851
|
Lambert C, Tishkoff S. Genetic structure in African populations: implications for human demographic history. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:395-402. [PMID: 20453204 PMCID: PMC2953761 DOI: 10.1101/sqb.2009.74.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The continent of Africa is the source of all anatomically modern humans that dispersed across the planet during the past 100,000 years. As such, African populations are characterized by high genetic diversity and low levels of linkage disequilibrium (LD) among loci, as compared to populations from other continents. African populations also possess a number of genetic adaptations that have evolved in response to the diverse climates, diets, geographic environments, and infectious agents that characterize the African continent. Recently, Tishkoff et al. (2009) performed a genome-wide analysis of substructure based on DNA from 2432 Africans from 121 geographically diverse populations. The authors analyzed patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers and identified 14 ancestral population clusters that correlate well with self-described ethnicity and shared cultural or linguistic properties. The results suggest that African populations may have maintained a large and subdivided population structure throughout much of their evolutionary history. In this chapter, we synthesize recent work documenting evidence of African population structure and discuss the implications for inferences about evolutionary history in both African populations and anatomically modern humans as a whole.
Collapse
Affiliation(s)
- C.A. Lambert
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S.A. Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
852
|
Abstract
PURPOSE OF REVIEW To discuss potential clinical utility of the DNA sequence variants (DSVs) present in the human genome. RECENT FINDINGS Advances in the sequencing technology have led to discovery of a very large number of DSVs in the human genome. Accordingly each genome has approximately 4 million DSVs, of which single-nucleotide polymorphisms (SNPs) dominate in number (about 3 million) but the structural variations, including the copy number variants (CNVs), encompass a much larger number of the nucleotides. The biological and clinical impacts of DSVs are innate to their effect sizes and follow a gradient from negligible to drastic. DSVs responsible for single gene disorders impart the largest effect sizes, whereas those with small or moderate effect sizes modify phenotypic expression of the single gene disorders. In contrast, the common complex disorders result from intricate interactions of a very large number of DSVs, each imparting a modest and often clinically indiscernible effect size, with each other and with the environmental factors. DSVs with large effect sizes, under certain circumstances, might have clinical utility in individualization of therapy, early diagnosis and the risk stratification. In contrast, DSVs with small effect sizes are unlikely to provide useful clinical information. SUMMARY DSVs, under certain circumstances, could provide valuable information for genetic-based diagnosis, risk stratification and treatment. However, the primary utility of DSVs is in providing insight into the molecular mechanisms that govern the pathogenesis of the human diseases and applying the mechanistic insight to the cure of such disorders.
Collapse
|
853
|
McGuire AL, Lupski JR. Personal genome research : what should the participant be told? Trends Genet 2010; 26:199-201. [PMID: 20381895 PMCID: PMC2868334 DOI: 10.1016/j.tig.2009.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
Abstract
Should the results of whole genome sequencing research be disclosed to participants, in particular when the results have uncertain or indeterminate phenotypic consequences? This controversial question is considered in light of one author's (J.L.) experience as a geneticist who recently had his own genome sequenced.
Collapse
Affiliation(s)
- Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, BCM420 Houston, Texas 77030, USA.
| | | |
Collapse
|
854
|
Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010; 328:636-9. [PMID: 20220176 PMCID: PMC3037280 DOI: 10.1126/science.1186802] [Citation(s) in RCA: 757] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10(-8) per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.
Collapse
Affiliation(s)
| | | | | | - Chad D. Huff
- Institute for Systems Biology, Seattle, WA 98103
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98103
| | | | | | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle WA 98195
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle WA 98195
| | | | - Lynn B. Jorde
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98103
| | | |
Collapse
|
855
|
Robison K. Application of second-generation sequencing to cancer genomics. Brief Bioinform 2010; 11:524-34. [DOI: 10.1093/bib/bbq013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
856
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
857
|
Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, Hoehe MR, Church GM. Personal genomes in progress: from the human genome project to the personal genome project. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20373666 PMCID: PMC3181947 DOI: 10.31887/dcns.2010.12.1/jlunshof] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007- even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polymorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.
Collapse
Affiliation(s)
- Jeantine E Lunshof
- European Centre for Public Health Genomics, FHML, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
858
|
Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 2010; 20:883-9. [PMID: 20418490 DOI: 10.1101/gr.104695.109] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In diploid mammalian genomes, parental alleles can exhibit different methylation patterns (allele-specific DNA methylation, ASM), which have been documented in a small number of cases except for the imprinted regions and X chromosomes in females. We carried out a chromosome-wide survey of ASM across 16 human pluripotent and adult cell lines using Illumina bisulfite sequencing. We applied the principle of linkage disequilibrium (LD) analysis to characterize the correlation of methylation between adjacent CpG sites on single DNA molecules, and also investigated the correlation between CpG methylation and single nucleotide polymorphisms (SNPs). We observed ASM on 23% approximately 37% heterozygous SNPs in any given cell line. ASM is often cell-type-specific. Furthermore, we found that a significant fraction (38%-88%) of ASM regions is dependent on the presence of heterozygous SNPs in CpG dinucleotides that disrupt their methylation potential. This study identified distinct types of ASM across many cell types and suggests a potential role for CpG-SNP in connecting genetic variation with the epigenome.
Collapse
|
859
|
Abstract
Access to one's own complete genome was unheard of just a few years ago. At present we have a smattering of identifiable complete human genomes, but the coming months and years will undoubtedly bring thousands more. What will this mean for the practice of medicine in the US? No one knows, but given the remarkable drop in the cost of DNA sequencing over the last few years, it seems a safe bet that within the next decade, primary care physicians will order patients' whole genome sequences with no more fanfare than they would a complete blood count. But the challenges of transforming that easily accessible information into cost savings and better health outcomes will be daunting. Obviously, we lack interpretive abilities and phenotypic information commensurate with our skill in amassing DNA sequences. Worse, we have exacerbated these problems by failing to embrace the increasing ubiquity of genomic information, the populace's interest in it, and its relevance to virtually every medical specialty. The success of personal genomics will require a profound cultural shift by every entity with a stake in human health.
Collapse
Affiliation(s)
- Misha Angrist
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708-1009, USA.
| |
Collapse
|
860
|
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the prototypic form of pathological cardiac hypertrophy. HCM is an important cause of sudden cardiac death in the young and a major cause of morbidity in the elderly. DESIGN We discuss the clinical implications of recent advances in the molecular genetics of HCM. RESULTS The current diagnosis of HCM is neither adequately sensitive nor specific. Partial elucidation of the molecular genetic basis of HCM has raised interest in genetic-based diagnosis and management. Over a dozen causal genes have been identified. MYH7 and MYBPC3 mutations account for about 50% of cases. The remaining known causal genes are uncommon and some are rare. Advances in DNA sequencing techniques have made genetic screening practical. The difficulty, particularly in the sporadic cases and in small families, is to discern the causal from the non-causal variants. Overall, the causal mutations alone have limited implications in risk stratification and prognostication, as the clinical phenotype arises from complex and often non-linear interactions between various determinants. CONCLUSIONS The clinical phenotype of 'HCM' results from mutations in sarcomeric proteins and subsequent activation of multiple cellular constituents including signal transducers. We advocate that HCM, despite its current recognition and management as a single disease entity, involves multiple partially independent mechanisms, despite similarity in the ensuing phenotype. To treat HCM effectively, it is necessary to delineate the underlying fundamental mechanisms that govern the pathogenesis of the phenotype and apply these principles to the treatment of each subset of clinically recognized HCM.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center and Texas Heart Institute at St. Luke's Episcopal Hospital, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA.
| |
Collapse
|
861
|
Only Connect. Mol Diagn Ther 2010. [DOI: 10.1007/bf03256355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
862
|
|
863
|
Snyder M, Du J, Gerstein M. Personal genome sequencing: current approaches and challenges. Genes Dev 2010; 24:423-31. [PMID: 20194435 DOI: 10.1101/gad.1864110] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The revolution in DNA sequencing technologies has now made it feasible to determine the genome sequences of many individuals; i.e., "personal genomes." Genome sequences of cells and tissues from both normal and disease states have been determined. Using current approaches, whole human genome sequences are not typically assembled and determined de novo, but, instead, variations relative to a reference sequence are identified. We discuss the current state of personal genome sequencing, the main steps involved in determining a genome sequence (i.e., identifying single-nucleotide polymorphisms [SNPs] and structural variations [SVs], assembling new sequences, and phasing haplotypes), and the challenges and performance metrics for evaluating the accuracy of the reconstruction. Finally, we consider the possible individual and societal benefits of personal genome sequences.
Collapse
Affiliation(s)
- Michael Snyder
- Department of Genetics, Stanford University School of Medicine, California 94305, USA.
| | | | | |
Collapse
|
864
|
Anderson JP, Reynolds BL, Baum K, Williams JG. Fluorescent structural DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates. NANO LETTERS 2010; 10:788-92. [PMID: 20158249 PMCID: PMC2843431 DOI: 10.1021/nl9039718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly labeled DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates (dNTPs) were developed as a source of dNTPs for DNA polymerase. The particles were prepared by strand-displacement polymerization from a self-complementary circular template. Imaged by atomic force microscopy, these functionalized particles appear as condensed fuzzy balls with diameters between 50 and 150 nm. They emit a bright fluorescent signal, detected in 2 ms exposures with a signal-to-noise ratio of 25 when imaged using a TIR fluorescence microscope.
Collapse
Affiliation(s)
- Jon P Anderson
- LI-COR Biosciences, Inc., 4647 Superior Street, Lincoln, Nebraska 68504, USA.
| | | | | | | |
Collapse
|
865
|
Abstract
During the past five years, copy number variation (CNV) has emerged as a highly prevalent form of genomic variation, bridging the interval between long-recognised microscopic chromosomal alterations and single-nucleotide changes. These genomic segmental differences among humans reflect the dynamic nature of genomes, and account for both normal variations among us and variations that predispose to conditions of medical consequence. Here, we place CNVs into their historical and medical contexts, focusing on how these variations can be recognised, documented, characterised and interpreted in clinical diagnostics. We also discuss how they can cause disease or influence adaptation to an environment. Various clinical exemplars are drawn out to illustrate salient characteristics and residual enigmas of CNVs, particularly the complexity of the data and information associated with CNVs relative to that of single-nucleotide variation. The potential is immense for CNVs to explain and predict disorders and traits that have long resisted understanding. However, creative solutions are needed to manage the sudden and overwhelming burden of expectation for laboratories and clinicians to assay and interpret these complex genomic variations as awareness permeates medical practice. Challenges remain for understanding the relationship between genomic changes and the phenotypes that might be predicted and prevented by such knowledge.
Collapse
|
866
|
Lowry WE, Quan WL. Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci 2010; 123:643-51. [PMID: 20164303 PMCID: PMC10851774 DOI: 10.1242/jcs.054304] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2010] [Indexed: 12/16/2022] Open
Abstract
Since the first studies of human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs), the stem-cell field has been abuzz with the promise that these pluripotent populations will one day be a powerful therapeutic tool. Although it has been proposed that hiPSCs will supersede hESCs with respect to their research and/or clinical potential because of the ease of their derivation and the ability to create immunologically matched iPSCs for each individual patient, recent evidence suggests that iPSCs in fact have several underappreciated characteristics that might mean they are less suitable for clinical application. Continuing research is revealing the similarities, differences and deficiencies of various pluripotent stem-cell populations, and suggests that many years will pass before the clinical utility of hESCs and hiPSCs is realized. There are a plethora of ethical, logistical and technical roadblocks on the route to the clinical application of pluripotent stem cells, particularly of iPSCs. In this Essay, we discuss what we believe are important issues that should be considered when attempting to bring hiPSC-based technology to the clinic.
Collapse
Affiliation(s)
- William E Lowry
- Department of Molecular, Cell and Developmental Biology, 621 Charles Young Drive South, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
867
|
Engineering Life into Technology: the Application of Complexity Theory to a Potential Phase Transition in Intelligence. Symmetry (Basel) 2010. [DOI: 10.3390/sym2010150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
868
|
Zhou X, Ren L, Li Y, Zhang M, Yu Y, Yu J. The next-generation sequencing technology: a technology review and future perspective. SCIENCE CHINA-LIFE SCIENCES 2010; 53:44-57. [PMID: 20596955 DOI: 10.1007/s11427-010-0023-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
Abstract
As one of the most powerful tools in biomedical research, DNA sequencing not only has been improving its productivity in an exponential growth rate but also been evolving into a new layout of technological territories toward engineering and physical disciplines over the past three decades. In this technical review, we look into technical characteristics of the next-gen sequencers and provide prospective insights into their future development and applications. We envisage that some of the emerging platforms are capable of supporting the $1000 genome and $100 genome goals if given a few years for technical maturation. We also suggest that scientists from China should play an active role in this campaign that will have profound impact on both scientific research and societal healthcare systems.
Collapse
Affiliation(s)
- XiaoGuang Zhou
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - LuFeng Ren
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - YunTao Li
- Institute of Semiconductor, Chinese Academy of Sciences, Beijing, 100083, China
| | - Meng Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - YuDe Yu
- Institute of Semiconductor, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jun Yu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
869
|
Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MTP, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Grønnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TFG, Ramsey CB, Hansen TVO, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Pontén T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 2010; 463:757-62. [PMID: 20148029 PMCID: PMC3951495 DOI: 10.1038/nature08835] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/18/2010] [Indexed: 12/29/2022]
Abstract
We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.
Collapse
Affiliation(s)
- Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark and Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
870
|
Abstract
Next-generation sequencing has pushed forward the boundaries of genetic research and enabled the completion of a rapidly growing number of whole-genome sequencing projects. But the impending arrival of third-generation DNA sequencing technology could change the landscape yet again.
Collapse
|
871
|
Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from genomic sequence variation. Genome Res 2010; 20:291-300. [PMID: 20067940 DOI: 10.1101/gr.079509.108] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Population genetics has evolved from a theory-driven field with little empirical data into a data-driven discipline in which genome-scale data sets test the limits of available models and computational analysis methods. In humans and a few model organisms, analyses of whole-genome sequence polymorphism data are currently under way. And in light of the falling costs of next-generation sequencing technologies, such studies will soon become common in many other organisms as well. Here, we assess the challenges to analyzing whole-genome sequence polymorphism data, and we discuss the potential of these data to yield new insights concerning population history and the genomic prevalence of natural selection.
Collapse
Affiliation(s)
- John E Pool
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
872
|
Abstract
Genomics and human genetics are scientifically fundamental and commercially valuable. These fields grew to prominence in an era of growth in government and nonprofit research funding, and of even greater growth of privately funded research and development in biotechnology and pharmaceuticals. Patents on DNA technologies are a central feature of this story, illustrating how patent law adapts-and sometimes fails to adapt-to emerging genomic technologies. In instrumentation and for therapeutic proteins, patents have largely played their traditional role of inducing investment in engineering and product development, including expensive post-discovery clinical research to prove safety and efficacy. Patents on methods and DNA sequences relevant to clinical genetic testing show less evidence of benefits and more evidence of problems and impediments, largely attributable to university exclusive licensing practices. Whole-genome sequencing will confront uncertainty about infringing granted patents, but jurisprudence trends away from upholding the broadest and potentially most troublesome patent claims.
Collapse
Affiliation(s)
- Robert Cook-Deegan
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
873
|
|