851
|
Lim DH, Mohajerani MH, Ledue J, Boyd J, Chen S, Murphy TH. In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas. Front Neural Circuits 2012; 6:11. [PMID: 22435052 PMCID: PMC3304170 DOI: 10.3389/fncir.2012.00011] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/24/2012] [Indexed: 12/27/2022] Open
Abstract
We have mapped intracortical activity in vivo independent of sensory input using arbitrary point channelrhodopsin-2 (ChR2) stimulation and regional voltage sensitive dye imaging in B6.Cg-Tg (Thy1-COP4/EYFP)18Gfng/J transgenic mice. Photostimulation of subsets of deep layer pyramidal neurons within forelimb, barrel, or visual primary sensory cortex led to downstream cortical maps that were dependent on synaptic transmission and were similar to peripheral sensory stimulation. ChR2-evoked maps confirmed homotopic connections between hemispheres and intracortical sensory and motor cortex connections. This ability of optogentically activated subpopulations of neurons to drive appropriate downstream maps suggests that mechanisms exist to allow prototypical cortical maps to self-assemble from the stimulation of neuronal subsets. Using this principle of map self-assembly, we employed ChR2 point stimulation to map connections between cortical areas that are not selectively activated by peripheral sensory stimulation or behavior. Representing the functional cortical regions as network nodes, we identified asymmetrical connection weights in individual nodes and identified the parietal association area as a network hub. Furthermore, we found that the strength of reciprocal intracortical connections between primary and secondary sensory areas are unequal, with connections from primary to secondary sensory areas being stronger than the reciprocal.
Collapse
Affiliation(s)
- Diana H Lim
- Department of Psychiatry, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
852
|
Nakajima A, Kimura H, Sawadsaringkarn Y, Maezawa Y, Kobayashi T, Noda T, Sasagawa K, Tokuda T, Ishikawa Y, Shiosaka S, Ohta J. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue. OPTICS EXPRESS 2012; 20:6097-108. [PMID: 22418489 DOI: 10.1364/oe.20.006097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We developed a complementary metal oxide semiconductor (CMOS) integrated device for optogenetic applications. This device can interface via neuronal tissue with three functional modalities: imaging, optical stimulation and electrical recording. The CMOS image sensor was fabricated on 0.35 μm standard CMOS process with built-in control circuits for an on-chip blue light-emitting diode (LED) array. The effective imaging area was 2.0 × 1.8 mm². The pixel array was composed of 7.5 × 7.5 μm² 3-transistor active pixel sensors (APSs). The LED array had 10 × 8 micro-LEDs measuring 192 × 225 μm². We integrated the device with a commercial multichannel recording system to make electrical recordings.
Collapse
Affiliation(s)
- Arata Nakajima
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
853
|
Multiscale autoregressive identification of neuroelectrophysiological systems. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:580795. [PMID: 22400052 PMCID: PMC3286901 DOI: 10.1155/2012/580795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022]
Abstract
Electrical signals between connected neural nuclei are difficult to model because of the complexity and high number of paths within the brain. Simple parametric models are therefore often used. A multiscale version of the autoregressive with exogenous input (MS-ARX) model has recently been developed which allows selection of the optimal amount of filtering and decimation depending on the signal-to-noise ratio and degree of predictability. In this paper, we apply the MS-ARX model to cortical electroencephalograms and subthalamic local field potentials simultaneously recorded from anesthetized rodent brains. We demonstrate that the MS-ARX model produces better predictions than traditional ARX modeling. We also adapt the MS-ARX results to show differences in internuclei predictability between normal rats and rats with 6OHDA-induced parkinsonism, indicating that this method may have broad applicability to other neuroelectrophysiological studies.
Collapse
|
854
|
Wojtecki L, Colosimo C, Fuentes R. Deep brain stimulation for movement disorders - a history of success and challenges to conquer. Front Integr Neurosci 2012; 6:6. [PMID: 22375106 PMCID: PMC3284676 DOI: 10.3389/fnint.2012.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lars Wojtecki
- Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich-Heine-University Duesseldorf Duesseldorf, Germany
| | | | | |
Collapse
|
855
|
Mure H, Tang CC, Argyelan M, Ghilardi MF, Kaplitt MG, Dhawan V, Eidelberg D. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J Neurosci 2012; 32:2804-13. [PMID: 22357863 PMCID: PMC4557784 DOI: 10.1523/jneurosci.4331-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/21/2022] Open
Abstract
We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson's disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H(2)(15)O positron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p < 0.02). To determine whether similar changes occurred during dopaminergic pharmacotherapy, we studied the subjects during an intravenous levodopa infusion titrated to achieve a motor response equivalent to stimulation. Despite consistent improvement in motor ratings during infusion, levodopa did not alter learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA-STN projection pathways may underlie the improvement in learning found with stimulation.
Collapse
Affiliation(s)
- Hideo Mure
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Chris C. Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Miklos Argyelan
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Maria-Felice Ghilardi
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY 10031, and
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York 10065
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| |
Collapse
|
856
|
Del Bene F, Wyart C. Optogenetics: A new enlightenment age for zebrafish neurobiology. Dev Neurobiol 2012; 72:404-14. [DOI: 10.1002/dneu.20914] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
857
|
Lee JH. Informing brain connectivity with optogenetic functional magnetic resonance imaging. Neuroimage 2012; 62:2244-9. [PMID: 22326987 DOI: 10.1016/j.neuroimage.2012.01.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 12/20/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022] Open
Abstract
Optogenetic functional magnetic resonance imaging (ofMRI) is a novel approach that combines optogenetic control of neural circuits with high-field functional MRI. Optogenetics is a neuro-modulation technology in which light-activated trans-membrane conductance regulators are introduced into specifically targeted cell types to allow temporally precise, millisecond-scale activity modulation in vivo. By combining optogenetic control with fMRI readout, neural activity arising from specific circuit elements defined by genetic identity, cell body location, and axonal projection targets can be monitored in vivo across the whole brain. These unique features of ofMRI open new vistas for in vivo characterization of the dense plexus of neural connections according to their type and functionality.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Electrical Engineering, Psychiatry and Biobehavioral Sciences, and Radiology, Neuroscience, and Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
858
|
Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2012; 72:721-33. [PMID: 22153370 DOI: 10.1016/j.neuron.2011.10.028] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
Abstract
Currently there is no general approach for achieving specific optogenetic control of genetically defined cell types in rats, which provide a powerful experimental system for numerous established neurophysiological and behavioral paradigms. To overcome this challenge we have generated genetically restricted recombinase-driver rat lines suitable for driving gene expression in specific cell types, expressing Cre recombinase under the control of large genomic regulatory regions (200-300 kb). Multiple tyrosine hydroxylase (Th)::Cre and choline acetyltransferase (Chat)::Cre lines were produced that exhibited specific opsin expression in targeted cell types. We additionally developed methods for utilizing optogenetic tools in freely moving rats and leveraged these technologies to clarify the causal relationship between dopamine (DA) neuron firing and positive reinforcement, observing that optical stimulation of DA neurons in the ventral tegmental area (VTA) of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS). These studies complement existing targeting approaches by extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.
Collapse
Affiliation(s)
- Ilana B Witten
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
859
|
Mädler B, Coenen VA. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol 2012; 33:1072-80. [PMID: 22300931 DOI: 10.3174/ajnr.a2906] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although progress has been made in understanding the optimal anatomic structures as target areas for DBS, little effort has been put into modeling and predicting electromagnetic field properties of activated DBS electrodes and understanding their interactions with the adjacent tissue. Currently, DBS is performed with the patient awake to assess the effectiveness and the side effect spectrum of stimulation. This study was designed to create a robust and rather simple numeric and visual tool that provides sufficient and practical relevant information to visualize the patient's individual VAT. MATERIALS AND METHODS Multivariate polynomial fitting of previously obtained data from a finite-element model, based on a similar DBS system, was used. The model estimates VAT as a first-approximation sphere around the active DBS contact, using stimulation voltages and individual tissue-electrode impedances. Validation uses data from 2 patients with PD by MR imaging, DTI, fiber tractography, and postoperative CT data. RESULTS Our model can predict VAT for impedances between 500 and 2000 Ω with stimulation voltages up to 10 V. It is based on assumptions for monopolar DBS. Evaluation of 2 DBS cases showed a convincing correspondence between predicted VAT and neurologic (side) effects (internal capsule activation). CONCLUSIONS Stimulation effects during DBS can be readily explained with this simple VAT model. Its implementation in daily clinical routine might help in understanding the types of tissues activated during DBS. This technique might have the potential to facilitate DBS implantations with the patient under general anesthesia while yielding acceptable clinical effectiveness.
Collapse
Affiliation(s)
- B Mädler
- Division of Stereotaxy and MR-Based Operative Techniques, Department of Neurosurgery, Bonn University Hospital, Bonn, Germany.
| | | |
Collapse
|
860
|
Abstract
Deep brain stimulation (DBS) has emerged as a powerful surgical therapy for the management of treatment-resistant movement disorders, epilepsy and neuropsychiatric disorders. Although DBS may be clinically effective in many cases, its mode of action is still elusive. It is unclear which neural cell types are involved in the mechanism of DBS, and how high-frequency stimulation of these cells may lead to alleviation of the clinical symptoms. Neurons have commonly been a main focus in the many theories explaining the working mechanism of DBS. Recent data, however, demonstrates that astrocytes may be active players in the DBS mechanism of action. In this review article, we will discuss the potential role of reactive and neurogenic astrocytes (neural progenitors) in DBS.
Collapse
|
861
|
Pizzolato G, Mandat T. Deep brain stimulation for movement disorders. Front Integr Neurosci 2012; 6:2. [PMID: 22291623 PMCID: PMC3265746 DOI: 10.3389/fnint.2012.00002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/09/2012] [Indexed: 11/13/2022] Open
Abstract
Stereotactic technique and the introduction of deep brain stimulation (DBS) can be considered two milestones in the field of surgical neuromodulation. At present the role of DBS in the treatment of clinically and epidemiologically relevant movement disorders is widely accepted and DBS procedures are performed in many clinical centers worldwide. Here we review the current state of the art of DBS treatment for the most common movement disorders: Parkinson’s disease, essential tremor, and dystonia. In this review, we give a brief description of the candidate patient selection criteria, the different anatomical targets for each of these condition, and the expected outcomes as well as possible side effects.
Collapse
Affiliation(s)
- Gilberto Pizzolato
- Neurology Clinic, Department of Medical Sciences, University of Trieste Trieste, Italy
| | | |
Collapse
|
862
|
|
863
|
Contribution of Serotonergic Transmission to the Motor and Cognitive Effects of High-Frequency Stimulation of the Subthalamic Nucleus or Levodopa in Parkinson’s Disease. Mol Neurobiol 2012; 45:173-85. [DOI: 10.1007/s12035-011-8230-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
864
|
Li D, Hérault K, Isacoff EY, Oheim M, Ropert N. Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J Physiol 2012; 590:855-73. [PMID: 22219341 DOI: 10.1113/jphysiol.2011.219345] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increases in astrocyte Ca(2+) have been suggested to evoke gliotransmitter release, however, the mechanism of release, the identity of such transmitter(s), and even whether and when such release occurs, are controversial, largely due to the lack of a method for selective and reproducible stimulation of electrically silent astrocytes. Here we show that photoactivation of the light-gated Ca(2+)-permeable ionotropic GluR6 glutamate receptor (LiGluR), and to a lesser extent the new Ca(2+)-translocating channelrhodopsin CatCh, evokes more reliable Ca(2+) elevation than the mutant channelrhodopsin 2, ChR2(H134R) in cultured cortical astrocytes. We used evanescent-field excitation for near-membrane Ca(2+) imaging, and epifluorescence to activate and inactivate LiGluR. By alternating activation and inactivation light pulses, the LiGluR-evoked Ca(2+) rises could be graded in amplitude and duration. The optical stimulation of LiGluR-expressing astrocytes evoked probabilistic glutamate-mediated signalling to adjacent LiGluR-non-expressing astrocytes. This astrocyte-to-astrocyte signalling was insensitive to the inactivation of vesicular release, hemichannels and glutamate-transporters, and sensitive to anion channel blockers. Our results show that LiGluR is a powerful tool to selectively and reproducibly activate astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- INSERM U603, CNRS UMR 8154, Laboratoire de Neurophysiologie et Nouvelles Microscopies, 45 rue des Saints Pères, Paris, F-75006 France.
| | | | | | | | | |
Collapse
|
865
|
Sidor MM. Psychiatry's age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. J Psychiatry Neurosci 2012; 37:4-6. [PMID: 22182794 PMCID: PMC3244493 DOI: 10.1503/jpn.110175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Michelle M. Sidor
- Correspondence to: Dr. M.M. Sidor, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Dr., Ste 223, Pittsburgh PA 15219;
| |
Collapse
|
866
|
Abstract
The use of optogenetics, the technology that combines genetic and optical methods to monitor and control the activity of specific cell populations, is now widely adopted in neuroscience. The development of optogenetic tools, such as natural photosensitive ion channels and pumps or calcium- and voltage-sensitive proteins, has been growing tremendously during the past 10 years, thanks to the improvement of their performances in terms of facilitating light stimulation. To this aim, efficient illumination methods are also needed. The most common way to photostimulate optogenetic tools has been, so far, widefield illumination with visible light. However, the necessity of addressing the complexity of brain architecture has recently imposed switching to the use of two-photon excitation, which provides a better spatial specificity and deeper penetration in scattering tissue. Two-photon excitation is still challenging, due to intrinsic characteristics of optogenetic tools (e.g., the low conductivity of light-sensitive channels), and efficient illumination methods are therefore essential for advancing in this domain. Here, we present a review on the existing two-photon optical approaches for photoactivation of optogenetic tools, and future perspectives for the widespread implementation of these techniques.
Collapse
|
867
|
Dugué GP, Akemann W, Knöpfel T. A comprehensive concept of optogenetics. PROGRESS IN BRAIN RESEARCH 2012; 196:1-28. [PMID: 22341318 DOI: 10.1016/b978-0-444-59426-6.00001-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
868
|
Maschio MD, Beltramo R, De Stasi AM, Fellin T. Two-Photon Calcium Imaging in the Intact Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:83-102. [DOI: 10.1007/978-94-007-2888-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
869
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
870
|
Yin DM, Chen YJ, Sathyamurthy A, Xiong WC, Mei L. Synaptic dysfunction in schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:493-516. [PMID: 22351070 DOI: 10.1007/978-3-7091-0932-8_22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia alters basic brain processes of perception, emotion, and judgment to cause hallucinations, delusions, thought disorder, and cognitive deficits. Unlike neurodegeneration diseases that have irreversible neuronal degeneration and death, schizophrenia lacks agreeable pathological hallmarks, which makes it one of the least understood psychiatric disorders. With identification of schizophrenia susceptibility genes, recent studies have begun to shed light on underlying pathological mechanisms. Schizophrenia is believed to result from problems during neural development that lead to improper function of synaptic transmission and plasticity, and in agreement, many of the susceptibility genes encode proteins critical for neural development. Some, however, are also expressed at high levels in adult brain. Here, we will review evidence for altered neurotransmission at glutamatergic, GABAergic, dopaminergic, and cholinergic synapses in schizophrenia and discuss roles of susceptibility genes in neural development as well as in synaptic plasticity and how their malfunction may contribute to pathogenic mechanisms of schizophrenia. We propose that mouse models with precise temporal and spatial control of mutation or overexpression would be useful to delineate schizophrenia pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong-Min Yin
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
871
|
Abstract
The recent development of optogenetics, a revolutionary research tool in neuroscience, portends an evolution of current clinical neuromodulation tools. A form of gene therapy, optogenetics makes possible highly precise spatial and temporal control of specific neuronal populations. This technique has already provided several new insights relevant to clinical neuroscience, from the physiological substrate of functional magnetic resonance imaging to the mechanism of deep brain stimulation in Parkinson's disease. The increased precision of optogenetic techniques also raises the possibility of eventual human use. Translational efforts have begun in primates, with success reported from multiple labs in rhesus macaques. These developments will remain of ongoing interest to neurologists and neurosurgeons.
Collapse
Affiliation(s)
- Paul S A Kalanithi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
872
|
Coenen VA, Schlaepfer TE, Allert N, Mädler B. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206684 DOI: 10.1016/b978-0-12-404706-8.00011-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Division of Stereotaxy and Functional Neurosurgery, Department of Neurosurgery, Bonn University Medical Center, Bonn, Germany.
| | | | | | | |
Collapse
|
873
|
Therapeutic high-frequency stimulation of the subthalamic nucleus in Parkinson's disease produces global increases in cerebral blood flow. J Cereb Blood Flow Metab 2012; 32:41-9. [PMID: 21971352 PMCID: PMC3323302 DOI: 10.1038/jcbfm.2011.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.
Collapse
|
874
|
Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson's disease. Prog Neurobiol 2012; 96:69-86. [DOI: 10.1016/j.pneurobio.2011.10.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 12/13/2022]
|
875
|
Ledonne A, Mango D, Bernardi G, Berretta N, Mercuri NB. A continuous high frequency stimulation of the subthalamic nucleus determines a suppression of excitatory synaptic transmission in nigral dopaminergic neurons recorded in vitro. Exp Neurol 2012; 233:292-302. [DOI: 10.1016/j.expneurol.2011.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/10/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
876
|
Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS One 2011; 6:e29019. [PMID: 22216159 PMCID: PMC3247229 DOI: 10.1371/journal.pone.0029019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/18/2011] [Indexed: 01/13/2023] Open
Abstract
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.
Collapse
Affiliation(s)
- Kengo Inada
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Etsuko Takasu
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Matsunaga
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
877
|
Yamawaki N, Magill PJ, Woodhall GL, Hall SD, Stanford IM. Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus. Neuroscience 2011; 203:1-11. [PMID: 22209920 DOI: 10.1016/j.neuroscience.2011.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.
Collapse
Affiliation(s)
- N Yamawaki
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | |
Collapse
|
878
|
|
879
|
Abstract
Optogenetics is a rapidly evolving field of technology that allows optical control of genetically targeted biological systems at high temporal and spatial resolution. By heterologous expression of light-sensitive microbial membrane proteins, opsins, cell type-specific depolarization or silencing can be optically induced on a millisecond time scale. What started in a petri dish is applicable today to more complex systems, ranging from the dissection of brain circuitries in vitro to behavioral analyses in freely moving animals. Persistent technical improvement has focused on the identification of new opsins, suitable for optogenetic purposes and genetic engineering of existing ones. Optical stimulation can be combined with various readouts defined by the desired resolution of the experimental setup. Although recent developments in optogenetics have largely focused on neuroscience it has lately been extended to other targets, including stem cell research and regenerative medicine. Further development of optogenetic approaches will not only highly increase our insight into health and disease states but might also pave the way for a future use in therapeutic applications.
Collapse
|
880
|
Abstract
High-frequency open-loop deep brain stimulation (DBS) has been used to alleviate Parkinson's symptoms for almost 20 years. In this issue of Neuron, Rosin et al. present a closed-loop real-time approach that improves DBS and shines light on the etiology of motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Fernando J Santos
- Champalimaud Neuroscience Programme at Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-901 Oeiras, Portugal
| | | | | |
Collapse
|
881
|
Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, Nurmikko AV, van Wagenen R, Diester I, Deisseroth K. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 2011; 9:016001. [PMID: 22156042 DOI: 10.1088/1741-2560/9/1/016001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studying brain function and its local circuit dynamics requires neural interfaces that can record and stimulate the brain with high spatiotemporal resolution. Optogenetics, a technique that genetically targets specific neurons to express light-sensitive channel proteins, provides the capability to control central nervous system neuronal activity in mammals with millisecond time precision. This technique enables precise optical stimulation of neurons and simultaneous monitoring of neural response by electrophysiological means, both in the vicinity of and distant to the stimulation site. We previously demonstrated, in vitro, the dual capability (optical delivery and electrical recording) while testing a novel hybrid device (optrode-MEA), which incorporates a tapered coaxial optical electrode (optrode) and a 100 element microelectrode array (MEA). Here we report a fully chronic implant of a new version of this device in ChR2-expressing rats, and demonstrate its use in freely moving animals over periods up to 8 months. In its present configuration, we show the device delivering optical excitation to a single cortical site while mapping the neural response from the surrounding 30 channels of the 6 × 6 element MEA, thereby enabling recording of optically modulated single-unit and local field potential activity across several millimeters of the neocortical landscape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physics, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
882
|
Klug J, Deutch A, Colbran R, Winder D. Synaptic Triad in the Neostriatum. DOPAMINE – GLUTAMATE INTERACTIONS IN THE BASAL GANGLIA 2011. [DOI: 10.1201/b11284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
883
|
Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 2011; 15:163-70. [PMID: 22138641 DOI: 10.1038/nn.2992] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
Abstract
Recent advances in optogenetics have improved the precision with which defined circuit elements can be controlled optically in freely moving mammals; in particular, recombinase-dependent opsin viruses, used with a growing pool of transgenic mice expressing recombinases, allow manipulation of specific cell types. However, although optogenetic control has allowed neural circuits to be manipulated in increasingly powerful ways, combining optogenetic stimulation with simultaneous multichannel electrophysiological readout of isolated units in freely moving mice remains a challenge. We designed and validated the optetrode, a device that allows for colocalized multi-tetrode electrophysiological recording and optical stimulation in freely moving mice. Optetrode manufacture employs a unique optical fiber-centric coaxial design approach that yields a lightweight (2 g), compact and robust device that is suitable for behaving mice. This low-cost device is easy to construct (2.5 h to build without specialized equipment). We found that the drive design produced stable high-quality recordings and continued to do so for at least 6 weeks following implantation. We validated the optetrode by quantifying, for the first time, the response of cells in the medial prefrontal cortex to local optical excitation and inhibition, probing multiple different genetically defined classes of cells in the mouse during open field exploration.
Collapse
|
884
|
Halpern CH, Torres N, Hurtig HI, Wolf JA, Stephen J, Oh MY, Williams NN, Dichter MA, Jaggi JL, Caplan AL, Kampman KM, Wadden TA, Whiting DM, Baltuch GH. Expanding applications of deep brain stimulation: a potential therapeutic role in obesity and addiction management. Acta Neurochir (Wien) 2011; 153:2293-306. [PMID: 21976235 DOI: 10.1007/s00701-011-1166-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND The indications for deep brain stimulation (DBS) are expanding, and the feasibility and efficacy of this surgical procedure in various neurologic and neuropsychiatric disorders continue to be tested. This review attempts to provide background and rationale for applying this therapeutic option to obesity and addiction. We review neural targets currently under clinical investigation for DBS—the hypothalamus and nucleus accumbens—in conditions such as cluster headache and obsessive-compulsive disorder. These brain regions have also been strongly implicated in obesity and addiction. These disorders are frequently refractory, with very high rates of weight regain or relapse, respectively, despite the best available treatments. METHODS We performed a structured literature review of the animal studies of DBS, which revealed attenuation of food intake, increased metabolism, or decreased drug seeking. We also review the available radiologic evidence in humans, implicating the hypothalamus and nucleus in obesity and addiction. RESULTS The available evidence of the promise of DBS in these conditions combined with significant medical need, support pursuing pilot studies and clinical trials of DBS in order to decrease the risk of dietary and drug relapse. CONCLUSIONS Well-designed pilot studies and clinical trials enrolling carefully selected patients with obesity or addiction should be initiated.
Collapse
|
885
|
Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 2011; 34:611-8. [DOI: 10.1016/j.tins.2011.09.003] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/19/2011] [Accepted: 09/23/2011] [Indexed: 01/11/2023]
|
886
|
Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 2011; 22:61-71. [PMID: 22119320 DOI: 10.1016/j.conb.2011.10.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/17/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
In recent years, interest has grown in the ability to manipulate, in a temporally precise fashion, the electrical activity of specific neurons embedded within densely wired brain circuits, in order to reveal how specific neurons subserve behaviors and neural computations, and to open up new horizons on the clinical treatment of brain disorders. Technologies that enable temporally precise control of electrical activity of specific neurons, and not these neurons' neighbors-whose cell bodies or processes might be just tens to hundreds of nanometers away-must involve two components. First, they require as a trigger a transient pulse of energy that supports the temporal precision of the control. Second, they require a molecular sensitizer that can be expressed in specific neurons and which renders those neurons specifically responsive to the triggering energy delivered. Optogenetic tools, such as microbial opsins, can be used to activate or silence neural activity with brief pulses of light. Thermogenetic tools, such as thermosensitive TRP channels, can be used to drive neural activity downstream of increases or decreases in temperature. We here discuss the principles underlying the operation of these two recently developed, but widely used, toolboxes, as well as the directions being taken in the use and improvement of these toolboxes.
Collapse
|
887
|
Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed Engl 2011; 50:12156-82. [DOI: 10.1002/anie.201103236] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 11/09/2022]
|
888
|
|
889
|
Oldenburg IA, Ding JB. Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol 2011; 21:425-32. [PMID: 21550798 DOI: 10.1016/j.conb.2011.04.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/02/2011] [Accepted: 04/07/2011] [Indexed: 02/01/2023]
Abstract
Modulatory interneurons such as, the cholinergic interneuron, are always a perplexing subject to study. Far from clear-cut distinctions such as excitatory or inhibitory, modulating interneurons can have many, often contradictory effects. The striatum is one of the most densely expressing brain areas for cholinergic markers, and actylcholine (ACh) plays an important role in regulating synaptic transmission and cellular excitability. Every cell type in the striatum has receptors for ACh. Yet even for a given cell type, ACh affecting different receptors can have seemingly opposing roles. This review highlights relevant effects of ACh on medium spiny neurons (MSNs) of the striatum and suggests how its many effects may work in concert to modulate MSN firing properties.
Collapse
|
890
|
Zhang J, Ackman JB, Dhande OS, Crair MC. Visualization and manipulation of neural activity in the developing vertebrate nervous system. Front Mol Neurosci 2011; 4:43. [PMID: 22121343 PMCID: PMC3219918 DOI: 10.3389/fnmol.2011.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular-genetic tools for the visualization and manipulation of neural activity patterns specifically during development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - James B. Ackman
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | - Onkar S. Dhande
- Department of Neurobiology, Yale UniversityNew Haven, CT, USA
| | | |
Collapse
|
891
|
Schiefer TK, Matsumoto JY, Lee KH. Moving forward: advances in the treatment of movement disorders with deep brain stimulation. Front Integr Neurosci 2011; 5:69. [PMID: 22084629 PMCID: PMC3211039 DOI: 10.3389/fnint.2011.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/07/2011] [Indexed: 11/13/2022] Open
Abstract
The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson's disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.
Collapse
Affiliation(s)
| | | | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| |
Collapse
|
892
|
Grote M, O'Malley MA. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 2011; 35:1082-99. [DOI: 10.1111/j.1574-6976.2011.00281.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
893
|
Higuchi A, Shen PY, Zhao JK, Chen CW, Ling QD, Chen H, Wang HC, Bing JT, Hsu ST. Osteoblast Differentiation of Amniotic Fluid-Derived Stem Cells Irradiated with Visible Light. Tissue Eng Part A 2011; 17:2593-602. [DOI: 10.1089/ten.tea.2011.0080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
- Department of Reproduction, National Research Institute for Child Health and Development, Okura, Setagaya-ku, Tokyo, Japan
- Cathay Medical Research Institute, Cathay General Hospital, Hsi-Chi City, Taipei, Taiwan
| | - Po-Yen Shen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Jun-Kai Zhao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Ching-Wen Chen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Hsi-Chi City, Taipei, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taoyuan, Taiwan
| | - Hui Chen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Han-Chow Wang
- Hungchi Women and Children's Hospital, Jhongli, Taoyuan, Taiwan
| | | | | |
Collapse
|
894
|
Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011; 8:745-52. [PMID: 21985008 PMCID: PMC3191888 DOI: 10.1038/nmeth.1668] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
895
|
Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron 2011; 71:782-97. [PMID: 21903073 DOI: 10.1016/j.neuron.2011.08.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Neural activity is intimately tied to blood flow in the brain. This coupling is specific enough in space and time that modern imaging methods use local hemodynamics as a measure of brain activity. In this review, we discuss recent evidence indicating that neuronal activity is coupled to local blood flow changes through an intermediary, the astrocyte. We highlight unresolved issues regarding the role of astrocytes and propose ways to address them using novel techniques. Our focus is on cellular level analysis in vivo, but we also relate mechanistic insights gained from ex vivo experiments to native tissue. We also review some strategies to harness advances in optical and genetic methods to study neurovascular coupling in the intact brain.
Collapse
Affiliation(s)
- Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | | |
Collapse
|
896
|
Abstract
Genetically encoded, single-component optogenetic tools have made a significant impact on neuroscience, enabling specific modulation of selected cells within complex neural tissues. As the optogenetic toolbox contents grow and diversify, the opportunities for neuroscience continue to grow. In this review, we outline the development of currently available single-component optogenetic tools and summarize the application of various optogenetic tools in diverse model organisms.
Collapse
Affiliation(s)
- Lief Fenno
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
897
|
Lee JH. Tracing activity across the whole brain neural network with optogenetic functional magnetic resonance imaging. Front Neuroinform 2011; 5:21. [PMID: 22046160 PMCID: PMC3200570 DOI: 10.3389/fninf.2011.00021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022] Open
Abstract
Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Electrical Engineering, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
898
|
Kumar A, Cardanobile S, Rotter S, Aertsen A. The role of inhibition in generating and controlling Parkinson's disease oscillations in the Basal Ganglia. Front Syst Neurosci 2011; 5:86. [PMID: 22028684 PMCID: PMC3199726 DOI: 10.3389/fnsys.2011.00086] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022] Open
Abstract
Movement disorders in Parkinson’s disease (PD) are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe) is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep-brain-stimulation (DBS). These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behavior under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.
Collapse
Affiliation(s)
- Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg Germany
| | | | | | | |
Collapse
|
899
|
Lu Y, Li Y, Pan J, Wei P, Liu N, Wu B, Cheng J, Lu C, Wang L. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials 2011; 33:378-94. [PMID: 22018384 DOI: 10.1016/j.biomaterials.2011.09.083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
The field of optogenetics has been successfully used to understand the mechanisms of neuropsychiatric diseases through the precise spatial and temporal control of specific groups of neurons in a neural circuitry. However, it remains a great challenge to integrate optogenetic modulation with electrophysiological and behavioral read out methods as a means to explore the causal, temporally precise, and behaviorally relevant interactions of neurons in the specific circuits of freely behaving animals. In this study, an eight-channel chronically implantable optrode array was fabricated and modified with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PEDOT/PSS-PVA/PAA IPNs) for improving the optrode-neural tissue interface. The conducting polymer-hydrogel IPN films exhibited a significantly higher capacitance and lower electrochemical impedance at 1 kHz as compared to unmodified optrode sites and showed significantly improved mechanical and electrochemical stability as compared to pure conducting polymer films. The cell attachment and neurite outgrowth of rat pheochromocytoma (PC12) cells on the IPN films were clearly observed through calcein-AM staining. Furthermore, the optrode arrays were chronically implanted into the hippocampus of SD rats after the lentiviral expression of synapsin-ChR2-EYFP, and light-evoked, frequency-dependant action potentials were obtained in freely moving animals. The electrical recording results suggested that the modified optrode arrays showed significantly reduced impedance and RMS noise and an improved SNR as compared to unmodified sites, which may have benefited from the improved electrochemical performance and biocompatibility of the deposited IPN films. All these characteristics are greatly desired in optogenetic applications, and the fabrication method of conducting polymer-hydrogel IPNs can be easily integrated with other modification methods to build a more advanced optrode-neural tissue interface.
Collapse
Affiliation(s)
- Yi Lu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | | | | | | | | | | | | | | | | |
Collapse
|
900
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|