically important disadvantages to autologous transplantation. In this study we investigated whether fully differentiated endothelial cells (ECs) modified with gene transfer of Id1, a helix-loop-helix transcription factor involved in angiogenesis, have the potential to contribute to therapeutic angiogenesis. METHODS AND RESULTS The Id1 gene was transferred into human umbilical vein ECs (HUVECs) via a Sendai virus vector. Id1 stimulated migration, proliferation, and capillary-like tube/cord formation of HUVECs. In addition, Id1 reduced serum deprivation-induced HUVEC apoptosis, as shown by FACS analysis with annexin V and TUNEL staining. Transplantation of Id1-overexpressing HUVECs accelerated recovery of blood flow as evaluated by laser-Doppler perfusion imaging, increased capillary density, and improved the rate of limb salvage compared with the transplantation of control HUVECs. Histochemical analysis revealed that the regenerated vascular networks of limbs transplanted with Id1-overexpressing HUVECs contained numerous HUVECs, some of which were in a proliferative state. Untransfected HUVECs were also incorporated with Id1-transfected HUVECs, suggesting the noncell autonomous effect of Id1. Finally, angiopoietin-1 was upregulated in Id1-overexpressing HUVECs and functionally contributed to the in vitro angiogenic effect of Id1. CONCLUSIONS Id1 gene transfer conferred HUVECs with an angiogenic property, contributing to neovascularization after transplantation into ischemic lesions. Transplantation of Id1-overexpressing mature ECs may serve as a novel and useful strategy for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Koichi Nishiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
855
|
Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006; 124:175-89. [PMID: 16413490 DOI: 10.1016/j.cell.2005.10.036] [Citation(s) in RCA: 895] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 08/11/2005] [Accepted: 10/07/2005] [Indexed: 01/31/2023]
Abstract
Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells. Retention of RBCCs in close proximity to angiogenic vessels is mediated by SDF1, a chemokine induced by VEGF in activated perivascular myofibroblasts. RBCCs enhance in situ proliferation of endothelial cells via secreting proangiogenic activities distinct from locally induced activities. Precluding RBCCs strongly attenuated the proangiogenic response to VEGF and addition of purified RBCCs enhanced angiogenesis in excision wounds. Together, the data suggest a model for VEGF-programmed adult neovascularization highlighting the essential paracrine role of recruited myeloid cells and a role for SDF1 in their perivascular retention.
Collapse
Affiliation(s)
- Myriam Grunewald
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
856
|
Zhang Q, Madonna R, Shen W, Perin E, Angeli FS, Murad F, Yeh E, Buja LM, De Caterina R, Willerson JT, Geng YJ. Stem cells and cardiovascular tissue repair: Mechanism, methods, and clinical applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.jccr.2005.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
857
|
Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, Lee YS, Lee KS, Park HK, Kang KS. Successful Stem Cell Therapy Using Umbilical Cord Blood-Derived Multipotent Stem Cells for Buerger's Disease and Ischemic Limb Disease Animal Model. Stem Cells 2006; 24:1620-6. [PMID: 16497946 DOI: 10.1634/stemcells.2005-0365] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Buerger's disease, also known as thromboangiitis obliterans, is a nonatherosclerotic, inflammatory, vasoocclusive disease. It is characterized pathologically as a panangiitis of medium and small blood vessels, including both arteries and adjacent veins, especially the distal extremities (the feet and the hands). There is no curative medication or surgery for this disease. In the present study, we transplanted human leukocyte antigen-matched human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) into four men with Buerger's disease who had already received medical treatment and surgical therapies. After the stem cell transplantation, ischemic rest pain suddenly disappeared from their affected extremities. The necrotic skin lesions were healed within 4 weeks. In the follow-up angiography, digital capillaries were increased in number and size. In addition, vascular resistance in the affected extremities, compared with the preoperative examination, was markedly decreased due to improvement of the peripheral circulation. Because an animal model of Buerger's disease is absent and also to understand human results, we transplanted human UCB-derived MSCs to athymic nude mice with hind limb ischemia by femoral artery ligation. Up to 60% of the hind limbs were salvaged in the femoral artery-ligated animals. By in situ hybridization, the human UCB-derived MSCs were detected in the arterial walls of the ischemic hind limb in the treated group. Therefore, it is suggested that human UCB-derived MSC transplantation may be a new and useful therapeutic armament for Buerger's disease and similar ischemic diseases.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Department of Pathology, College of Medicine, The Catholic University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
858
|
Bauer SM, Goldstein LJ, Bauer RJ, Chen H, Putt M, Velazquez OC. The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. J Vasc Surg 2006; 43:134-41. [PMID: 16414400 DOI: 10.1016/j.jvs.2005.08.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/16/2005] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Vasculogenesis relies on the recruitment of bone marrow-derived endothelial progenitor cells (BMD EPCs) and is stimulated by tissue-level ischemia. We hypothesized that the BMD EPC response is impaired in ischemic wounds and studied the relationship between BMD EPCs and wound healing. METHODS We used transgenic Tie-2/LacZ mice, which carry the beta-galactosidase (beta-gal) reporter gene under Tie-2 promoter control. Wild-type mice were lethally irradiated and reconstituted with Tie-2/LacZ bone marrow. Four weeks later, the mice underwent unilateral femoral artery ligation/excision and bilateral wounding of the hindlimbs. Ischemia was confirmed and monitored with laser Doppler imaging. A subset of mice received incisional vs excisional nonischemic bilateral hindlimb wounds, without femoral ligation. Excisional wound closure was measured by using daily digital imaging and software-assisted calculation of surface area. RESULTS Ischemia resulted in significantly delayed wound healing and differentially affected the number of BMD EPCs recruited to wound granulation tissue and muscle underlying the wounds. At 3 days postwounding, the granulation tissue of the wound base contained significantly fewer numbers of BMD EPCs in ischemic wounds compared with the nonischemic wounds (P < .05). In contrast, significantly more BMD EPCs were present in the muscle underlying the ischemic wounds at this same time point compared with the muscle under the nonischemic wounds (P < .05). In ischemic wounds, eventual wound closure significantly correlated with a delayed rise in BMD EPCs within the wound granulation tissue (Kendall's correlation, -.811, P = .0005) and was significantly associated with a gradual recovery of hindlimb perfusion (P < .0001). By 7 days postwounding, BMD EPCs were incorporated into the neovessels in the granulation tissue. At 14 days and 75 days, BMD EPCs were rarely observed within the wounds. CONCLUSIONS Granulation tissue of excisional ischemic wounds showed significantly less BMD EPCs 3 days postwounding, in association with significantly delayed wound closure. However, the number of BMD EPCs were increased in ischemic hindlimb skeletal muscle, consistent with the notion that ischemia is a powerful signal for vasculogenesis. To our knowledge, this is the first report identifying a deficit in BMD EPCs in the granulation tissue of ischemic skin wounds and reporting the key role for these cells in both ischemic and nonischemic wound healing.
Collapse
Affiliation(s)
- Stephen M Bauer
- Hospital of University of Pennsylvania, Philadelphia, PA 19124, USA
| | | | | | | | | | | |
Collapse
|
859
|
|
860
|
Cetrulo CL, Knox KR, Brown DJ, Ashinoff RL, Dobryansky M, Ceradini DJ, Capla JM, Chang EI, Bhatt KA, McCarthy JG, Gurtner GC. Stem cells and distraction osteogenesis: endothelial progenitor cells home to the ischemic generate in activation and consolidation. Plast Reconstr Surg 2006; 116:1053-64; discussion 1065-7. [PMID: 16163094 DOI: 10.1097/01.prs.0000178403.79051.70] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ischemia is a limiting factor during distraction osteogenesis. The authors sought to determine the extent of ischemia in the distraction zone and whether endothelial progenitor cells home to the distraction zone and participate in local vasculogenesis. METHODS Laser Doppler imaging was used to assess the extent of blood flow in the distraction zone in gradually distracted, immediately distracted, and osteotomized rat mandibles during activation and consolidation. Animals (n = 50; 25 rats with unilateral gradual distraction and contralateral osteotomy as an internal control, and 25 rats with unilateral immediate distraction) were examined on postoperative days 4, 6, and 8 of activation, and after 1 and 2 weeks of consolidation. Endothelial progenitor cells isolated from human peripheral blood were labeled with fluorescent DiI dye, and 0.5 x 10 cells were injected intra-arterially under direct vision into each carotid artery at the start of activation in nude rats (n = 18) that then underwent the distraction protocol outlined above. RESULTS Doppler flow analysis demonstrated relative ischemia during the activation period in the distraction osteogenesis group and increased blood flow in the osteotomized control group as compared with flow in a normal hemimandible [normal, 1 (standardized); distraction osteogenesis, 0.58 +/- 0.05; control, 2.58 +/- 0.21; p < 0.05 for both results]. We observed a significantly increased endothelial progenitor cell population at the generate site versus controls at midactivation and at 1 and 2 weeks of consolidation [25 +/- 1.9 versus 1 +/- 0.3 DiI-positive cells per high-power field (p < 0.05), 124 +/- 21 versus 8 +/- 4 DiI-positive cells per high-power field (p < 0.05), and 106 +/- 18 versus 9 +/- 3 DiI-positive cells per high-power field (p < 0.05), respectively]. CONCLUSIONS These data suggest that the distraction zone becomes relatively ischemic during activation and that endothelial progenitor cells home to the ischemic generate site during the activation phase and remain during the consolidation phase. Selective expansion of these stem cells may be useful in overcoming ischemic limitations of distraction osteogenesis. Moreover, their homing capability may be used to effect site-specific transgene delivery to the generate.
Collapse
Affiliation(s)
- Curtis L Cetrulo
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol 2006; 291:F176-85. [PMID: 16478972 DOI: 10.1152/ajprenal.00454.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endothelial progenitor cells (EPCs) have been shown to participate in tissue repair under diverse physiological and pathological conditions. It is unknown whether EPCs are mobilized in response to acute renal injury. The aim of this study was to characterize EPC mobilization and homing in the course of acute renal ischemia. Mice were subjected to unilateral renal artery clamping (UC) for 25 min. At 10 min, 3, 6, 24 h, and 7 days after UC, the pool of circulating and splenic CD34+/Flk-1+ cells within the monocytic population was detected by flow cytometry. For ischemic preconditioning (IPC), the first UC was performed 7 days before the repeated ischemic episode. For EPC detection in the kidney, cryosections were stained for c-Kit+/Tie-2+ cells. The number of circulating EPCs was not significantly affected at any time after UC compared with sham-operated or control mice. IPC did not significantly change the circulating pool of EPCs. Splenectomy performed before UC resulted in a surge of circulating EPCs. Accordingly, splenic EPCs were significantly increased after UC at 3 and 6 h, but not at later times. EPC homing to the spleen was absent in IPC animals. Immunohistochemical analysis of the kidneys showed a sixfold increase in the number of c-Kit+/Tie-2+ cells localized in the medullopapillary region in mice by day 7 after ischemia. Enriched population of c-Kit+/Tie-2+ cells from the medullopapillary parenchyma of Tie-2green fluorescent protein chimeric mice subjected to IPC was isolated and transplanted to wild-type mice with acute renal ischemia. This procedure resulted in the improvement of renal function in recipients. In conclusion, 1) renal ischemia rapidly (within 3-6 h) mobilizes EPCs, which transiently home to the spleen, acting as a temporary reservoir of mobilized EPCs; 2) the late phase of IPC is associated with the mobilization of the splenic pool and accumulation of EPCs in the renal medullopapillary region; and 3) transplantation of EPC-enriched cells from the medullopapillary parenchyma afforded partial renoprotection after renal ischemia, suggesting the role of the recruited EPCs in the functional rescue.
Collapse
Affiliation(s)
- Daniel Patschan
- Department of Medicine, New York Medical College BSB, R-C21, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
862
|
Muta M, Matsumoto G, Nakashima E, Toi M. Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clin Cancer Res 2006; 12:264-72. [PMID: 16397051 DOI: 10.1158/1078-0432.ccr-05-1052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase (COX)-2 inhibition results in tumor regression; however, little is known about the mechanism. In the present study, using a Walker256 tumor model and a rat bone marrow-derived endothelial cell line TR-BME-2, we analyzed the effects of a new selective COX-2 inhibitor, 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone (DFU), on the production of chemokines and growth factors and on the neovascularization. The oral administration of DFU (5 mg/kg/d) significantly suppressed the tumor growth with decreasing microvessel density in vivo, although it showed no direct inhibition of Walker256 cell proliferation in vitro. It was newly found that the recruitment of systemically injected TR-BME-2 cells into the tumor site was significantly inhibited by DFU treatment. In addition, we found that DFU significantly reduced the production of monocyte chemoattractant protein-1 (MCP-1) both in tumor tissues and in the systemic circulation (P < 0.001 and P < 0.001, respectively). Such reduction was not observed in other chemotactic factors, vascular endothelial growth factor and stromal cell-derived factor-1. The induced chemotaxis of TR-BME-2 by serum of tumor-bearing rats was significantly reduced in DFU-treated rat serum, although DFU showed no direct inhibition for TR-BME-2 cells, either cell growth or chemotaxis. Treatment with neutralizing antibodies to soluble mediators, including MCP-1, significantly suppressed the chemotaxis. Regarding the down-regulation machinery of MCP-1 production in vivo, tumor-associated macrophages seem to play crucial roles, because DFU eliminated MCP-1 production in the activated macrophages remarkably but not in Walker256 tumor cells in vitro. In conclusion, COX-2 inhibitor DFU exerts tumor regression activity in a Walker256 tumor model by suppressing MCP-1 production in tumor tissues and in the circulation.
Collapse
Affiliation(s)
- Mariko Muta
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Tokyo, Japan
| | | | | | | |
Collapse
|
863
|
Imanishi T, Kobayashi K, Kuki S, Takahashi C, Akasaka T. Sirolimus accelerates senescence of endothelial progenitor cells through telomerase inactivation. Atherosclerosis 2006; 189:288-96. [PMID: 16455087 DOI: 10.1016/j.atherosclerosis.2005.12.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 12/12/2005] [Accepted: 12/30/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sirolimus-eluting stent (SES) is commonly used to prevent in-stent restenosis but is not infrequently complicated by late angiographic stent thrombosis (LAST). On the other hand, circulating endothelial progenitor cells (EPCs) play a significant role in the maintenance of endothelial integrity. AIM We examined whether sirolimus affects differentiation, proliferative activity, senescence, colony formation, and network formation in EPCs originated from mononuclear cells (MNCs). METHODS AND RESULTS MNCs were isolated from peripheral blood of healthy volunteers. EPCs outgrew from the culture of MNCs in the presence of vascular endothelial growth factor. When MNCs were incubated with sirolimus at 0.01, 0.1, and 1 ng/ml for 4 days, sirolimus dose-dependently reduced the number of differentiated, adherent EPCs, as assessed by an in vitro culture assay. After ex-vivo cultivation, EPCs became senescent as determined by acidic beta-galactosidase staining. When MNCs were treated with sirolimus, sirolimus dose-dependently accelerated the onset of EPCs senescence. RT-PCR analysis demonstrated that FK506-binding protein 12 (FKBP12), a receptor of sirolimus, was expressed in MNCs. To obtain an insight into the underlying downstream effects of sirolimus, we measured telomerase activity and the expression of p27(kip1). Sirolimus decreased telomerase activity dose-dependently, which was accompanied with down-regulation of the catalytic subunit, telomerase reverse transcriptase (TERT). Furthermore, sirolimus up-regulated the cell cycle inhibitor p27(kip1). Having demonstrated that sirolimus accelerated the onset of senescence, we examined whether that translated into a decrease in proliferative activity and clonal expansion. Both MTS assay and BrdU incorporation assay have shown that sirolimus treatment significantly diminished the proliferative activity in EPCs. In addition, colony forming unit assay revealed that sirolimus dramatically decreased colony formation as compared to control (no treatment). Finally, in a Matrigel assay, EPCs treated with sirolimus were shown to be less integrated into the network formation than control (no treatment). CONCLUSION The inhibitory effects of sirolimus on circulating EPCs potently may affect re-endotheliazation after SES implantation.
Collapse
Affiliation(s)
- Toshio Imanishi
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8510, Japan.
| | | | | | | | | |
Collapse
|
864
|
Schömig K, Busch G, Steppich B, Sepp D, Kaufmann J, Stein A, Schömig A, Ott I. Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 2006; 27:1032-7. [PMID: 16455670 DOI: 10.1093/eurheartj/ehi761] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Release of progenitor cells is observed during inflammatory conditions and contributes to neovascularization. We, therefore, sought to investigate the relationship of circulating progenitor cells and interleukin (IL)-8 in acute myocardial infarction (AMI). METHODS AND RESULTS From patients with stable angina and AMI, serial venous blood samples were obtained. The number of circulating CD133+CD45- progenitor cells, endothelial progenitor cells (EPCs), and circulating endothelial P1H12+CD45- cells was analyzed by flow cytometry. After stenting in patients with AMI, an increase in plasma IL-8 and vascular endothelial growth factor (VEGF) concentrations was observed, which was only minimal in patients with stable angina. Only in patients with AMI, this was followed by an increase in circulating CD133+CD45- progenitor cells. In contrast, circulating endothelial P1H12+CD45- cells and E-selectin RNA expression in peripheral blood were only elevated early in AMI, indicating shedding of activated endothelial cells. Multivariable analysis revealed an association of IL-8 and circulating CD133+CD45- progenitor cells in AMI, in addition to statin therapy and risk factor profile. CONCLUSION In AMI, IL-8 is associated with circulating progenitor cells. In addition to the pro-angiogenic functions of IL-8 and VEGF, this mechanism may contribute to new vessel generation and, thereby, improve myocardial function.
Collapse
Affiliation(s)
- Kathrin Schömig
- Deutsches Herzzentrum und 1. Medizinische Klinik der Technischen Universität München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
865
|
Werner N, Nickenig G. Influence of Cardiovascular Risk Factors on Endothelial Progenitor Cells. Arterioscler Thromb Vasc Biol 2006; 26:257-66. [PMID: 16322535 DOI: 10.1161/01.atv.0000198239.41189.5d] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ideal way to prevent and cure atherosclerosis and the subsequent end organ damage is to restore and rejuvenate the dysfunctional vasculature and the damaged organs. Various studies have underlined the important role of bone marrow-derived endothelial progenitor cells (EPCs) in vasculogenesis and angiogenesis of ischemic tissue, but only a few studies have concentrated on the role of EPCs in the prevention and therapy of atherosclerosis. Extended endothelial cell damage by cardiovascular risk factors can result in endothelial cell apoptosis with loss of the integrity of the endothelium. The consequences are an increased vascular permeability of the endothelium followed by facilitated migration of monocytes and vascular smooth muscle cell proliferation, resulting in the premature manifestation of an atherosclerotic lesion. A growing body of evidence suggests that circulating EPCs play an important role in endothelial cell regeneration. Systemic transfusion or intrinsic mobilization of EPCs enhances the restoration of the endothelium after focal endothelial denudation, resulting in a diminished neointima formation. In mice with atherosclerotic lesions, bone-marrow-derived stem cells are able to reduce atherosclerotic plaque size. However, various studies have demonstrated that in humans, cardiovascular risk factors impair number and function of EPCs, potentially restricting the therapeutic potential of progenitor cells. The current review focuses on the role of cardiovascular risk factors on endothelial cell apoptosis and EPCs with its pathophysiological consequences for atherogenesis and a regenerative therapy approach and will highlight the role of EPCs as a marker for cardiovascular mortality and morbidity.
Collapse
Affiliation(s)
- Nikos Werner
- Medizinischen Klinik und Poliklinik II, Universitätsklinikum Bonn, Germany
| | | |
Collapse
|
866
|
Taniguchi E, Kin M, Torimura T, Nakamura T, Kumemura H, Hanada S, Hisamoto T, Yoshida T, Kawaguchi T, Baba S, Maeyama M, Koga H, Harada M, Kumashiro R, Ueno T, Mizuno S, Ikeda H, Imaizumi T, Murohara T, Sata M. Endothelial progenitor cell transplantation improves the survival following liver injury in mice. Gastroenterology 2006; 130:521-31. [PMID: 16472604 DOI: 10.1053/j.gastro.2005.10.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 10/19/2005] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Neovascularization, which is vital to the healing of injured tissues, recently has been found to include both angiogenesis, which involves in mature endothelial cells, and vasculogenesis, involving endothelial progenitor cells. The aim of this study was to clarify the possible roles of endothelial progenitor cells during postnatal liver regeneration. METHODS To determine how endothelial progenitor cells participate in liver regeneration, human or mouse endothelial progenitor cells were transplanted into the mice with carbon tetrachloride-induced acute liver injury. Survival rate of the mice in endothelial progenitor cell-transplanted and control groups was calculated. Separately, livers removed temporally from both groups were examined. RESULTS At an early stage, transplanted human endothelial progenitor cells were seen mainly surrounding hepatic central veins where hepatocytes showed extensive necrosis; later, the transplanted cells formed tubular structures. More of these cells were observed along hepatic sinusoids. Transplantation of human or mouse endothelial progenitor cells improved survival of the mice following liver injury (from 28.6% to 85.7%, P < .0005 and from 33.3% to 80.0%, P < .001, respectively), accompanied by greater proliferation of hepatocytes. Human endothelial progenitor cells produced several growth factors, such as hepatocyte growth factor, transforming growth factor-alpha, heparin-binding epidermal growth factor-like growth factor, and vascular endothelial growth factor, and also elicited endogenous growth factors. CONCLUSIONS Endogenous and exogenous growth factors and direct neovascularization after endothelial progenitor cell transplantation promoted liver regeneration, thus improving survival after liver injury. Transplantation of endothelial progenitor cells could represent a new therapeutic strategy for promoting liver regeneration.
Collapse
Affiliation(s)
- Eitaro Taniguchi
- Second Department of Medicine, Kurume University School of Medicine, Liver Cancer Division, Research Center for Innovative Cancer Therapy of the 21st Century COE Program for Medical Science, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
867
|
Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC. Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells 2006; 23:575-83. [PMID: 15790778 DOI: 10.1634/stemcells.2004-0185] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two classes of adult bone marrow-derived endothelial cell (EC) progenitors have been described, primitive hematopoietic stem cell-related cells and monocytic cells. Both differentiate into ECs and promote vascular growth in vivo but have distinct characteristics. Despite the association of obesity and type 2 diabetes with cardiovascular disease, their effects on primitive EC progenitors (prECPs) have not been examined, and the limited data on monocytic EC progenitors are conflicting. We investigated functional parameters of primitive and monocytic EC progenitors from obese diabetic (Lepr(db)) mice. The viability, proliferation, and differentiation of EC progenitors were unaffected in Lepr(db) cell cultures under basal condition. However, Lepr(db)-derived prECPs, but not monocytic EC progenitors, were less able to cope with hypoxia and oxidative stress, conditions likely present when EC progenitors are most needed. Intrinsic prECP dysfunction was also apparent in vivo. Whereas injection of nondiabetic prECPs promoted vascularization of skin wounds, Lepr(db)-derived progenitors inhibited it in nondiabetic mice. Additionally, although treatment with Lepr(db)-derived prECPs did not significantly reduce blood flow restoration to ischemic limbs, it resulted in increased tissue necrosis and autoamputation. Thus, type 2 diabetes coupled with obesity seems to induce intrinsic EC progenitor dysfunction that is exacerbated by stress. prECPs are more affected than monocytic progenitors, exhibiting a reduced ability to survive or proliferate. The proangiogenic phenotype of prECPs also seems to convert to an antiangiogenic phenotype in obese diabetic mice. These data suggest that therapies involving prECPs or stem-like cells in diabetic patients may be inadvisable at this time.
Collapse
Affiliation(s)
- Ola Awad
- Department of Anatomy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
868
|
Abstract
Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies.
Collapse
Affiliation(s)
- Hermann Haller
- Department of Nephrology, Hannover Medical School, Germany.
| | | | | | | | | |
Collapse
|
869
|
Mäntylä T, Hakumäki JM, Huhtala T, Närvänen A, Ylä-Herttuala S. Targeted magnetic resonance imaging of Scavidin-receptor in human umbilical vein endothelial cells in vitro. Magn Reson Med 2006; 55:800-4. [PMID: 16526021 DOI: 10.1002/mrm.20834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Current therapeutic approaches to treat cancer are often hampered by the lack of specificity of the drugs used for therapy. Scavidin, a novel fusion protein expressed on cell membranes, could be utilized for targeting of therapeutic molecules. Scavidin exploits the high binding affinity between avidin and biotin and is capable of mediating endocytosis of a bound ligand. In the current study we evaluated the efficiency of biotinylated ultrasmall superparamagnetic iron oxide (USPIO) particles in Scavidin-expressing human umbilical vein endothelial cell (HUVEC) cultures in vitro as a novel receptor-targeted magnetic resonance imaging contrast agent. Biotinylated USPIO (bUSPIO) were targeted to Scavidin adenovirus-transduced HUVECs in vitro. Scavidin expressing cells were capable of binding and mediating endocytosis of the bUSPIO in vitro, which led to a significant decrease in T2 relaxation times, and a loss of signal intensity in comparison to controls. The findings were confirmed with Prussian blue staining for iron and detection of Scavidin by bound biotinylated horseradish peroxidase. Our data shows that biotinylated ligands target specifically to Scavidin-expressing HUVEC in vitro. The utilization of Scavidin gene transfer ex vivo thus constitutes a platform for potential ligand delivery via cell therapy and time-independent imaging of biologic processes.
Collapse
Affiliation(s)
- Tuomas Mäntylä
- A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
870
|
Gornik HL, Creager MA. Medical Treatment of Peripheral Arterial Disease. Vasc Med 2006. [DOI: 10.1016/b978-0-7216-0284-4.50024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
871
|
Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H. In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 2006; 8:215-27. [PMID: 16793731 DOI: 10.1080/14653240600735933] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human mesenchymal stem cells (MSC) possess powerful ex vivo expansion and versatile differentiation potential, placing themselves at the forefront of the field of stem cell-based therapy and transplantation. Of high clinical relevance is the endothelial differentiation potential of MSC, which can be used to treat various forms of ischemic vascular disease. METHODS We investigated whether human umbilical cord blood (UCB)-derived MSC are able to differentiate in vitro along an endothelial lineage, by using flow cytometry, RT-PCR and immunofluorescence analyzes, as well as an Ab array method. RESULTS When the cells were incubated for up to 3 weeks in the presence of VEGF, EGF and hydrocortisone, they began to express a variety of endothelial lineage surface markers, such as Flk-1, Flt-1, VE-Cadherin, vWF, VCAM-1, Tie-1 and Tie-2, and to secrete a specific set of cytokines. Differentiated cells were also found to be able to uptake low-density lipoprotein and form a tubular network structure. DISCUSSION These observations have led us to conclude that UCB-derived MSC retain endothelial potential that is suitable for basic and clinical studies aimed at the development of vasculature-directed regenerative medicine.
Collapse
Affiliation(s)
- E J Gang
- Research Institute of Biotechnology, Histostem Co., Seoul, Korea
| | | | | | | | | | | |
Collapse
|
872
|
Affiliation(s)
- Marco A Costa
- Division of Cardiology & Cardiovascular Imaging Core Laboratories, University of Florida, Shands-Jacksonville, Jacksonville, Fla, USA
| | | |
Collapse
|
873
|
Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, Kumita S, Takano T. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant 2005; 13:429-37. [PMID: 15468685 DOI: 10.3727/000000004783983837] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated efficacy and safety of implantation of autologous bone marrow mononuclear cells plus platelets, including endothelial progenitor cells (EPCs), for recovering refractory chronic peripheral arterial disease (PAD) using visual and quantitative analyses by 99mTc-tetrofosmin (TF) perfusion scintigraphy, and also investigated various quantitative assessments objectively. We performed 12 consecutive cases and 19 limbs and hands with severe chronic PAD that were almost Fontaine class IV (11/12 cases, about 92%) in this trial. This treatment was very effective in relieving severe pain of PAD, especially for Buerger's disease. We used a visual analog scale (VAS) for measurement of pain level. The maximum pain level before implantation was 66.5+/-5.0 mm, and it decreased to 12.1+/-2.2 mm after implantation (p < 0.001). Rest pain in legs and fingers was resolved in 11 cases (11/12 cases, 92%). All patients could measure pain-free walking time on a treadmill, which improved remarkably (140+/-53 s before implantation vs. 451+/-74 s after implantation, p = 0.034). Resting ankle brachial pressure index (ABI) in legs implanted with bone marrow mononuclear cells was also improved (0.65+/-0.08 before implantation vs. 0.73+/-0.07 after implantation, p = 0.055). According to 99mTc-TF perfusion scintigraphy, the proximal area (region from knee to ankle) was 1.32+/-0.10 before implantation versus 1.56+/-0.11 after implantation (p = 0.007). 99Tc-TF perfusion scintigraphy in the distal area (region from ankle to end of toes, or from wrist to end of fingers) was 0.79+/-0.06 before implantation versus 0.83+/-0.06 after implantation (p = 0.29). Ischemic legs and hands that were injected showed increased perfusion blood flow. 99mTc-TF perfusion scintigraphy was effective to estimate visual and quantitative analysis of collateral vessels in neovascularization. We were successful with this new treatment for the most severe, chronic PAD that was not curable by any of the current treatments. Thus, this therapeutic angiogenesis could be a new strategy for saving severe ischemic limbs and hands.
Collapse
Affiliation(s)
- Masaaki Miyamoto
- First Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
874
|
Zhang R, Yang H, Li M, Yao Q, Chen C. Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro. Exp Hematol 2005; 33:1554-63. [PMID: 16338499 DOI: 10.1016/j.exphem.2005.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/28/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE In vitro differentiation of endothelial cells has potential applications in vascular tissue engineering and cell-based therapy for many diseases. The objective of this study was to develop a new strategy that utilizes cytokines and lipopolysaccharide (LPS) to accelerate endothelial-like cell differentiation from peripheral blood CD14(+) monocytes. METHODS Peripheral blood CD14(+) monocytes were purified with immunobeads and cultured with an angiogenic growth factor-rich growth medium (EGM-2) with or without initial treatment of LPS in combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 4 days (the day 4 cultures). The cells were then continuously cultured in EGM-2 medium for an additional 4 or 10 days (the day 8 or day 14 cultures). Cell markers were determined by flow cytometry analysis and immunofluorescence staining. Cytokine/chemokine profile was studied by Bio-Plex immunoassay. RESULTS In the group of initial treatment of LPS in combination with GM-CSF, IL-4, and EGM-2, the majority of suspended CD14(+) monocytes were attached and changed their morphology to endothelial-like cells, which expressed high levels of endothelial cell markers CD31, von Willebrand factor, and vascular endothelial growth factor receptor-1 as well as two major endothelial tight junction proteins zonula occludens -1 and occludin in the day 8 cultures. Endothelial nitric oxide synthase expression was substantially increased. Endothelial-like cells were also able to uptake acetylated low-density lipoprotein and bind to Ulex europeus lectin. In addition, endothelial-like cells showed a unique cytokine/chemokine profile with substantial increases of macrophage inflammatory protein-1beta, IL-6, granulocyte colony-stimulating factor, and IL-8. CONCLUSION Initial treatment of LPS in combination with GM-CSF, IL-4, and EGM-2 is an effective strategy for acceleration of endothelial-like cell differentiation from peripheral blood CD14(+) monocytes in vitro.
Collapse
Affiliation(s)
- Rongxin Zhang
- Molecular Surgeon Research Center, Division of Vascular and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
875
|
Tirziu D, Simons M. Angiogenesis in the human heart: gene and cell therapy. Angiogenesis 2005; 8:241-51. [PMID: 16308736 DOI: 10.1007/s10456-005-9011-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 03/24/2005] [Indexed: 12/31/2022]
Abstract
The concept of therapeutic angiogenesis -- stimulation of new vessels growth to restore blood supply to ischemic tissue has been studied in a number of clinical trials in patients with advanced coronary and peripheral arterial disease. This review discusses the main biological processes underlying new vessel growth and addresses applications of growth factor and cell therapy based on the stimulation of angiogenesis. While still very young and controversial, cell therapy has an enormous potential that is yet to be explored. Multiple questions remain unanswered including the choice of the best cell type, patient selection and the mechanism of action. Nevertheless, much should be expected in this area in the next decade with the likely emergence of new therapies for treatment of ischemic diseases.
Collapse
Affiliation(s)
- Daniela Tirziu
- Angiogenesis Research Center and Section of Cardiology, Department of Medicine and Pharmacology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | | |
Collapse
|
876
|
Abstract
Angiogenesis research investigates the formation of new blood vessels in wound healing, tumour growth and embryonic development. Circulating, bone marrow-derived endothelial progenitor cells (EPCs) were first described 8 years ago, yet the exact nature of these endothelial precursor cells remains unclear. The contributions of circulating EPCs to angiogenesis in tumours, ischaemic injury and other diseases as well as their usefulness in the repair of wounded hearts and limbs remain under intense investigation.
Collapse
Affiliation(s)
- B Garmy-Susini
- John and Rebecca Moores Comprehensive Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - J A Varner
- John and Rebecca Moores Comprehensive Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
- John and Rebecca Moores Comprehensive Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA. E-mail:
| |
Collapse
|
877
|
Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 2005; 290:H1378-86. [PMID: 16299259 DOI: 10.1152/ajpheart.00888.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that exposure to hyperbaric oxygen (HBO(2)) would mobilize stem/progenitor cells from the bone marrow by a nitric oxide (*NO) -dependent mechanism. The population of CD34(+) cells in the peripheral circulation of humans doubled in response to a single exposure to 2.0 atmospheres absolute (ATA) O(2) for 2 h. Over a course of 20 treatments, circulating CD34(+) cells increased eightfold, although the overall circulating white cell count was not significantly increased. The number of colony-forming cells (CFCs) increased from 16 +/- 2 to 26 +/- 3 CFCs/100,000 monocytes plated. Elevations in CFCs were entirely due to the CD34(+) subpopulation, but increased cell growth only occurred in samples obtained immediately posttreatment. A high proportion of progeny cells express receptors for vascular endothelial growth factor-2 and for stromal-derived growth factor. In mice, HBO(2) increased circulating stem cell factor by 50%, increased the number of circulating cells expressing stem cell antigen-1 and CD34 by 3.4-fold, and doubled the number of CFCs. Bone marrow *NO concentration increased by 1,008 +/- 255 nM in association with HBO(2). Stem cell mobilization did not occur in knockout mice lacking genes for endothelial *NO synthase. Moreover, pretreatment of wild-type mice with a *NO synthase inhibitor prevented the HBO(2)-induced elevation in stem cell factor and circulating stem cells. We conclude that HBO(2) mobilizes stem/progenitor cells by stimulating *NO synthesis.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6068, USA.
| | | | | | | | | | | |
Collapse
|
878
|
Gill KA, Brindle NPJ. Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem Biophys Res Commun 2005; 336:392-6. [PMID: 16129411 DOI: 10.1016/j.bbrc.2005.08.097] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 12/31/2022]
Abstract
The factors controlling recruitment of endogenous and transplanted endothelial progenitor cells (EPC) to areas of neovascularization are largely unknown. In this study, we have examined the possibility that EPC migration and adhesion could be regulated by angiopoietin-2 (Ang2), a soluble ligand expressed by endothelial cells at sites of vessel remodelling and angiogenesis. We show for the first time that Ang2 causes a marked stimulation of EPC migration. This was specific for EPC as the ligand failed to affect endothelial cell migration. Ang2-stimulated EPC migration was inhibited by soluble Tie2 ectodomain. Furthermore, the ligand stimulated adhesion between EPC and endothelial monolayers.
Collapse
Affiliation(s)
- Kathryn A Gill
- Department of Cardiovascular Sciences, University of Leicester, RKCSB, P.O. Box 65, Leicester LE2 7LX, UK
| | | |
Collapse
|
879
|
Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005; 23:1699-706. [PMID: 16093915 DOI: 10.1097/01.hjh.0000176788.12376.20] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that aging or senescence constitutes a potential limitation to the ability of endothelial progenitor cells (EPCs) to sustain ischemic tissue and repair. Conversely, estrogens have been shown to accelerate recovery of the endothelium after vascular injury. OBJECTIVE To investigate whether estrogens are able to prevent senescence of EPCs. METHODS AND RESULTS Human EPCs were isolated from peripheral blood and characterized. After ex-vivo cultivation, the cells became senescent as determined by acidic beta-galactosidase staining. 17beta-estradiol dose-dependently inhibited the onset of EPC senescence in culture. Because cellular senescence is critically influenced by telomerase, which elongates telomeres, we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique. 17beta-estradiol significantly increased telomerase activity. Interestingly, reverse transcriptase-PCR analysis demonstrated that 17beta-estradiol dose-dependently increased the catalytic subunit, telomerase reverse transcriptase (TERT) - an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (either wortmannin or LY294002). Because the expression of TERT is regulated by the PI3-K/Akt pathway, we examined the effect of 17beta-estradiol on Akt activity in EPCs. Immunoblotting analysis revealed that 17beta-estradiol dose-dependently led to phosphorylation and, thus, to activation of Akt in EPCs. We also examined whether the protective effect of 17beta-estradiol on EPC senescence translates into the augmentation of mitogenic activity in EPCs. A [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) assay demonstrated that the mitogenic potential in EPCs treated with 17beta-estradiol exceeded that in untreated (control) EPCs (P < 0.01). In addition, EPCs released vascular endothelial growth factor (VEGF) protein--an effect that was significantly augmented by 17beta-estradiol. Finally, in a Matrigel assay, EPCs treated with both 17beta-estradiol and VEGF were shown to be more likely to integrate into the network formation than those treated with VEGF alone. CONCLUSION The inhibition of EPC senescence by estrogen in vitro may improve the functional activity of EPCs in a way that is important for potential cell therapy.
Collapse
Affiliation(s)
- Toshio Imanishi
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimidera, Wakayama City, Wakayama 641-8510, Japan.
| | | | | |
Collapse
|
880
|
Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE. Formation of human myocardium in the rat heart from human embryonic stem cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:663-71. [PMID: 16127147 PMCID: PMC1698736 DOI: 10.1016/s0002-9440(10)62041-x] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human embryonic stem cells (hESCs) offer the opportunity to replenish cells lost in the postinfarct heart. We explored whether human myocardium could be generated in rat hearts by injecting differentiated cardiac-enriched hESC progeny into the left ventricular wall of athymic rats. Although initial grafts were predominantly epithelial, noncardiac elements were lost over time, and grafts consisted predominantly of cardiomyocytes by 4 weeks. No teratomatous elements were observed. Engrafted cardiomyocytes were glycogen-rich and expressed expected cardiac markers including beta-myosin heavy chain, myosin light chain 2v, and atrial natriuretic factor. Heat-shock treatment improved graft size approximately threefold. The cardiac implants exhibited substantial angiogenesis, both recipient and graft derived. Importantly, there was greater proliferation in human cardiomyocytes than previously seen in rodent-derived cardiomyocytes: 14.4% of graft cardiomyocytes expressed the proliferation marker Ki-67, and 2.7% incorporated the thymidine analog BrdU 4 weeks after transplantation. This proliferation was associated with a sevenfold increase in graft size over the 4-week interval. Thus, hESCs can form human myocardium in the rat heart, permitting studies of human myocardial development and physiology and supporting the feasibility of their use in myocardial repair.
Collapse
Affiliation(s)
- Michael A Laflamme
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
881
|
Ruel M, Suuronen EJ, Song J, Kapila V, Gunning D, Waghray G, Rubens FD, Mesana TG. Effects of off-pump versus on-pump coronary artery bypass grafting on function and viability of circulating endothelial progenitor cells. J Thorac Cardiovasc Surg 2005; 130:633-9. [PMID: 16153906 DOI: 10.1016/j.jtcvs.2005.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/16/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Off-pump coronary artery bypass grafting may result in fewer myocardial and vascular complications than on-pump. Although differences in aortic manipulations likely play a role, the systemic responses of endothelial progenitor cells to both types of operations have not been examined. We sought to examine endothelial progenitor cell characteristics after off-pump versus on-pump coronary artery bypass grafting. METHODS Twenty patients undergoing off-pump or on-pump coronary artery bypass grafting were prospectively enrolled and had endothelial progenitor cells isolated and cultured from their peripheral blood before and 24 hours after surgery. Endothelial progenitor cells were identified by fluorescent dual lectin/low-density lipoprotein binding. Their number, phenotype characteristics, proliferation, migratory function, and viability were determined in a blinded fashion. RESULTS Patient characteristics and numbers of grafts were equivalent. Endothelial progenitor cells had similar phenotypes between groups before and after surgery. Off-pump and on-pump coronary artery bypass grafting resulted in similar increases in endothelial progenitor cell numbers and showed equivalent proliferation activity. However, endothelial progenitor cell migratory function was higher in off-pump patients (25.3 +/- 5.0 vs 5.0 +/- 1.0 cells per high-powered field for off-pump vs on-pump coronary artery bypass grafting, respectively; P = .04). Postoperative endothelial progenitor cell viability adjusted for preoperative baseline was also higher after off-pump than on-pump coronary artery bypass grafting by 72.4% +/- 14.6% (P = .01). Endothelial progenitor cells of on-pump patients were less viable after surgery than before surgery, whereas the reverse was observed in off-pump patients. CONCLUSIONS Both on-pump and off-pump coronary artery bypass grafting elicit mobilization of endothelial progenitor cells into the peripheral blood. On-pump coronary artery bypass grafting, however, impairs the migratory function and viability of these vascular repair cells, which are conversely preserved after off-pump surgery. Further work is necessary to determine whether the function and viability of endothelial progenitor cells correlate with vascular outcomes and whether their therapeutic modulation may one day benefit coronary artery bypass grafting patients.
Collapse
Affiliation(s)
- Marc Ruel
- Division of Cardiac Surgery, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
882
|
Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, Jang HS, Lee JS, Byun J, Choi JH, Jeon ES, Kim DK. Transplantation of Endothelial Progenitor Cells Accelerates Dermal Wound Healing with Increased Recruitment of Monocytes/Macrophages and Neovascularization. Stem Cells 2005; 23:1571-8. [PMID: 16081667 DOI: 10.1634/stemcells.2004-0340] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endothelial progenitor cells (EPCs) act as endothelial precursors that promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. These facts prompt the hypothesis that EPC transplantation should accelerate the wound-repair process by facilitating neovascularization and the production of various molecules related to wound healing. In a murine dermal excisional wound model, EPC transplantation accelerated wound re-epithelialization compared with the transplantation of mature endothelial cells (ECs) in control mice. When the wounds were analyzed immunohistochemically, the EPC-transplanted group exhibited significantly more monocytes/macrophages in the wound at day 5 after injury than did the EC-transplanted group. This observation is consistent with enzyme-linked immunosorbent assay results showing that EPCs produced in abundance several chemoattractants of monocytes and macrophages that are known to play a pivotal role in the early phase of wound healing. At day 14 after injury, the EPC-transplanted group showed a statistically significant increase in vascular density in the granulation tissue relative to that of the EC-transplanted group. Fluorescence microscopy revealed that EPCs preferentially moved into the wound and were directly incorporated into newly formed capillaries in the granulation tissue. These results suggest that EPC transplantation will be useful in dermal wound repair and skin regeneration, because EPCs both promote the recruitment of monocytes/macrophages into the wound and increase neovascularization.
Collapse
Affiliation(s)
- Wonhee Suh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Smadja DM, Bièche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P. PAR-1 Activation on Human Late Endothelial Progenitor Cells Enhances Angiogenesis In Vitro With Upregulation of the SDF-1/CXCR4 System. Arterioscler Thromb Vasc Biol 2005; 25:2321-7. [PMID: 16141404 DOI: 10.1161/01.atv.0000184762.63888.bd] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives—
The importance of PAR-1 in blood vessel development has been demonstrated in knockout mice. As endothelial progenitor cells (EPCs) are involved in postnatal vasculogenesis, we examined whether they express PAR-1 and whether stimulation by the peptide SFLLRN modulates their angiogenic properties.
Methods and Results—
EPC expanded from human CD34+ cord blood cells expressed PAR-1. PAR-1 activation induced EPC proliferation in a concentration-dependent manner far more potently than that of human umbilical vein endothelial cells. PAR-1 activation also enhanced actin reorganization, promoting both spontaneous migration in a Boyden chamber assay and migration toward SDF-1 and VEGF. As shown by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), EPC stimulation by SFLLRN significantly enhanced the mRNA expression of SDF-1 and its receptor CXCR-4. PAR-1 activation also increased CXCR4 expression on EPC and induced SDF-1 secretion, leading to autocrine stimulation. PAR-1 stimulation by SFLLRN also increased the formation of capillary-like structures by EPC in Matrigel, and this effect was abrogated by anti-CXCR-4, anti-SDF-1, and MEK inhibitor pretreatment.
Conclusions—
Human EPCs express functional PAR-1. PAR-1 activation promotes cell proliferation and CXCR4-dependent migration and differentiation, leading to a proangiogenic effect.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Antibodies/pharmacology
- Antigens, CD34/metabolism
- Cell Division/physiology
- Cell Movement/physiology
- Cell Survival/physiology
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Cytokines/genetics
- Endothelial Cells/cytology
- Endothelial Cells/physiology
- Fetal Blood/cytology
- Gene Expression/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Humans
- In Vitro Techniques
- Neovascularization, Physiologic/physiology
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- David M Smadja
- INSERM Unité 428, Hôpital Européen Georges Pompidou (AP-HP), Université Paris V, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
884
|
Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005; 97:1142-51. [PMID: 16254213 DOI: 10.1161/01.res.0000193596.94936.2c] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transplantation of bone marrow cells as well as circulating endothelial progenitor cells (EPC) enhances neovascularization after ischemia. The chemokine receptor CXCR4 is essential for migration and homing of hematopoietic stem cells. Therefore, we investigated the role of CXCR4 and its downstream signaling cascade for the angiogenic capacity of cultured human EPC. Ex vivo, differentiated EPC derived from peripheral blood abundantly expressed CXCR4. Incubation of EPC from healthy volunteers with neutralizing antibodies against CXCR4 profoundly inhibited vascular endothelial growth factor- and stromal-derived factor-1-induced migration as well as EPC-induced angiogenesis in an ex vivo assay. Preincubation of transplanted EPC with CXCR4 antibody reduced EPC incorporation and impaired blood-flow recovery in ischemic hindlimbs of nude mice (57+/-4% of normal perfusion versus untreated EPC: 80+/-11%, P<0.001). Bone marrow mononuclear cells (BM-MNC) or EPC of heterozygous CXCR4(+/-) mice displayed reduced CXCR4 expression and disclosed impaired in vivo capacity to enhance recovery of ischemic blood flow in nude mice (blood flow 27+/-11% versus 66+/-25% using wild-type cells, P<0.01). Importantly, impaired blood flow in ischemic CXCR4(+/-) mice was rescued by injection of wild-type BM-MNC. Next, we investigated the role of CXCR4 for functional capacities of EPC from patients with coronary artery disease (CAD). Surface expression of CXCR4 was similar in EPC from patients with CAD compared with healthy controls. However, basal Janus kinase (JAK)-2 phosphorylation was significantly reduced and less responsive to stromal-derived factor-1 in EPC from patients with CAD compared with healthy volunteers, indicating that CXCR4-mediated JAK-2 signaling is dysregulated in EPC from patients with CAD. The CXCR4 receptor signaling profoundly modulates the angiogenic activity and homing capacity of cultured human EPC. Disturbance of CXCR4 signaling, as demonstrated by reduced JAK-2 phosphorylation, may contribute to functional impairment of EPC from patients with CAD. Stimulating CXCR4 signaling might improve functional properties of EPC and may rescue impaired neovascularization capacity of EPC derived from patients with CAD.
Collapse
Affiliation(s)
- Dirk H Walter
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
885
|
Patel AN, Geffner L, Vina RF, Saslavsky J, Urschel HC, Kormos R, Benetti F. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 2005; 130:1631-8. [PMID: 16308009 DOI: 10.1016/j.jtcvs.2005.07.056] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Autologous adult stem cell transplantation has been touted as the latest tool in regenerative medical therapy. Its potential for use in cardiovascular disease has only recently been recognized. A randomized study was conducted with a novel epicardial technique to deploy stem cells as an adjuvant to conventional revascularization therapy in patients with congestive heart failure. METHODS After institutional review board and government approval, adult autologous stem cell transplantation (CD34+) was performed in patients with ischemic cardiomyopathy and an ejection fraction of less than 35% who were scheduled for primary off-pump coronary artery bypass grafting. Preoperatively, the patients underwent echocardiography, stress thallium imaging single photon emission computed tomography, and cardiac catheterization to identify ischemic regions of the heart and to guide in the selection of stem cell injection sites. The patients were prospectively randomized before the operative therapy was performed. Patient follow-up was 1, 3, and 6 months with echocardiography, single photon emission computed tomography, and angiography. RESULTS There were 20 patients enrolled in the study. Ten patients had successful subepicardial transplantation of autologous stem cells into ischemic myocardium. The other 10 patients, the control group, only had off-pump coronary artery bypass grafting. There were 8 male and 2 female subjects in each group. The median number of grafts performed was 1 in both groups. On angiographic follow-up, all grafts were patent at 6 months. The ejection fractions of the off-pump coronary artery bypass grafting group versus the off-pump coronary artery bypass grafting plus stem cell transplantation group were as follows: preoperative, 30.7% +/- 2.5% versus 29.4% +/- 3.6%; 1 month, 36.4% +/- 2.6% versus 42.1% +/- 3.5%; 3 months, 36.5% +/- 3.0% versus 45.5% +/- 2.2%; and 6 months, 37.2% +/- 3.4% versus 46.1% +/- 1.9% (P < .001). There were no perioperative arrhythmias or neurologic or ischemic myocardial events in either group. CONCLUSIONS Autologous stem cell transplantation led to significant improvement in cardiac function in patients undergoing off-pump coronary artery bypass grafting for ischemic cardiomyopathy. Further investigation is required to quantify the optimal timing and specific cellular effects of the therapy.
Collapse
Affiliation(s)
- Amit N Patel
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa, USA.
| | | | | | | | | | | | | |
Collapse
|
886
|
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121:335-48. [PMID: 15882617 DOI: 10.1016/j.cell.2005.02.034] [Citation(s) in RCA: 2874] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 11/30/2004] [Accepted: 02/25/2005] [Indexed: 12/16/2022]
Abstract
Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Communication
- Cell Line, Tumor
- Cell Movement/physiology
- Cell Proliferation
- Cell Separation
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemotaxis/physiology
- Endothelial Cells/pathology
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibroblasts/transplantation
- Gene Expression/genetics
- Humans
- Mice
- Mice, Nude
- Models, Biological
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Paracrine Communication/physiology
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Stem Cells/pathology
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Stromal Cells/transplantation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Akira Orimo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
887
|
Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rössig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 2005; 111:1184-91. [PMID: 15753227 DOI: 10.1161/01.cir.0000157156.85397.a1] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transplantation of endothelial progenitor cells (EPCs) improves neovascularization after ischemia, but patients with coronary artery disease (CAD) or diabetes mellitus show a reduced number of EPCs and impaired functional activity. Therefore, we investigated the effects of risk factors, such as glucose and TNF-alpha, on the number of EPCs in vitro to elucidate the underlying mechanisms. METHODS AND RESULTS EPCs of patients or healthy subjects were isolated from peripheral blood. Incubation with glucose or TNF-alpha dose-dependently reduced the number of EPCs (79.9+/-1.3% and 74.3+/-8.1% of control; P<0.05, respectively). This reduction was not caused by apoptosis. TNF-alpha and glucose induced a dose- and time-dependent activation of the p38 MAP kinase, the downstream kinase mitogen- and stress-activated kinase 1, and the transcription factor cAMP-responsive element-binding protein (CREB), in EPCs. Moreover, EPCs from CAD patients had significantly higher basal p38-phosphorylation levels (1.83+/-0.2-fold increase; P<0.05) compared with healthy subjects. The inhibition of the p38-kinase by SB203580 or infection with a dominant negative p38 kinase adenovirus significantly increased basal number of EPCs (136.7+/-6.3% and 142.9+/-18% versus control, respectively). Likewise, ex vivo cultivation of EPCs from patients with CAD with SB203580 significantly increased the number of EPCs and partially reversed the impaired capacity for neovascularization of EPCs in vivo (relative blood flow: 0.40+/-0.03 versus 0.64+/-0.08, P<0.05). The increased numbers of EPCs by SB203580 were associated with an augmentation of EPC proliferation and a reduction of cells expressing the monocytic marker proteins CD14 and CD64, suggesting that p38 regulates proliferation and differentiation events. CONCLUSIONS These results demonstrate that p38 MAP kinase plays a pivotal role in the signal transduction pathways regulating the number of EPCs ex vivo. SB203580 can prevent the negative effects of TNF-alpha and glucose on the number of EPCs and may be useful to improve the number of EPCs for potential cell therapy.
Collapse
Affiliation(s)
- Florian H Seeger
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
888
|
Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005; 25:2542-7. [PMID: 16224047 DOI: 10.1161/01.atv.0000190701.92007.6d] [Citation(s) in RCA: 466] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The delivery of autologous progenitor cells into ischemic tissue of patients is emerging as a novel therapeutic option. Here, we report the potential impact of cultured adipose tissue-derived cells (ADSC) on angiogenic cell therapy. METHOD AND RESULTS ADSC were isolated from C57Bl/6 mouse inguinal adipose tissue and showed high expression of ScaI and CD44, but not c-kit, Lin, CD34, CD45, CD11b, and CD31, compatible with that of mesenchymal stem cells from bone marrow. In coculture conditions with ADSC and human aortic endothelial cells (ECs) under treatment with growth factors, ADSC significantly increased EC viability, migration and tube formation mainly through secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). At 4 weeks after transplantation of ADSC into the ischemic mouse hindlimb, the angiogenic scores were improved in the ADSC-treated group, which were evaluated with blood flow by laser Doppler imaging (LDI) and capillary density by immunostaining with anti-CD31 antibody. However, injected ADSC did not correspond to CD31, von Willebrand factor, and alpha-smooth muscle actin-positive cells in ischemic tissue. CONCLUSIONS These adipose tissue-derived cells demonstrated potential as angiogenic cell therapy for ischemic disease, which appears to be mainly achieved by their ability to secrete angiogenic growth factors.
Collapse
Affiliation(s)
- Hironori Nakagami
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
889
|
Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, Maric D, Fine HA. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 2005; 107:940-6. [PMID: 16204319 PMCID: PMC1895897 DOI: 10.1182/blood-2004-11-4403] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Subpopulations of bone marrow-derived cells can be induced to assume a number of endothelial properties in vitro. However, their ability to form a functional vascular barrier has not been demonstrated. We report that human CD14+ peripheral blood monocytes cultured under angiogenic conditions develop a number of phenotypic and functional properties similar to brain microvascular endothelial cells. These cells express the tight junction proteins zonula occludens 1 (ZO-1) and occludin and form a barrier with a transcellular electrical resistance (TCER) greater than 100 ohm cm2 and low permeability to 4 kDa and 20 kDa dextrans. The TCER of the cellular barrier is decreased by bradykinin and histamine. We also demonstrate that these cells associate with repairing vasculature in areas of brain and skin injury. Our data suggest that CD14+ peripheral blood monocytes participate in the repair of the vascular barrier after brain injury.
Collapse
Affiliation(s)
- John Glod
- Neuro-Oncology Branch, National Cancer Institute, and Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
890
|
Abstract
Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.
Collapse
Affiliation(s)
- Michael A Laflamme
- Department of Pathology, Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, 815 Mercer Street, Seattle, Washington 98109, USA
| | | |
Collapse
|
891
|
Abstract
Observational and experimental studies suggest that BM-derived stem and progenitor cells may have the capacity to repair damaged cardiovascular tissue and initiate blood vessel growth in regions of ischemia. Despite controversies regarding transdifferentiation potential of adult stem cells, clinical trials are underway testing the hypothesis that BM cell-based approaches to a broad spectrum of cardiovascular diseases and disease presentations will be safe and effective strategies for patient management.
Collapse
Affiliation(s)
- R O Cannon
- Cardiovascular Branch NHLBI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
892
|
Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005; 112:1618-27. [PMID: 16145003 DOI: 10.1161/circulationaha.104.503433] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Two types of cells are cultured from the human peripheral blood, early endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs), as previously reported. Here, we further characterize these cells, especially with respect to their different origins and functions both in vitro and in vivo. We also investigated whether the combination of these different cell types shows synergism during neovascularization. METHODS AND RESULTS Early EPCs were heterogeneously made up of both CD14+ monocyte-derived cells, which secrete cytokines, and CD14(-)-derived cells, which contain high levels of (CD34+)KDR+ cells. OECs were cultured almost exclusively from CD14- cells, not CD14+ cells, and were distinct from mature endothelial cells in terms of proliferation potential, KDR+ expression level, and telomerase activity. A portion of cells from CD14- cells and early EPCs produced rapidly proliferating, capillary-forming cells in both the Matrigel plug and the ischemic hind limb similar to OECs. Early EPCs and OECs expressed receptors for vascular endothelial growth factor and interleukin-8, cytokines secreted by early EPCs. There was a differential increase in matrix metalloproteinases (MMPs): MMP-9 in early EPCs and MMP-2 in OECs. In vitro, the angiogenic capability of the 2 cell types was augmented by mutual interaction through cytokines and MMPs. Injection of a mixture of the 2 cells resulted in superior neovascularization in vivo to any single-cell-type transplantation. CONCLUSIONS Distinct origins of the different types of EPCs exist that have different functions in neovascularization. Mixed transplantation of these cells results in synergistic neovascularization through cytokines and MMPs.
Collapse
Affiliation(s)
- Chang-Hwan Yoon
- Cardiovascular Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
893
|
Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2005; 24:357-67. [PMID: 16141361 DOI: 10.1634/stemcells.2005-0072] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The generation of endothelial progenitor cells (EPCs) from blood monocytes has been propagated as a novel approach in the diagnosis and treatment of cardiovascular diseases. Low-density lipoprotein (LDL) uptake and lectin binding together with endothelial marker expression are commonly used to define these EPCs. Considerable controversy exists regarding their nature, in particular, because myelomonocytic cells share several properties with endothelial cells (ECs). This study was performed to elucidate whether the commonly used endothelial marker determination is sufficient to distinguish supposed EPCs from monocytes. We measured endothelial, hematopoietic, and progenitor cell marker expression of monocytes before and after angiogenic culture by fluorescence microscopy, flow cytometry, and real-time reverse transcription-polymerase chain reaction. The function of primary monocytes and monocyte-derived supposed EPCs was investigated during vascular network formation and EC colony-forming unit (CFU-EC) development. Monocytes cultured for 4 to 6 days under angiogenic conditions lost CD14/CD45 and displayed a commonly accepted EPC phenotype, including LDL uptake and lectin binding, CD31/CD105/CD144 reactivity, and formation of cord-like structures. Strikingly, primary monocytes already expressed most tested endothelial genes and proteins at even higher levels than their supposed EPC progeny. Neither fresh nor cultured monocytes formed vascular networks, but CFU-EC formation was strictly dependent on monocyte presence. LDL uptake, lectin binding, and CD31/CD105/CD144 expression are inherent features of monocytes, making them phenotypically indistinguishable from putative EPCs. Consequently, monocytes and their progeny can phenotypically mimic EPCs in various experimental models.
Collapse
Affiliation(s)
- Eva Rohde
- Department of Blood group Serology and Transfusion Medicine, Medical University, Auenbrugger Pl. 38 A-8036, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
894
|
Aghi M, Chiocca EA. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 2005; 12:994-1005. [PMID: 16137927 DOI: 10.1016/j.ymthe.2005.07.693] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/25/2005] [Accepted: 07/26/2005] [Indexed: 12/11/2022] Open
Abstract
Vessels are formed during embryonic development through three distinct processes. Angiogenesis and arteriogenesis involve the remodeling of established capillary networks and arterioles, while vasculogenesis involves the differentiation of mesodermal progenitor cells called angioblasts into mature endothelial cells. Until recently, postnatal vessel development was felt to occur exclusively through angiogenesis or arteriogenesis. However, recent studies using experimental tumor and ischemia models have raised controversy regarding whether vasculogenesis occurs in postnatal vessel development, with some studies suggesting the possibility and others refuting it. Here, we summarize the process of embryonic vessel development and review studies investigating the role of postnatal vasculogenesis in vessel formation in adult ischemia and tumors. We then focus on studies in which wild-type and genetically modified vascular progenitor cells have been investigated as possible cellular therapies for tumors or ischemia. We also take note of key issues that will need to be understood about the biology of vasculogenesis before cellular therapies utilizing vascular progenitor cells can be finally taken from the bench to the bedside.
Collapse
Affiliation(s)
- Manish Aghi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, 502 White Building, 55 Fruit Street, Boston, MA 02114, USA.
| | | |
Collapse
|
895
|
Mangi AA. Gene and Cell‐based Therapies for Cardiovascular Disease. MODERN BIOPHARMACEUTICALS 2005:305-324. [DOI: 10.1002/9783527620982.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
896
|
Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, Yao J, Khan F, Uchiyama M, Oite T. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int 2005; 67:1925-33. [PMID: 15840040 DOI: 10.1111/j.1523-1755.2005.00291.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is accumulating evidence that adult bone marrow (BM) cells show unexpected plasticity, and can differentiate into a wide range of specialized cells. In the case of intrinsic renal glomerular cells, BM-derived cells have been reported to differentiate into both mesangial cells and podocytes. However, there is controversy on recruitment of glomerular endothelial cells, although endothelial cells in other tissues are known to be recruited from the BM. METHODS Sprague-Dawley (SD) rats and SD rats made chimeric by transplantation of bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic littermate rats, were injected with anti-Thy-1.1 antibody, followed by unilateral nephrectomy (1-kidney model). Chimeric rats used in 1-kidney model were sacrificed for histologic examination at weeks 2, 4, 8, and 11. We examined isolated glomeruli and frozen sections of kidneys from rats of each group at weeks 2 and 11 by confocal laser scan microsopy (CLSM), both immunohistologically and three dimensionally. RESULTS In the 1-kidney group, using chimeric rats transplanted with EGFP(+) bone marrow cells, most rats died, presumably of uremia, after 8 to 11 weeks. A CLSM study using isolated glomeruli and frozen sections of kidneys revealed that bone marrow-derived PECAM-1(+), RECA-1(+) cells, and OX-7(+) cells contributed to the structural support for the glomerular capillaries during the chronic course. Global glomerular sclerotic lesions and diffuse tubular atrophic changes, with interstitial cell infiltration, were remarkable at weeks 8 and 11. CONCLUSION Bone marrow-derived endothelial progenitor cells participated in glomerular endothelial cell turnover after severe damage. Treatment that could target bone marrow-derived endothelial progenitor cells and promote angiogenesis in regions of progressive glomerular lesions may be a promising therapeutic approach for preventing end-stage renal disease.
Collapse
Affiliation(s)
- Kozo Ikarashi
- Department of Cellular Physiology, Institute of Nephrology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
897
|
Hisatome T, Yasunaga Y, Yanada S, Tabata Y, Ikada Y, Ochi M. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 2005; 26:4550-6. [PMID: 15722124 DOI: 10.1016/j.biomaterials.2004.11.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 11/18/2004] [Indexed: 01/14/2023]
Abstract
We examined whether transplantation of autologous bone marrow mononuclear cells (BM-MNCs) can augment neovascularization and bone regeneration of bone marrow in femoral bone defects of rabbits. Gelatin microspheres containing basic fibroblast growth factor (bFGF) were prepared for the controlled release of bFGF. To evaluate the in vivo effect of implanted BM-MNCs, we created bone defects in the rabbit medial femoral condyle, and implanted into them 5 x 10(6) fluorescent-labeled autologous BM-MNCs together with gelatin microspheres containing 10 microg bFGF on an atelocollagen gel scaffold. The four experimental groups, which were Atelocollagen gel (Col), Col + 5 x 10(6) BM-MNCs, Col + 10 microg bFGF, and Col + 5 x 10(6) BM-MNCs + 10 microg bFGF, were implanted into the sites of the prepared defects using Atelocollagen gel as a scaffold. The autologous BM-MNCs expressed CD31, an endothelial lineage cell marker, and induced efficient neovascularization at the implanted site 2 weeks after implantation. Capillary density in Col + BM-MNCs + bFGF was significantly large compared with other groups. This combination also enhanced regeneration of the bone defect after 8 weeks to a significantly greater extent than either BM-MNCs or bFGF on their own. In summary, these findings demonstrate that a combination of BM-MNCs and bFGF gelatin hydrogel enhance the neovascularization and the osteoinductive ability, resulting in bone regeneration.
Collapse
Affiliation(s)
- Takashi Hisatome
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
898
|
Lee YS, Jang HS, Kim JM, Lee JS, Lee JY, Li Kim K, Shin IS, Suh W, Choi JH, Jeon ES, Byun J, Kim DK. Adenoviral-mediated delivery of early growth response factor-1 gene increases tissue perfusion in a murine model of hindlimb ischemia. Mol Ther 2005; 12:328-36. [PMID: 16043101 DOI: 10.1016/j.ymthe.2005.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 03/14/2005] [Accepted: 03/21/2005] [Indexed: 11/29/2022] Open
Abstract
To test the hypothesis that overexpression of early growth response factor-1 (Egr-1) contributes to the revascularization of ischemic limbs, a constitutively active form of Egr-1 (Egr-1*) was made and evaluated in vitro and in vivo. Analyses of the transduced myocytes revealed significant upregulation of bFGF, PDGF-A, PDGF-B, IGF-II, and TGF-beta1. A coculture assay of the paracrine effects indicated that Ad-Egr-1* promoted proliferation and migration of endothelial cells. When Ad-Egr-1* was injected into the tibialis anterior muscle of mice, followed by explant culture in growth factor-reduced Matrigel, many capillary-like structures were observed in the Egr-1* group compared with minimal sprouting from the LacZ group, suggesting an angiogenic potential of Egr-1*. Next we evaluated Ad-Egr-1* in a murine model of hindlimb ischemia. Compared with slow revascularization in the control PBS or LacZ group, a rapid increase in tissue perfusion was observed in the Egr-1* group and the difference in flux ratio was statistically significant at day 7. In the injected muscle, expression of Egr-1*, upregulation of its target genes, and increased number of vessels staining positive for smooth muscle alpha-actin were observed. These results suggest that Egr-1 plays an important role in vascular recovery after occlusion and could be a potential target for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Young-Sam Lee
- Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
899
|
Abstract
Endothelial progenitor cells are a circulating, bone marrow-derived cell population that appears to participate in both vasculogenesis and vascular homeostasis. Questions persist regarding their functional characteristics, as well as the precise panel of cell surface markers that uniquely define this newly described progenitor cell population. We review experimental results obtained from both animal studies and recent clinical trials that suggest this cell type may have tremendous therapeutic potential for a wide range of human diseases.
Collapse
Affiliation(s)
- Aarif Y Khakoo
- National Institutes of Health, National Heart, Lung, and Blood Institute, Cardiovascular Branch, Laboratory of Molecular Biology, Bethesda, Maryland 21284, USA.
| | | |
Collapse
|
900
|
Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 2005; 97:314-22. [PMID: 16020753 DOI: 10.1161/01.res.0000177670.72216.9b] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cells (EPCs) seem to be a promising tool for cell therapy of acute myocardial infarction, but their nature is still unclear. We show here that EPCs obtainable from peripheral blood (PB) derive from the adhesion-related selection in culture of a subset of CD14+ cells, which, when assessed by the highly-sensitive antibody-conjugated magnetofluorescent liposomes (ACMFL) technique, were found to express CD34. These CD14+CD34low cells represented a variable proportion at individual level of CD14+ cells, ranging from 0.6% to 8.5% of all peripheral-blood leukocytes, and constituted the dominant population among circulating KDR+ cells. By using the ACMFL technique, virtually all CD14+ cells present in the bone marrow were found to be CD14+CD34low double-positive cells. EPCs, as well as purified circulating CD14+CD34low cells, exhibited high expression of embryonic stem cell (SC) markers Nanog and Oct-4, which were downregulated in a STAT3-independent manner when they differentiated into endothelial cells (ECs). Moreover, circulating CD14+CD34low cells, but not CD14+CD34- cells, proliferated in response to SC growth factors, and exhibited clonogenicity and multipotency, as shown by their ability to differentiate not only into ECs, but also into osteoblasts, adipocytes, or neural cells. The results of this study may reconcile apparently contradictory data of the literature, showing the generation of PB-derived EPCs from either CD34+ or CD14+ cells. We suggest that the use of this previously unrecognized population of circulating CD14+CD34low cells, which exhibit both phenotypic and functional features of SCs, may be useful in improving cell-based therapies of vascular and tissue damage.
Collapse
Affiliation(s)
- Paola Romagnani
- Center for Research, Transfer and High Education DENOTHE, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|