851
|
Carmignoto G, Canella R, Candeo P, Comelli MC, Maffei L. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol 1993; 464:343-60. [PMID: 8229806 PMCID: PMC1175389 DOI: 10.1113/jphysiol.1993.sp019638] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The effect of intraventricular administration of nerve growth factor (NGF) by means of a cannula-minipump system was studied in kittens monocularly deprived during the critical period. The ocular dominance of area 17 neurones of NGF-treated and control kittens was determined by conventional extracellular recordings. The soma size of cells in A and A1 laminae of the lateral geniculate nucleus (LGN) was also evaluated in Cresyl Violet preparations. 2. Binocularly responsive neurons were found to be significantly more numerous in NGF-treated than in control kittens. The shrinkage of cells from the deprived LGN laminae normally observed in control kittens was prevented by NGF administration. 3. Following an initial period of monocular deprivation (MD) kittens subsequently treated with NGF showed a substantial recovery of functional binocular connections. 4. These findings indicate that the administration of NGF during the period of deprivation reduces the amblyopic effects of MD, while its administration to kittens with both eyes open following the initial deprivation promotes recovery of the deprived eye. 5. Neurotrophic factors may contribute to the regulation of experience-dependent modifications of synaptic connectivity in the visual cortex.
Collapse
|
852
|
Wong V, Arriaga R, Ip NY, Lindsay RM. The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate the cholinergic phenotype of developing motor neurons. Eur J Neurosci 1993; 5:466-74. [PMID: 7505167 DOI: 10.1111/j.1460-9568.1993.tb00513.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although developing motor neurons express low-affinity nerve growth factor (NGF) receptors, there is no known biological effect of NGF on developing or adult motor neurons. In this study, we found that, unlike NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) stimulated cholinergic phenotype by increasing choline acetyltransferase (CAT) activity in cultures enriched with embryonic rat motor neurons. Ciliary neurotrophic factor (CNTF) also stimulated CAT activity. The effects of BDNF and NT-4/5 on CAT activity appeared to be synergistic with that of CNTF. Cotreatment with BDNF and NT-3 resulted in an additive effect, suggesting that signal transduction was mediated through different high-affinity receptors tyrosine kinases B and C (Trk B and Trk C). However, cotreatment with BDNF and NT-4/5 did not result in an increase in CAT activity greater than that of either BDNF or NT-4/5 alone, suggesting that their effects were mediated via the same receptor Trk B. Supporting our findings that spinal cholinergic neurons are responsive to trophic actions of members of the neurotrophin family, motor neuron-enriched cultures were found to express mRNA for Trk B and Trk C, which have been identified as high-affinity receptors for BDNF and NT-4/5, and NT-3, respectively.
Collapse
Affiliation(s)
- V Wong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591
| | | | | | | |
Collapse
|
853
|
Meinecke DL, Rakic P. Low-affinity p75 nerve growth factor receptor expression in the embryonic monkey telencephalon: timing and localization in diverse cellular elements. Neuroscience 1993; 54:105-16. [PMID: 8515837 DOI: 10.1016/0306-4522(93)90386-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibodies against the low-affinity (p75) subunit of the human nerve growth factor receptor have been used to determine the temporal appearance of this receptor and to identify the associated cellular elements in the developing occipital cortex of rhesus monkeys. Adult and fetal brains from embryos at embryonic days 45-121 were used. This embryonic time span includes periods of active neurogenesis, cell migration and initial formation of axonal connections in the cerebral cortex. The first immunolabeling in the developing cerebral wall was seen between embryonic days 56 and 64. The labeling was present in the transient subplate neurons, a small number of axonal processes and pericytes associated with blood vessels. By birth, labeled neurons of the subplate zone disappeared, but immunolabeled axonal processes could now be seen in large numbers in the cortex. These findings are consistent with the role of nerve growth factor in the coordination of cortical differentiation, but not with the initiation of neuronal proliferation, since the emergence of nerve growth factor receptor-labeled elements in the cortex occurs two to three weeks after the onset of neurogenesis in this species. Further, the diverse cellular elements labeled in the fetal cerebrum with the antibodies to the low-affinity nerve growth factor receptor suggests that a receptor or receptors associated with growth factor signaling for more than one growth factor family are recognized by these antibodies. Differential timing in the expression of families of growth factor receptors may be one mechanism by which developing neurons in the cerebral cortex could respond to the different signals which guide such processes as synaptogenesis and morphogenesis.
Collapse
Affiliation(s)
- D L Meinecke
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
854
|
Lapchak PA, Araujo DM, Carswell S, Hefti F. Distribution of [125I]nerve growth factor in the rat brain following a single intraventricular injection: correlation with the topographical distribution of trkA messenger RNA-expressing cells. Neuroscience 1993; 54:445-60. [PMID: 8336831 DOI: 10.1016/0306-4522(93)90265-h] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study determined the topographical distribution of [125I] nerve growth factor in rat brain at various time points following an intraventricular injection. In addition, we quantified the tissue content of nerve growth factor in various brain tissues following the injection. Autoradiographic analysis of the distribution of [125] nerve growth factor indicated that the neurotrophin is rapidly distributed within the entire ventricular system. However, penetration of nerve growth factor into the brain parenchyma was very limited. At early time points following an injection of nerve growth factor, there was an accumulation of label in the immediate vicinity of the lateral ventricle and third ventricle with predominant labeling around the septum, hypothalamus and cerebellum. By 24 h following nerve growth factor administration, there was discreet labeling of the lateral septum, medial septum, diagonal band, hypothalamus, olfactory tubercle and nucleus of the olfactory tract, and some label was present in the hippocampus and subiculum. Quantitative ELISA of nerve growth factor in brain tissues 1 h following the injection indicated a 446% and 133% increase over basal levels of nerve growth factor in the basal forebrain and hippocampus, respectively. At 24 h nerve growth factor levels measured in brain were not significantly different from endogenous basal levels as determined by ELISA, whereas there were high quantities of 125I present in the thyroid gland, suggesting that the administered [125I] nerve growth factor was rapidly degraded following the intraventricular injection. We observed a similar labeling pattern of the medial septum/diagonal band cholinergic cell body group 24 h following either an intraventricular or intrahippocampal injection of [125I] nerve growth factor. There was a good correlation between the [125I] nerve growth factor labeling pattern and the presence of trkA messenger RNA. This suggested that, at least in the septohippocampal pathway, nerve growth factor accumulated in a region which contained trkA nerve growth factor receptors. Thus, this study shows that after a single unilateral intraventricular injection of nerve growth factor into rat brain there is effective uptake by diagonal band/septal cells on both sides of the brain, and by cells whose positions correlate with the locations of cholinergic and trk A messenger RNA-expressing cells. Significant uptake was also observed in the hypothalamus and cerebellum. The very limited penetration and rapid degradation of intraventricularly administered nerve growth factor suggests that tissue penetration may be a limiting factor when attempting to influence brain neurons by exogenous neurotropic factors.
Collapse
Affiliation(s)
- P A Lapchak
- Cephalon Inc., Department of Molecular Pharmacology, West Chester, PA 19380-4245
| | | | | | | |
Collapse
|
855
|
SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol 1993. [PMID: 7681142 DOI: 10.1128/mcb.13.4.2203] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To elucidate the signal transduction mechanisms used by ligands that induce differentiation and the cessation of cell division, we utilized p13suc1-agarose, a reagent that binds p34cdc2/cdk2. By using this reagent, we identified a 78- to 90-kDa species in PC12 pheochromocytoma cells that is rapidly phosphorylated on tyrosine following treatment with the differentiation factors nerve growth factor (NGF) and fibroblast growth factor but not by the mitogens epidermal growth factor or insulin. This species, called SNT (suc-associated neurotrophic factor-induced tyrosine-phosphorylated target), was also phosphorylated on tyrosine in primary rat cortical neurons treated with the neurotrophic factors neurotrophin-3, brain-derived neurotrophic factor, and fibroblast growth factor but not in those treated with epidermal growth factor. In neuronal and fibroblast cells, where NGF can also act as a mitogen, SNT was tyrosine phosphorylated to a much greater extent during NGF-induced differentiation than during NGF-induced proliferation. SNT was phosphorylated in vitro on serine, threonine, and tyrosine in p13suc1-agarose precipitates from NGF-treated PC12 cells, indicating that this protein may be a substrate of kinase activities associated with p13suc1-p34cdc2/cdk2 complexes. In addition, SNT was associated predominantly with nuclear fractions following subcellular fractionation of NGF-treated PC12 cells. Finally, in PC12 cells, NGF-stimulated tyrosine phosphorylation of SNT was dependent on the levels of Trk tyrosine kinase activity and was constitutively induced by expression of pp60v-src. However, Ras was not required for constitutive SNT tyrosine phosphorylation, suggesting that this protein functions distally to Trk and pp60v-src but in a pathway parallel to that of Ras. SNT is the first identified specific target of differentiation factor-induced tyrosine kinase activity in neuronal cells.
Collapse
|
856
|
Escandón E, Burton LE, Szönyi E, Nikolics K. Characterization of neurotrophin receptors by affinity crosslinking. J Neurosci Res 1993; 34:601-13. [PMID: 8315660 DOI: 10.1002/jnr.490340602] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurotrophic factors regulate the developmental survival and differentiation of specific neuronal populations. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the nerve growth factor (NGF) protein family, also known as the neurotrophins. Insights into the different roles of neurotrophins can be gained by studying the expression of their functional receptors. Here we report the development of procedures for their radiolabeling and efficient crosslinking to specific cell-surface receptors. BDNF and NT-3 receptors in cell lines and tissue preparations expressing receptors for the 2 neurotrophins have been identified using this affinity crosslinking procedure. Like NGF, BDNF and NT-3 crosslinked to the low affinity NGF receptor (p75NGFR) on PC12 cells. BDNF and NT-3 also crosslinked to cells expressing p145trkB protein, producing an approximately 160 kD neurotrophin-receptor complex. Crosslinking of the 2 neurotrophins in vivo to specific trk family members in many areas of the central nervous system also produced a 160 kD receptor complex. However, in all brain regions a complex of approx. 100 kD could also be identified, all or most of which represents crosslinking to a truncated form of trkB. The broad distribution of BDNF and NT-3 receptors throughout the CNS suggests that neurotrophins may have yet unrecognized functions on specific neuronal populations. BDNF and NT-3 receptors were also found in brain areas in which the neurotrophins themselves are also synthesized, suggesting that beyond long-range trophic effects, these proteins may also act as autocrine or short-range paracrine regulators.
Collapse
Affiliation(s)
- E Escandón
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080-4990
| | | | | | | |
Collapse
|
857
|
Wu YY, Bradshaw RA. Effect of nerve growth factor and fibroblast growth factor on PC12 cells: inhibition by orthovanadate. J Cell Biol 1993; 121:409-22. [PMID: 8468355 PMCID: PMC2200105 DOI: 10.1083/jcb.121.2.409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, causes increased levels of tyrosine phosphorylation and blocks, at noncytotoxic concentrations, the differentiative response of rat pheochromocytoma (PC12) cells to beta-nerve growth factor (beta NGF) and basic fibroblast growth factor (bFGF) in a reversible manner. It also prevents growth factor-induced neurite proliferation in primed cells and causes the retraction of previously formed neurites, even in the presence of beta NGF or bFGF. It is equally effective in blocking neurite proliferation by 8-Br-cAMP. Zinc chloride and ammonium molybdate, two other inhibitors of tyrosine phosphatases, also cause parallel decreases in neurite proliferation. Orthovanadate generally reduces the transcription of immediate early response genes (TIS 8 and c-fos) and secondary response genes (ornithine decarboxylase (ODC), acetyl-cholinesterase (AChE) and SCG 10) induced by beta NGF, bFGF, EGF, and PMA, albeit in a variable fashion. There was no observed effect on the kinetics of expression as judged by TIS 8 induction by beta NGF and protein kinase C (PKC) downregulation did not change the levels of inhibition by orthovanadate seen in control cells. Orthovanadate does not affect the production of diacylglycerol induced by beta NGF or bFGF. These observations are consistent with the view that growth factor stimulation of differentiation in PC12 cells involves at least one other PKC independent pathway, and that cAMP and PMA (and their active analogs) activate tyrosine kinases (albeit probably secondarily), which are at least partially responsible for their actions. Although the exact site(s) of action of orthovanadate that lead to the inhibition of growth factor-induced neurite proliferation are unknown, the results presented suggest that it prolongs tyrosine phosphorylations by nonreceptor tyrosine kinases that act downstream from the receptor kinases.
Collapse
Affiliation(s)
- Y Y Wu
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
858
|
Abstract
The study of ubiquitously expressed proto-oncogenes or tumor suppressor genes provided important insights into the second messenger signaling pathways common to neural and non-neural tissues. Therefore, it is expected that the analysis of proto-oncogenes expressed in neural tissues should probe into neurotrophic and neurotransmitter receptors, ion channels and other molecules involved in processes underlying basic physiological functions of the nervous system. This expectation is fulfilled by ample experimental evidence. Using the trk, abl and src families of tyrosine kinase encoded proto-oncogenes, we discuss here new insights into the structural and functional organization of neural tissues gained from the molecular and genetic analyses of these genes and their products. Special attention is given to the description of initial steps of signaling through the Trk receptors in response to neurotrophic factors of the Nerve Growth Factor family. The genetic analysis of the Drosophila abl gene product identified new gene products that interact with the Abl protein. This analysis illuminates the power of Drosophila genetics in dissecting components of a signal transduction pathway. The Src-family of non-receptor type protein-tyrosine kinases is discussed from the point of functional redundancy as revealed by targeted gene disruption and expression studies. The recent progress in the field of proto-oncogenes has been impressive and it is expected that proto-oncogenes will continue to provide valuable tools in the study of the complex signaling pathways that underlie the physiological functions of the central nervous system.
Collapse
Affiliation(s)
- M Sudol
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
859
|
Jaiswal R, Murphy M, Landreth G. Identification and characterization of a nerve growth factor-stimulated mitogen-activated protein kinase activator in PC12 cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
860
|
Weidner KM, Sachs M, Birchmeier W. The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Biophys Biochem Cytol 1993; 121:145-54. [PMID: 8384622 PMCID: PMC2119778 DOI: 10.1083/jcb.121.1.145] [Citation(s) in RCA: 333] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.
Collapse
Affiliation(s)
- K M Weidner
- Institute of Cell Biology, Tumor Research, University of Essen Medical School, Germany
| | | | | |
Collapse
|
861
|
Mutoh T, Tokuda A, Guroff G, Fujiki N. The effect of the B subunit of cholera toxin on the action of nerve growth factor on PC12 cells. J Neurochem 1993; 60:1540-7. [PMID: 8455041 DOI: 10.1111/j.1471-4159.1993.tb03319.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exogenous gangliosides, especially ganglioside GM1 (GM1), seem to potentiate the action of nerve growth factor (NGF). We have examined the possible regulation of the NGF signaling pathway in PC12 cells by the B subunit of cholera toxin (CTB), which binds to endogenous GM1 specifically and with a high affinity. CTB treatment (1 micrograms/ml) enhanced NGF-induced neurite outgrowth from PC12 cells, NGF-induced activation of ribosomal protein S6 kinase, and NGF-induced stimulation of trk phosphorylation. CTB plus NGF also caused a greater inhibition of [3H]thymidine incorporation into DNA than did NGF alone. These enhancing effects of CTB were blocked by the presence of cytochalasin B in the culture medium but were not affected by the presence of colchicine or by the depletion of Ca2+ in the medium. 125I-NGF binding experiments revealed that CTB treatment did not affect the specific binding of NGF to the cells. These results strongly suggest that the binding of cell surface GM1 by CTB modulates the pathway of intracellular signaling initiated by NGF and that the association of CTB with a cytoskeletal component is essential for these effects.
Collapse
Affiliation(s)
- T Mutoh
- Second Department of Internal Medicine, Fukui Medical School, Japan
| | | | | | | |
Collapse
|
862
|
Rabin SJ, Cleghon V, Kaplan DR. SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol 1993; 13:2203-13. [PMID: 7681142 PMCID: PMC359541 DOI: 10.1128/mcb.13.4.2203-2213.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the signal transduction mechanisms used by ligands that induce differentiation and the cessation of cell division, we utilized p13suc1-agarose, a reagent that binds p34cdc2/cdk2. By using this reagent, we identified a 78- to 90-kDa species in PC12 pheochromocytoma cells that is rapidly phosphorylated on tyrosine following treatment with the differentiation factors nerve growth factor (NGF) and fibroblast growth factor but not by the mitogens epidermal growth factor or insulin. This species, called SNT (suc-associated neurotrophic factor-induced tyrosine-phosphorylated target), was also phosphorylated on tyrosine in primary rat cortical neurons treated with the neurotrophic factors neurotrophin-3, brain-derived neurotrophic factor, and fibroblast growth factor but not in those treated with epidermal growth factor. In neuronal and fibroblast cells, where NGF can also act as a mitogen, SNT was tyrosine phosphorylated to a much greater extent during NGF-induced differentiation than during NGF-induced proliferation. SNT was phosphorylated in vitro on serine, threonine, and tyrosine in p13suc1-agarose precipitates from NGF-treated PC12 cells, indicating that this protein may be a substrate of kinase activities associated with p13suc1-p34cdc2/cdk2 complexes. In addition, SNT was associated predominantly with nuclear fractions following subcellular fractionation of NGF-treated PC12 cells. Finally, in PC12 cells, NGF-stimulated tyrosine phosphorylation of SNT was dependent on the levels of Trk tyrosine kinase activity and was constitutively induced by expression of pp60v-src. However, Ras was not required for constitutive SNT tyrosine phosphorylation, suggesting that this protein functions distally to Trk and pp60v-src but in a pathway parallel to that of Ras. SNT is the first identified specific target of differentiation factor-induced tyrosine kinase activity in neuronal cells.
Collapse
Affiliation(s)
- S J Rabin
- Eukaryotic Signal Transduction Group, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | |
Collapse
|
863
|
Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NP, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72:835-46. [PMID: 7681362 DOI: 10.1016/0092-8674(93)90573-9] [Citation(s) in RCA: 1394] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Examination of flk-1 receptor tyrosine kinase mRNA expression by in situ hybridization analysis revealed specific association with endothelial cells at all stages of mouse development, including the blood islands in the yolk sac of day 8.5-10.5 embryos, in which the early progenitors of this lineage originate. flk-1 transcripts were abundant in proliferating endothelial cells of vascular sprouts and branching vessels of embryonic and early postnatal brain, but were drastically reduced in adult brain, where proliferation has ceased. Identification of the angiogenic mitogen, vascular endothelial growth factor (VEGF), as the high affinity ligand of Flk-1 and correlation of the temporal and spatial expression pattern of Flk-1 and VEGF suggest a major role of this ligand-receptor signaling system in vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- B Millauer
- Department of Molecular Biology, Max Planck Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
864
|
Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328:847-54. [PMID: 8441429 DOI: 10.1056/nejm199303253281205] [Citation(s) in RCA: 476] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND METHODS The nerve growth factor receptor is expressed in some neuroblastomas, in which its primary component is encoded by the TRK protooncogene. To determine the relation of the expression of TRK messenger RNA in neuroblastomas to other clinical and laboratory variables, we studied frozen tumor samples from 77 patients. In addition, we tested two primary neuroblastomas that expressed TRK for responsiveness to nerve growth factor. RESULTS TRK expression strongly correlated with favorable tumor stage (I, II, and IVS vs. III and IV), younger age (< 1 year vs. > or = 1 year), normal N-myc copy number, and low level of N-myc expression. N-myc amplification (indicated by a high copy number) correlated with advanced tumor stage, older age, an adrenal site of the primary tumor, low level of expression of TRK, and high level of expression of N-myc. Analysis of five-year cumulative-survival rates demonstrated an association of a very favorable outcome with a high level of TRK expression (86 percent vs. 14 percent) and with normal N-myc copy number (84 percent vs. 0 percent). Univariate analysis showed that these two variables were the most powerful predictors of outcome (chi-square = 51.30, P < 0.001; and chi-square = 93.61, P < 0.001, respectively). TRK expression still had significant prognostic value when the analysis was restricted to tumors without N-myc amplification. In primary cultures of neuroblastoma cells expressing TRK, exposure to nerve growth factor induced early gene expression and neurite outgrowth, but deprivation of nerve growth factor led to neuronal cell death. CONCLUSIONS A high level of expression of the TRK proto-oncogene in a neuroblastoma is strongly predictive of a favorable outcome. A tumor with a functional nerve growth factor receptor may be dependent on the neurotrophin nerve growth factor for survival and may regress in its absence, allowing a new approach to the treatment of certain patients with neuroblastoma.
Collapse
Affiliation(s)
- A Nakagawara
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | |
Collapse
|
865
|
Perrone-Bizzozero NI, Cansino VV, Kohn DT. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA. J Cell Biol 1993; 120:1263-70. [PMID: 8436593 PMCID: PMC2119722 DOI: 10.1083/jcb.120.5.1263] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that nerve growth factor (NGF) selectively stabilizes the GAP-43 mRNA in PC12 cells. To study the cellular mechanisms for this post-transcriptional control and to determine the contribution of mRNA stability to GAP-43 gene expression, we examined the effects of several agents that affect PC12 cell differentiation on the level of induction and rate of degradation of the GAP-43 mRNA. The NGF-mediated increase in GAP-43 mRNA levels and neurite outgrowth was mimicked by the phorbol ester TPA, but not by dibutyryl cAMP or the calcium ionophore A12783. Downregulation of protein kinase C (PKC) by high doses of phorbol esters or selective PKC inhibitors prevented the induction of this mRNA by NGF, suggesting that NGF and TPA act through a common PKC-dependent pathway. In mRNA decay studies, phorbol esters caused a selective 6-fold increase in the half-life of the GAP-43 mRNA, which accounts for most of the induction of this mRNA by TPA. The phorbol ester-induced stabilization of GAP-43 mRNA was blocked by the protein kinase inhibitor polymyxin B and was partially inhibited by dexamethasone, an agent that blocks GAP-43 expression and neuronal differentiation in PC12 cells. In contrast, the rates of degradation and the levels of the GAP-43 mRNA in control and TPA-treated cells were not affected by cycloheximide treatment. Thus, changes in GAP-43 mRNA turnover do not appear to require continuous protein synthesis. In conclusion, these data suggest that PKC activity regulates the levels of the GAP-43 mRNA in PC12 cells through a novel, translation-independent mRNA stabilization mechanism.
Collapse
Affiliation(s)
- N I Perrone-Bizzozero
- Department of Biochemistry, University of New Mexico School of Medicine, Albuquerque 87131-5221
| | | | | |
Collapse
|
866
|
Bengzon J, Kokaia Z, Ernfors P, Kokaia M, Leanza G, Nilsson OG, Persson H, Lindvall O. Regulation of neurotrophin and trkA, trkB and trkC tyrosine kinase receptor messenger RNA expression in kindling. Neuroscience 1993; 53:433-46. [PMID: 8388086 DOI: 10.1016/0306-4522(93)90207-v] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Levels of messenger RNA for nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and the tyrosine kinase receptors trkA, trkB and trkC have been studied using in situ hybridization in the rat brain 2 h and four weeks after kindling-induced seizures. Epileptiform activity evoked by hippocampal stimulation and exceeding 70 s lead to a concomitant and transient increase of brain- derived neurotrophic factor, nerve growth factor, trkB and trkC messenger RNA expression in dentate granule cells after both focal and generalized seizures. Brain-derived neurotrophic factor messenger RNA levels were also increased bilaterally in the CA1-CA3 regions, amygdala and the piriform, entorhinal, perirhinal, retrosplenial and temporal cortices after generalized seizures. The magnitude of the increases was similar throughout the development of kindling and in the fully kindled brain. No changes of trkA messenger RNA were observed. In amygdalar kindling, elevated brain-derived neurotrophic factor messenger RNA levels developed more rapidly in the amygdala-piriform cortex than after stimulation in the hippocampus but changes in the hippocampal formation were only seen in few animals. Intraventricular 6-hydroxydopamine or a bilateral fimbria-fornix lesion did not alter basal expression or seizure-evoked changes in messenger RNA levels for neurotrophins or trk receptors but increased the number of animals exhibiting elevated levels after the first stimulation, probably due to a prolongation of seizure activity. Both in sham-operated and fimbria-fornix-lesioned rats seizure activity caused a marked reduction of neurotrophin-3 messenger RNA levels in dentate granule cells. The results indicate that activation of the brain-derived neurotrophic factor gene, at least in dentate granule cells, is an "all-or-none" type of response and dependent on the duration but not the severity of seizures or the stage of kindling epileptogenesis. Changes in brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 and trkB and trkC were observed concomitantly in the dentate gyrus, which suggests that seizure activity sets in motion a cascade of genomic events possibly mediated via a common mechanism. Since altered messenger RNA levels outside hippocampus were detected only for brain-derived neurotrophic factor, neurotrophin and trk gene expression in these regions seems to be regulated differently.
Collapse
Affiliation(s)
- J Bengzon
- Department of Neurology, University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
867
|
Lapchak PA, Araujo DM, Hefti F. Regulation of hippocampal muscarinic receptor function by chronic nerve growth factor treatment in adult rats with fimbrial transections. Neuroscience 1993; 53:379-94. [PMID: 8388084 DOI: 10.1016/0306-4522(93)90202-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effects of chronic intraventricular administration of recombinant human nerve growth factor on hippocampal muscarinic receptor densities and muscarinic receptor-linked second messenger systems were determined in adult rats 21 days following partial or full unilateral fimbrial transections. First, autoradiographic analysis of muscarinic receptors was carried out using [3H]quinuclidinyl benzilate for total muscarinic receptors, [3H]pirenzepine for M1 receptors and [3H]AF-DX 384 for M2 receptors. Partial fimbrial transections did not significantly alter the density of these muscarinic receptor populations in the dorsal or ventral hippocampus and there was no effect of chronic (1 micrograms every other day, 21 days) recombinant human nerve growth factor treatment. In contrast, in animals receiving full fimbrial transections which by themselves did not alter muscarinic receptor density, recombinant human nerve growth factor treatment increased the density of [3H]quinuclidinyl benzilate binding sites, M1 receptors, and M2 receptors by approximately 40% in the CA1 region. Secondly, we determined the effect of chronic recombinant human nerve growth factor treatment on muscarinic receptor-mediated second messenger production in rats with either partial or full unilateral fimbrial transections. In partially fimbriectomized rats, oxotremorine-induced inositol triphosphate production by hippocampal slices was increased by 81% on the lesioned side of animals treated with a control protein. This lesion-induced supersensitivity of M1 muscarinic receptor function was prevented by chronic recombinant human nerve growth factor treatment. In recombinant human nerve growth factor-treated animals, inositol triphosphate production was similar to values on unlesioned control sides. The muscarinic receptor-mediated increase in cyclic GMP levels was not altered by fimbrial transections or recombinant human nerve growth factor treatment. In animals with full unilateral fimbrial transections, oxotremorine-induced inositol triphosphate production was increased by 99% on the lesioned side of animals treated with a control protein and treatment with recombinant human nerve growth factor did not alter this denervation-induced supersensitivity of muscarinic receptor transduction signal. Chronic recombinant human nerve growth factor treatment did not affect the levels of inositol triphosphate on the contralateral unlesioned side of either partial or full fimbriectomized animals. Earlier studies indicate that chronic nerve growth factor treatment increases the presynaptic function of hippocampal cholinergic neurons surviving partial fimbrial transections. The findings of the present study indicate that these presynaptic effects translate into functional changes at the level of postsynaptic muscarinic receptors in the hippocampus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P A Lapchak
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | |
Collapse
|
868
|
Crockett DP, Foschini DR, Girgis WS, Egger MD. Immunocytochemical localization of the low-affinity nerve growth factor receptor (p75NGFR) in the cuneate nucleus of the rat and its relationship to cytochrome-oxidase activity. Brain Res 1993; 603:324-7. [PMID: 8384923 DOI: 10.1016/0006-8993(93)91256-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunohistochemical staining for the 75-kDa, low-affinity nerve growth factor receptor (p75NGFR), within the cuneate nucleus (CN) of the adult rat revealed that this receptor is concentrated rostrocaudally in the middle CN (approximately 0.2-0.9 mm caudal to the obex), corresponding to that portion of the CN receiving densest projections of cutaneous primary afferent terminals. Furthermore, dense patches of p75NGFR-like immunoreactivity appear to correspond to the 'blotches' of cytochrome-oxidase activity observed in the middle region of the CN. This close correspondence between the localization pattern of p75NGFR in the CN and its functional organization suggests an important role for trophic factors in the CN's development and/or maintenance.
Collapse
Affiliation(s)
- D P Crockett
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | | | |
Collapse
|
869
|
Chiu AY, Chen EW, Loera S. A motor neuron-specific epitope and the low-affinity nerve growth factor receptor display reciprocal patterns of expression during development, axotomy, and regeneration. J Comp Neurol 1993; 328:351-63. [PMID: 7680051 DOI: 10.1002/cne.903280303] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Somatic motor neurons begin to express the transmitter synthesizing enzyme, choline acetyltransferase (ChAT) and the low-affinity nerve growth factor receptor (NGFR) during embryonic development. However, as motor neurons mature in postnatal life, they lose immunoreactivity for NGFR and acquire a motor neuron-specific epitope that is recognized by the monoclonal antibody, MO-1. The present study was undertaken to examine the effect of nerve injury in adult rats on these three developmentally regulated markers in two populations of somatic motor neurons. Unilateral transection, ligation, or crushing of the sciatic nerve resulted in a loss of MO-1 binding and a concomitant rise in immunoreactivity for NGFR within axotomized motor neurons in lumbar levels of the spinal cord. These changes, detectable within 5 days following nerve injury, are reversed with reinnervation, but persist if reinnervation is prevented by chronic axotomy. Thus, regulation of the expression of NGFR and the MO-1 epitope appears to be critically dependent upon interactions between motor neurons and target muscles. These observations are also consistent with the idea that during regeneration, neurons may revert to a developmentally immature state; in motor neurons, this state is characterized by the presence of NGFRs and the absence of the MO-1 epitope. Transection of the hypoglossal nerve, a purely motor nerve, resulted in a similar loss of MO-1 binding and a selective rise in NGFR immunoreactivity in neurons within the ipsilateral hypoglossal motor nucleus. In addition, immunoreactivity for ChAT was also lost in axotomized hypoglossal motor neurons. In contrast, injury to the sciatic nerve, which bears both sensory and motor axons, did not result in any detectable change in ChAT immunoreactivity in spinal motor neurons.
Collapse
Affiliation(s)
- A Y Chiu
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
870
|
Muller SR, Huff SY, Goode BL, Marschall L, Chang J, Feinstein SC. Molecular analysis of the nerve growth factor inducible ornithine decarboxylase gene in PC12 cells. J Neurosci Res 1993; 34:304-14. [PMID: 8455208 DOI: 10.1002/jnr.490340307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In an effort to understand molecular mechanisms by which nerve growth factor (NGF) regulates gene expression, we have isolated a full-length rat cDNA clone encoding ornithine decarboxylase (ODC) and utilized this probe to identify and examine the transcriptionally active, NGF inducible ODC gene in rat PC12 cells. This same gene is also responsive to epidermal growth factor, basic fibroblasts growth factor, and dibutyryl cAMP. Primer extension analysis demonstrates that both basal and NGF induced transcription of the ODC gene utilize the same major transcriptional start site, demonstrating that NGF acts to increase transcriptional activity at the basal start site as opposed to unmasking an alternative, stronger start site. Functional promoter analysis reveals the presence of a constitutive core promoter residing between positions -201 and +390, relative to the start site of transcription. Additional analyses reveal that sequences in the region -7800 to +2257 are insufficient to mediate NGF induced transcriptional activation, demonstrating that at least some of the regulatory sequences necessary for NGF mediated transcriptional induction of the ODC gene must reside at relatively enormous distances from the transcriptional start site. Such a long distance transcriptional regulatory mechanism is unique when compared with other NGF responsive genes that have been similarly analyzed.
Collapse
Affiliation(s)
- S R Muller
- Neuroscience Research Institute, University of California, Santa Barbara 93106
| | | | | | | | | | | |
Collapse
|
871
|
Merlio JP, Ernfors P, Kokaia Z, Middlemas DS, Bengzon J, Kokaia M, Smith ML, Siesjö BK, Hunter T, Lindvall O. Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 1993; 10:151-64. [PMID: 8439408 DOI: 10.1016/0896-6273(93)90307-d] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The protein-tyrosine kinases Trk, TrkB, and TrkC are signal-transducing receptors for a family of neurotrophic factors known as the neurotrophins. Here we show that seizures induced by hippocampal kindling lead to a rapid, transient increase of trkB mRNA and protein in the hippocampus. TrkB is a component of a high affinity receptor for brain-derived neurotrophic factor (BDNF). No change was detected in mRNAs for Trk or TrkC, components of the high affinity nerve growth factor or neurotrophin-3 receptors, respectively. trkB mRNA was also transiently increased in the dentate gyrus following cerebral ischemia and hypoglycemic coma; these treatments had no effect on trk and trkC mRNAs. The increase in trkB mRNA and protein showed the same time course and distribution as the increase in BDNF mRNA. These data suggest that BDNF and its receptor may play a local role within the hippocampus in kindling-associated neural plasticity and in neuronal protection following epileptic, ischemic, and hypoglycemic insults.
Collapse
Affiliation(s)
- J P Merlio
- Department of Medical Chemistry, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Anderson DJ. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. JOURNAL OF NEUROBIOLOGY 1993; 24:185-98. [PMID: 8445387 DOI: 10.1002/neu.480240206] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Studies of postnatal chromaffin cells, sympathetic neurons and Small Intensely Fluorescent (SIF) cells have suggested that these cells develop from a common progenitor, the sympathoadrenal (SA) progenitor, whose fate is determined by the relative levels of nerve growth factor (NGF) and glucocorticoid (GC) in its environment (Unsicker et al., 1978, Proc. Natl. Acad. Sci. USA 75:3498-3502; Doupe et al., 1985a, J. Neurosci. 5:2119-2142). Recent studies have identified such a bipotential SA progenitor in the rat embryo. Surprisingly, this progenitor is initially unresponsive to NGF; neuronal differentiation is instead promoted by fibroblast growth factor (FGF). However, FGF appears to promote NGF responsiveness, suggesting that neuronal differentiation involves a relay or cascade of growth factor action. Furthermore, chromaffin cell differentiation appears to involve two sequential, GC-dependent events: the inhibition of neuronal differentiation and the induction of epinephrine synthesis. The former event is a prerequisite to the latter. Thus both the chromaffin and neuronal pathways of differentiation follow a series of dependent events, involving changes in the responsiveness of SA progenitors to environmental factors. Such changes correlate with changes in antigenic marker expression that can be observed in vivo. In addition to choosing between neuronal and endocrine fates, SA progenitors must also express an appropriate neurotransmitter phenotype. For example, sympathetic neurons can become either noradrenergic or cholinergic. This cholinergic potential is already present in uncommitted SA progenitors, as evidenced by their ability to synthesize acetylcholine. Recent studies suggest that these cells may have yet other developmental capacities, including the ability to synthesize serotonin. This capacity is consistent with the hypothesis that SA progenitors are closely related to progenitors of enteric neurons, an idea supported by recent observations using novel antigenic markers. The SA progenitor may be, therefore, a "master" neuroendocrine progenitor for the peripheral nervous system.
Collapse
Affiliation(s)
- D J Anderson
- Division of Biology, Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
873
|
Hamel W, Westphal M, Szönyi E, Escandón E, Nikolics K. Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res 1993; 34:147-57. [PMID: 8450561 DOI: 10.1002/jnr.490340202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of neurotrophin (NGF, BDNF, and NT-3) mRNAs in 24 cell lines derived from human malignant gliomas was studied by Northern analysis. Widespread expression of neurotrophin genes was found with BDNF being the most abundantly expressed. Nearly all cell lines expressed BDNF, and about two-thirds of the cell lines expressed NGF and NT-3. Half of the cell lines analyzed expressed all three neurotrophins. Secretion of NGF into the medium of several cell lines could be detected by ELISA and a PC12 neurite outgrowth assay. Immuno- and bioactive NGF was isolated from conditioned medium of one cell line. No evidence of expression of the neurotrophin receptors trk and trkB by Northern analysis was found. Receptor crosslinking with radiolabeled cognate ligands failed to detect functional receptors in all but one cell line. In this cell line a receptor complex for BDNF was found that corresponded to truncated trkB receptors that lack the signal transducing tyrosine kinase domain. Neurotrophins did not stimulate mitosis of the glioma cultures. The findings suggest that production of neurotrophins by glioma cells is a general phenomenon, although neurotrophins made by gliomas lacking their receptors may not play an autocrine but rather a paracrine role.
Collapse
Affiliation(s)
- W Hamel
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | | | | | | | | |
Collapse
|
874
|
Rodríguez-Tébar A, de la Rosa EJ, Arribas A. Neurotrophin-3 receptors in the developing chicken retina. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:789-94. [PMID: 8436136 DOI: 10.1111/j.1432-1033.1993.tb17610.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurotrophin 3 (NT-3) had specific high-affinity receptors (HNT-3R) in the developing chick retina at all ages between embryonic day (E) 4 and E14. The affinity of HNT-3R for 125I-NT-3 did not change with the developmental state. A dissociation constant (kd) of 13 pM was obtained. However, the amount of HNT-3R appeared to be developmentally regulated; the number of receptors/cell increased from E4 up to E6-7 (coinciding with the main onset of neuronal differentiation), then decreased until E9 and increased again by E12, when all retinal cells were differentiated. Kinetic and cross-linking experiments showed that HNT-3R from two prototypical developmental ages, E7 and E14, were different. E7 and E14 HNT-3R could be distinguished from each other on the basis of different inhibition patterns of 125I-NT-3 binding in the presence of nerve growth factor or brain-derived neurotrophic factor. Chemical cross-linking of increasing concentrations of 125I-NT-3 to its receptors showed (a) one 100-kDa band corresponding to neurotrophin low-affinity receptors in both E7 and E14 cells; (b) one 130-kDa band also present in both E7 and E14 cells. Densitometric measurements showed that this 130-kDa band behaved as HNT-3R in E14 cells (kd approximately 10 pM) but not in E7 cells (kd > or = 0.2 nM). Furthermore, the 130-kDa band in both E7 and E14 retinal cells displayed a trk-like immunoreactivity. Our data show that, in neurons, one particular neurotrophin may induce different actions mediated through distinct and specific receptors.
Collapse
|
875
|
Bradshaw RA, Blundell TL, Lapatto R, McDonald NQ, Murray-Rust J. Nerve growth factor revisited. Trends Biochem Sci 1993; 18:48-52. [PMID: 8488558 DOI: 10.1016/0968-0004(93)90052-o] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies on nerve growth factor have revealed important new insights into the structure, function and evolution of this prototypical neurotrophic factor. Some of its features are (1) it has a unique three-dimensional fold that has since been found in two other growth factors, (2) it uses the trk proto-oncogene product, which has a tyrosine kinase, as a receptor and (3) it shares homology with at least three other factors, now collectively called neurotrophins, which have a spectrum of target cells.
Collapse
Affiliation(s)
- R A Bradshaw
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | | | | | | | |
Collapse
|
876
|
Inhibition of the tyrosine kinase activity of the fibroblast growth factor receptor by the methyltransferase inhibitor 5'-methylthioadenosine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53602-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
877
|
Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M, Yancopoulos GD. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 1993; 10:137-49. [PMID: 7679912 DOI: 10.1016/0896-6273(93)90306-c] [Citation(s) in RCA: 409] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have exploited a battery of approaches to address several controversies that have accompanied the expansion of the nerve growth factor (NGF) family of neurotrophic factors and the identification of the Trk tyrosine kinases as receptors for these factors. For example, we find that a recently cloned mammalian neurotrophin, known as either neurotrophin-4 or neurotrophin-5 and assigned widely differing receptor specificities, represents the functional counterpart of Xenopus neurotrophin-4 and is a "preferred" ligand for TrkB. However, its interactions with TrkB can be distinguished from those of brain-derived neurotrophic factor (BDNF) with TrkB. We also find that all of the Trks display similar dose responses to their "preferred" ligands in neuronal as compared with nonneuronal cells (i.e., NGF for TrkA, BDNF and NT-4/5 for TrkB, and NT-3 for TrkC), providing evidence against a role for accessory molecules expressed in neurons in generating receptors that would allow for responses to lower concentrations of the neurotrophins. However, we find that a neuronal environment does restrict the Trks in their ability to respond to their "nonpreferred" neurotrophin ligands.
Collapse
Affiliation(s)
- Nancy Y Ip
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591
| | | | | | | | | | | | | | | | | |
Collapse
|
878
|
Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. JOURNAL OF NEUROBIOLOGY 1993; 24:199-214. [PMID: 8445388 DOI: 10.1002/neu.480240207] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in ls/ls mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nerve-specific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue.
Collapse
Affiliation(s)
- M D Gershon
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
879
|
Taylor LK, Marshak DR, Landreth GE. Identification of a nerve growth factor- and epidermal growth factor-regulated protein kinase that phosphorylates the protooncogene product c-Fos. Proc Natl Acad Sci U S A 1993; 90:368-72. [PMID: 8421668 PMCID: PMC45663 DOI: 10.1073/pnas.90.2.368] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Nerve growth factor (NGF) treatment of rat pheochromocytoma (PC12) cells induces the synthesis of the transcription factor c-Fos, which becomes highly phosphorylated relative to that produced as a result of depolarization of the cell. A peptide derived from the carboxyl terminus of c-Fos (residues 359-370, RKGSSSNEPSSD) containing putative phosphorylation sites was used to detect a NGF-stimulated Fos kinase. NGF treatment of PC12 cells resulted in a rapid activation of a protein kinase which phosphorylated both the c-Fos peptide and authentic c-Fos at its carboxyl terminus. The kinase was selectively activated by NGF and epidermal growth factor but was not induced by depolarization or other agents. The c-Fos peptide was phosphorylated at a serine corresponding to Ser362, a site critically implicated in the capacity of c-Fos to exhibit transrepressive activity [Ofir, R., Dwarki, V. J., Rashid, D. & Verma, I. M. (1990) Nature (London) 348, 80-82)]. The NGF-stimulated Fos kinase may play an important role in regulating the expression and transforming potential of c-Fos.
Collapse
Affiliation(s)
- L K Taylor
- Department of Neurosciences, Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | |
Collapse
|
880
|
Pérez-Navarro E, Alberch J, Arenas E, Marsal J. Nerve growth factor and its receptor are differentially modified by chronic naltrexone treatment during rat brain development. Neurosci Lett 1993; 149:47-50. [PMID: 8469378 DOI: 10.1016/0304-3940(93)90344-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to examine the relationship between the action of opioid neurotransmitters and growth factors in the regulation of brain development, we have studied the long-term effect of the opiate antagonist naltrexone (NTX) on the content of nerve growth factor (NGF) in cortex, hippocampus, septum and neostriatum, and on NGF receptor (NGFRs) levels in cortical membranes. 50 mg/kg NTX treatment induced a decrease in the number of 125I-NGF high-affinity binding sites, without detectable changes in NGF levels. However, low doses of NTX (1 mg/kg) produced no differences in 125I-NGF binding sites, but induced a decrease in NGF levels in hippocampus, septum and neostriatum. These results suggest that NGF and NGFRs could be involved in the trophic effects of opioids during brain development.
Collapse
Affiliation(s)
- E Pérez-Navarro
- Departament de Biologia Cel.lular i Anatomia Patològica, Hospital de Bellvitge, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
881
|
Kalberg C, Yung SY, Kessler JA. The cholinergic stimulating effects of ciliary neurotrophic factor and leukemia inhibitory factor are mediated by protein kinase C. J Neurochem 1993; 60:145-52. [PMID: 8380192 DOI: 10.1111/j.1471-4159.1993.tb05832.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intracellular mechanisms through which two trophic factors, ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), regulate cholinergic development were examined in sympathetic neuron cultures. Treatment with CNTF or LIF increased levels of choline acetyltransferase (ChAT) activity by 375 and 350%, respectively. However, in neuronal cultures depleted of protein kinase C (PKC) activity by chronic phorbol ester treatment, neither CNTF nor LIF elevated ChAT activity. Further, the stimulation of ChAT due to increased cell density was not observed in PKC-depleted sympathetic neurons. The inhibition of CNTF-stimulated ChAT by phorbol ester occurred in a dose-dependent manner and chronic phorbol ester treatments did not alter the levels of the catecholamine biosynthetic enzyme tyrosine hydroxylase. Moreover, increased levels of diacylglycerol, an endogenous activator of PKC, were observed in sympathetic neurons treated with CNTF. However, neither CNTF nor LIF stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate. These observations suggest that a common PKC-dependent pathway, which is independent of phosphatidylinositol 4,5-bisphosphate hydrolysis, mediates the cholinergic stimulating effects of CNTF, LIF, and cell-cell contact in cultured sympathetic neurons.
Collapse
Affiliation(s)
- C Kalberg
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
882
|
Hallböök F, Ibáñez CF, Ebendal T, Persson H. Cellular localization of brain-derived neurotrophic factor and neurotrophin-3 mRNA expression in the early chicken embryo. Eur J Neurosci 1993; 5:1-14. [PMID: 8074744 DOI: 10.1111/j.1460-9568.1993.tb00199.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Degenerate primers from conserved regions in nerve growth factor, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were used in the polymerase chain reaction to isolate DNA fragments from the chicken BDNF and NT-3 genes. A genomic clone coding for chicken NT-3 was isolated and the structure of the chicken NT-3 mature protein was subsequently deduced from nucleotide sequence analysis of the isolated chicken NT-3 gene. Comparison of the chicken BDNF and NT-3 with the corresponding rat molecules showed that the avian molecules are very similar to their mammalian homologues. Northern blot analyses of messenger RNA (mRNA) from chicken embryos from embryonic day 3.5 (E3.5), E4.5, E8, E12 and E18 showed that expression of both BDNF and NT-3 mRNA peaked at E4.5 and decreased at later stages of development. Both probes revealed two transcripts; larger mRNAs of 4.5 kilobases (kb) for BDNF and 4.0 kb for NT-3 predominated over the smaller transcripts of 1.4 and 1.3 kb, respectively. The cellular localization of BDNF and NT-3 mRNA in the E4 and E6 embryos was studied by in situ hybridization. In the E4 embryo, labelling for BDNF was seen over cells in restricted parts of the epithelium of the otic vesicle. Analysis of adjacent sections for the low-affinity nerve growth factor receptor mRNA showed that regions in the otic vesicle epithelium which labelled for BDNF mRNA also labelled for low-affinity nerve growth factor receptor mRNA. No labelling for NT-3 was detected in the otic vesicle. Labelling for BDNF mRNA was also found over mesenchyme dorsal to the wing bud, in the wing bud and in the splanchnopleural lining of the stomach. Labelling for NT-3 mRNA was found at E4 over the epidermis on the ventral side in the region of the branchial arches. The labelling extended up the maxillary processes to Rathke's pouch. The closely located infundibulum was weakly labelled for NT-3 mRNA. NT-3 mRNA was also detected in the mesenchyme surrounding the oesophagus and lung buds. The regional expression pattern is in agreement with the established role for BDNF and NT-3 as target-derived neurotrophic factors, but the results also suggest that BDNF may be an intrinsic factor important for the development of the inner ear. The results support the emerging view that neurotrophic factors can play a role in early differentiation of both neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- F Hallböök
- Department of Medical Chemistry, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
883
|
Kumar S, Peña LA, de Vellis J. CNS glial cells express neurotrophin receptors whose levels are regulated by NGF. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 17:163-8. [PMID: 8381900 DOI: 10.1016/0169-328x(93)90086-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Normal CNS glial cells manufacture neurotrophin receptors and are competent to respond to NGF. Neurotrophins bind a common receptor (LNGFR) and ligand-specific, tyrosine kinase-containing subunits (TrkA, TrkB, or TrkC). Northern blots and transcription assays reveal complex transcriptional regulation of LNGFR in astrocytes; from undetectable basal levels, NGF dramatically induces LNGFR within 4-6 h. Oligodendrocytes' relatively high basal levels are unaffected by NGF. TrkA mRNA was undetectable, however, TrkB was present and upregulated by NGF in astrocytes but not oligodendrocytes. The results are consistent with receptor autoregulation by its ligand and suggest that NGF plays a role in normal glial functions.
Collapse
Affiliation(s)
- S Kumar
- Laboratory of Biomedical and Environmental Sciences, University of California, Los Angeles 90024-1759
| | | | | |
Collapse
|
884
|
Hefti F, Lapchak PA. Pharmacology of nerve growth factor in the brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1993; 24:239-73. [PMID: 8504065 DOI: 10.1016/s1054-3589(08)60939-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- F Hefti
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089
| | | |
Collapse
|
885
|
Rakowicz-Szulczynska EM. Identification of the cell surface and nuclear receptors for NGF in a breast carcinoma cell line. J Cell Physiol 1993; 154:64-70. [PMID: 7678267 DOI: 10.1002/jcp.1041540109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
125I-nerve growth factor (NGF) was found to be internalized and translocated to the nucleus of SKBr5 breast carcinoma cells. The cytoplasm and chromatin isolated from nonmitotic cells accumulated two- and five-fold, respectively, more of 125I-NGF than the cells undergoing mitosis. MAb 20.4 developed against the NGF cell surface receptor immunoprecipitated the 80,000 M(r) receptor from plasma membrane and two protein species from the chromatin; 90,000 M(r) (major band) and 200,000 M(r) (minor band). In SKBr5 cells, binding of NGF to the chromatin did not affect synthesis of rRNA. Proliferation of SKBr5 cells was slightly stimulated by NGF. In control melanoma A875 cells, which express the 230,000 M(r) chromatin receptor, NGF inhibited both rRNA synthesis and cell proliferation. We suggest that the 90,000 M(r) chromatin receptor expressed by SKBr5 cells represents a "nonactive," ligand-binding subunit of the high molecular weight receptor for NGF. The critical role of the chromatin receptor for NGF in rRNA-dependent cell proliferation is discussed.
Collapse
|
886
|
Lucidi-Phillipi CA, Gage FH. The neurotrophic hypothesis and the cholinergic basal forebrain projection. PROGRESS IN BRAIN RESEARCH 1993; 98:241-9. [PMID: 8248513 DOI: 10.1016/s0079-6123(08)62405-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
887
|
Hefti F, Knusel B, Lapchak PA. Protective effects of nerve growth factor and brain-derived neurotrophic factor on basal forebrain cholinergic neurons in adult rats with partial fimbrial transections. PROGRESS IN BRAIN RESEARCH 1993; 98:257-63. [PMID: 8248515 DOI: 10.1016/s0079-6123(08)62407-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F Hefti
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089
| | | | | |
Collapse
|
888
|
Raivich G, Kreutzberg GW. Nerve growth factor and regeneration of peripheral nervous system. Clin Neurol Neurosurg 1993; 95 Suppl:S84-8. [PMID: 8467602 DOI: 10.1016/0303-8467(93)90041-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nerve growth factor, a well-known neurotrophic factor, supports the survival, differentiation and maintenance of sensory and sympathetic neurons during embryonic development and in the adult. This paper summarises the data on its involvement in peripheral nerve regeneration.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Psychiatry, Martinsried, Germany
| | | |
Collapse
|
889
|
Schatteman GC, Langer T, Lanahan AA, Bothwell MA. Distribution of the 75-kD low-affinity nerve growth factor receptor in the primate peripheral nervous system. Somatosens Mot Res 1993; 10:415-32. [PMID: 7986256 DOI: 10.3109/08990229309028847] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Disruption of the 75-kD low-affinity nerve growth factor (NGF) receptor (p75) has been shown to result in sensory and sympathetic nervous system deficits (Lee et al., 1992a,b). In order to establish precisely which subsets of neurons are capable of responding to neurotrophins (NTs) through the low-affinity NGF receptor, p75 was localized in the primate autonomic and somatic sensory nervous systems. In the autonomic system, cell bodies of some parasympathetic and enteric neurons expressed detectable levels of p75, whereas all sympathetic neurons expressed the protein. In the sensory system, some, but not all, cell bodies were labeled in cranial and spinal sensory ganglia and in the mesencephalic nucleus. Some peripheral and central projections of the sensory neurons were also labeled. Centrally, most of the labeled processes were found in regions containing primarily small unmyelinated fibers, including lamina II of Rexed and areas of the solitary tract and nucleus. Peripherally, labeled processes were associated with unmyelinated nerves and specialized structures such as taste buds and Meissner corpuscles, but not with myelinated processes. This study indicates that the subset of neurons in the autonomic nervous system likely to be capable of responding to neurotrophins is broader than generally thought, and that p75-expressing neurons tend to be clustered. Moreover, in the sensory nervous system p75 is expressed by most cell bodies, but expression in their projections is restricted both peripherally and centrally to unmyelinated processes and nerve terminals.
Collapse
Affiliation(s)
- G C Schatteman
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
890
|
Volonté C, Ross AH, Greene LA. Association of a purine-analogue-sensitive protein kinase activity with p75 nerve growth factor receptors. Mol Biol Cell 1993; 4:71-8. [PMID: 7680248 PMCID: PMC300901 DOI: 10.1091/mbc.4.1.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purine analogues are protein kinase inhibitors, and they block with varying potency and specificity certain of the biological actions of nerve growth factor (NGF). The analogue 6-thioguanine (6-TG) has been shown to inhibit with high specificity protein kinase N (PKN), a serine/threonine protein kinase activated by NGF in several cellular systems. In the present work, immunoprecipitates of p75 NGF receptors from PC12 cells (+/-NGF treatment) were assayed for protein kinase activity using the substrate myelin basic protein under phosphorylating conditions optimal for PKN and in the presence or absence of purine analogues. An NGF-inducible activity was detected, and approximately 80% was inhibited by purine analogues. This activity was maximally stimulated by NGF within 5-10 min, partially decreased by 60 min, and returned to basal levels after 15 h of NGF treatment. The analogue 6-TG inhibited the NGF-inducible p75-associated kinase activity with an IC50 in the range of 15-35 microM. In mutant PC12 nnr-5 cells that lack the Trk NGF receptor, the purine-analogue-sensitive p75-associated kinase activity was not inducible by NFG. In normal PC12 cells, cyclic AMP analogues and epidermal growth factor failed to induce the same activity. Application of either 2-aminopurine or 6-TG to intact cells only slightly inhibit the NGF-dependent induction of the purine-analogue-inhibited p75-associated kinase activity. This activity shares many similarities but also displays some significant differences with cytosolic PKN. Our findings therefore indicate the association of a purine-analogue-sensitive protein kinase with p75 NGF receptors.
Collapse
Affiliation(s)
- C Volonté
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
891
|
Cuello AC. Trophic responses of forebrain cholinergic neurons: a discussion. PROGRESS IN BRAIN RESEARCH 1993; 98:265-77. [PMID: 8248516 DOI: 10.1016/s0079-6123(08)62408-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A C Cuello
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
892
|
Whitehouse PJ, Landreth G, Younkin S. Molecular biology of Alzheimer's disease. MOLECULAR GENETIC MEDICINE 1993; 3:95-137. [PMID: 8220165 DOI: 10.1016/b978-0-12-462003-2.50008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P J Whitehouse
- Department of Neurology, University Hospitals of Cleveland, Case Western Reserve University, Ohio 44106
| | | | | |
Collapse
|
893
|
Chao MV, Battleman DS, Benedetti M. Receptors for nerve growth factor. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 137B:169-80. [PMID: 1478819 DOI: 10.1016/s0074-7696(08)62604-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M V Chao
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
894
|
Saika T, Kiyama H, Tohyama M, Matsunaga T. GAP-43 mRNA expression in facial motoneurons during regeneration: in situ hybridization histochemistry study using an alkaline phosphatase-labelled probe. ACTA OTO-LARYNGOLOGICA. SUPPLEMENTUM 1993; 501:80-4. [PMID: 8447232 DOI: 10.3109/00016489309126221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By means of in situ hybridization histochemistry using an alkaline phosphatase-labelled probe, we found an increase of mRNA for the growth-associated protein GAP-43 in rat facial motoneurons following axotomy of the facial nerve. After nerve resection, the increased level of GAP-43 mRNA was maintained for at least 8 weeks, while it returned to almost undetectable levels by 8 weeks after nerve crush injury. Thus, expression of GAP-43 mRNA in motor neurons paralleled the process of axonal regeneration. However, the increase of GAP-43 mRNA after resection was more pronounced than after crushing, in this way being different from the pattern of low-affinity nerve growth factor receptor mRNA expression.
Collapse
Affiliation(s)
- T Saika
- Department of Otolaryngology, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
895
|
Higuchi H, Nakano K, Miki N. Identification of NGF-response element in the rat neuropeptide Y gene and induction of the binding proteins. Biochem Biophys Res Commun 1992; 189:1553-60. [PMID: 1482366 DOI: 10.1016/0006-291x(92)90253-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene expression of the rat neuropeptide Y (NPY) increases by 100 times, as the PC12 cells differentiate into sympathetic neuron-like cells with NGF treatment and this increase is partly due to transcriptional activation of the NPY gene (Sabol and Higuchi, Mol. Endocrinol. 4, 384, 1990). To identify the NGF-response element, a transient expression assay was carried out by using the CAT reporter genes containing various lengths of the 5' upstream region of the NPY gene in the PC12 cells. The 48-base element (-80/-33 upstream of the Cap site) was identified as a NGF-response element (NGFRE). Gel shift assay indicated the existence of at least two DNA-binding proteins to NGFRE. The binding activity of the protein(s) (NDF1) to the upper region (-80/-63) was increased by 3-fold with NGF treatment for 24 h. These findings suggest that these nuclear proteins are involved in the enhanced transcription of the NPY gene by NGF.
Collapse
Affiliation(s)
- H Higuchi
- Department of Pharmacology I, Osaka University Medical School, Japan
| | | | | |
Collapse
|
896
|
Specific changes of Ras GTPase-activating protein (GAP) and a GAP-associated p62 protein during calcium-induced keratinocyte differentiation. Mol Cell Biol 1992. [PMID: 1448067 DOI: 10.1128/mcb.12.12.5319] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induction of tyrosine phosphorylation occurs as an early and specific event in keratinocyte differentiation. A set of tyrosine-phosphorylated substrates which transduce mitogenic signals by tyrosine kinases has previously been identified. We show here that of these substrates, the Ras GTPase-activating protein, GAP, is specifically affected during calcium-induced keratinocyte differentiation. As early as 10 min after calcium addition to cultured primary mouse keratinocytes, GAP associates with tyrosine-phosphorylated proteins and translocates to the membrane. In addition, a GAP-associated protein of approximately 62 kDa (p62) becomes rapidly and heavily tyrosine phosphorylated in both membrane and cytosolic fractions. This protein corresponds to the major tyrosine-phosphorylated protein that is induced in differentiating keratinocytes as early as 5 min after calcium addition. p62 phosphorylation was not observed after exposure of these cells to epidermal growth factor, phorbol ester, or transforming growth factor beta. In contrast, PLC gamma and P13K were tyrosine phosphorylated after epidermal growth factor, but not calcium, stimulation. Thus, changes of Ras GAP and an associated p62 protein occur as early and specific events in keratinocyte differentiation and appear to involve a calcium-induced tyrosine kinase.
Collapse
|
897
|
Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, Pelicci PG, Schlessinger J, Pawson T. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 1992; 360:689-92. [PMID: 1465135 DOI: 10.1038/360689a0] [Citation(s) in RCA: 811] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.
Collapse
Affiliation(s)
- M Rozakis-Adcock
- Division of MOlecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
898
|
Byers MR, Kvinnsland I, Bothwell M. Analysis of low affinity nerve growth factor receptor during pulpal healing and regeneration of myelinated and unmyelinated axons in replanted teeth. J Comp Neurol 1992; 326:470-84. [PMID: 1469122 DOI: 10.1002/cne.903260311] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nerve regeneration was examined in rat molars that were briefly extracted and then replanted in the socket for 1-90 days. Immunocytochemistry was used to evaluate neural and nonneural immunoreactivity (IR) for low affinity nerve growth factor receptor (p75-NGFR) and for laminin and calcitonin gene-related peptide (CGRP). Three different types of pulpal response to replantation were found. Type I: Some replanted teeth had mild injury and still contained coronal odontoblasts and associated fibroblasts that retained p75-NGFR-IR; they continued regular dentin formation and had excellent reinnervation. Type II: Teeth with intermediate injury lost most or all of the coronal pulp tissue, but they regenerated odontoblast-like cells that formed irregular dentin, they had numerous dispersed p75-NGFR-IR fibroblasts in crown pulp during early regeneration, and they had excellent reinnervation. Type III: Severely injured teeth lost their original pulp; they filled with dense connective tissue and bone and had poor reinnervation. After Type I or II injury the Schwann cells around degenerating myelinated and unmyelinated axons had increased expression of p75-NGFR by 1-3 days. By 7-10 days those Schwann cells had formed hollow tubes (bands of Bungner) along the degenerating axon tracks. They maintained their increased p75-NGFR-IR during and after regeneration of unmyelinated axons, whereas Schwann cells involved in remyelination lost p75-NGFR-IR at that stage. The number of CGRP-IR axons in the regenerating pulp increased from 7 to 90 days. Laminin-IR increased in all replanted teeth at 3-10 days and only returned to normal patterns in teeth with Type I or Type II response at 20-90 days. The special p75-NGFR-IR of pulpal fibroblasts of adult rat molars did not usually persist in regenerated, reinnervated pulp. The extensive depletion of fibroblast p75-NGFR-IR and the continuing enhanced p75-NGFR-IR in unmyelinated nerve fibers at 90 days show that altered growth factor conditions characterize regenerated pulp of replanted teeth.
Collapse
Affiliation(s)
- M R Byers
- Department of Anesthesiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
899
|
Paralkar VM, Weeks BS, Yu YM, Kleinman HK, Reddi AH. Recombinant human bone morphogenetic protein 2B stimulates PC12 cell differentiation: potentiation and binding to type IV collagen. J Biophys Biochem Cytol 1992; 119:1721-8. [PMID: 1469059 PMCID: PMC2289768 DOI: 10.1083/jcb.119.6.1721] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic protein 2B (BMP 2B, also known as BMP 4) induces cartilage and bone morphogenesis in ectopic extraskeletal sites. BMP 2B is one of several bone morphogenetic proteins which along with activins and inhibins are members of the transforming growth factor-beta (TGF-beta) family. Both BMP 2B and activin A, but not TGF-beta 1, induce rat pheochromocytoma PC12 neuronal cell differentiation and expression of VGF, a nervous system-specific mRNA. PC12 cells exhibited approximately 2,500 receptors per cell for BMP 2B with an apparent dissociation constant of 19 pM. Extracellular matrix components, including fibronectin, laminin, and collagen type IV potentiated the activity of BMP and activin A, with the latter being the most active. Direct experiments demonstrated that radioiodinated BMP 2B bound to collagen type IV better than to either laminin or fibronectin. These data demonstrate a common neurotrophic activity of both BMP 2B and activin A, and suggest that these regulatory molecules alone and in conjunction with extracellular matrix components may play a role in both the development and repair of nervous tissue.
Collapse
Affiliation(s)
- V M Paralkar
- Bone Cell Biology Section, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
900
|
Frisén J, Verge VM, Cullheim S, Persson H, Fried K, Middlemas DS, Hunter T, Hökfelt T, Risling M. Increased levels of trkB mRNA and trkB protein-like immunoreactivity in the injured rat and cat spinal cord. Proc Natl Acad Sci U S A 1992; 89:11282-6. [PMID: 1333605 PMCID: PMC50534 DOI: 10.1073/pnas.89.23.11282] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expression of neurotrophins and neurotrophin receptors was examined with in situ hybridization and immunohistochemical techniques 10 days to 6 weeks after ventral or dorsal funiculus spinal cord lesions in adult rats and cats, lesions that have previously been shown to allow axon regrowth. Strongly elevated levels of trkB mRNA were seen in the scar tissue formed in the white matter after both types of lesions. Only small increases were detected for nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, neurotrophin 4, trk, and trkC mRNA in response to the injuries. trkB protein-like immunoreactivity was increased in the regions that showed elevated levels of trkB mRNA. EM localized this immunoreactivity to neurons, astrocytes, and leptomeningeal cells. Neurofilament immunolabeling and axonal tracing demonstrated that nerve fibers in the scar tissue were concentrated to areas that showed strong trkB protein-like immunoreactivity. The findings implicate a role for neurotrophin receptors in axonal sprouting and glial reactions in the injured spinal cord.
Collapse
Affiliation(s)
- J Frisén
- Department of Anatomy, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|