901
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
902
|
Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 2011; 108:17396-401. [PMID: 21969579 DOI: 10.1073/pnas.1113421108] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed cargo. Here, we describe the engagement of LAP upon uptake of apoptotic, necrotic, and RIPK3-dependent necrotic cells by macrophages. This process is dependent on some members of the classical autophagy pathway, including Beclin1, ATG5, and ATG7. In contrast, ULK1, despite being required for autophagy, is dispensable for LAP induced by uptake of microbes or dead cells. LAP is required for efficient degradation of the engulfed corpse, and in the absence of LAP, engulfment of dead cells results in increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines. LAP is triggered by engagement of the TIM4 receptor by either phosphatidylserine (PtdSer)-displaying dead cells or PtdSer-containing liposomes. Therefore, the consequence of phagocytosis of dead cells is strongly affected by those components of the autophagy pathway involved in LAP.
Collapse
|
903
|
Korbelik M, Zhang W, Merchant S. Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 2011; 60:1431-7. [PMID: 21644033 PMCID: PMC11028986 DOI: 10.1007/s00262-011-1047-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/20/2011] [Indexed: 12/26/2022]
Abstract
Damage-associated molecular patterns (DAMPs), danger signal molecules expressed after injury or infection, have become recognized as prerequisite for orchestrating effective anti-tumor host response. The expression of two prototypical DAMPs, calreticulin and high-mobility group box-1 (HMGB1) protein, was examined following Photofrin-photodynamic therapy (PDT) of Lewis lung carcinoma (LLC) cells in vitro and LLC tumors growing in syngeneic mice. Cell surface expression of calreticulin was found to be highly increased at 1 h after PDT treatment both in vitro and in vivo. Increased exposure of calreticulin was also detected on the surface of macrophages from PDT-treated LLC tumors. At the same time interval, a rise in serum HMGB1 was detected in host mice. Intracellular staining of macrophages co-incubated for 16 h with PDT-treated LLC cells revealed elevated levels of HMGB1 in these cells. The knowledge of the involvement of these DAMPs uncovers important mechanistic insights into the development of host response induced by PDT.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Research Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Room 6.112, Vancouver, BC V5Z 1L3, Canada.
| | | | | |
Collapse
|
904
|
Ma Y, Conforti R, Aymeric L, Locher C, Kepp O, Kroemer G, Zitvogel L. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 2011; 30:71-82. [PMID: 21298323 DOI: 10.1007/s10555-011-9283-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemotherapy or radiotherapy could induce various tumor cell death modalities, releasing tumor-derived antigen as well as danger signals that could either be captured for triggering antitumor immune response or ignored. Exploring the interplay among therapeutic drugs, tumor cell death and the immune cells should improve diagnostic, prognostic, predictive, and therapeutic management of tumor. We summarized some of the cell death-derived danger signals and the mechanism for host to sense and response to cell death in the tumor microenvironment. Based on the recent clinical or experimental findings, several strategies have been suggested to improve the immunogenicity of cell death and augment antitumor immunity.
Collapse
Affiliation(s)
- Yuting Ma
- INSERM, U1015, 94805 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
905
|
Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61-9. [PMID: 21249425 DOI: 10.1007/s10555-011-9273-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of some chemo- and radiotherapeutic regimens relies on the induction of immunogenic tumor cell death and on the induction of an anticancer immune response. Cells succumbing to immunogenic cell death undergo specific changes in their surface characteristics and release pro-immunogenic factors according to a defined spatiotemporal pattern. This stimulates antigen presenting cells such as dendritic cells to efficiently take up tumor antigens, process them, and cross-prime cytotoxic T lymphocytes, thus eliciting a tumor-specific cognate immune response. Such a response can also target therapy-resistant tumor (stem) cells, thereby leading, at least in some instances, to tumor eradication. In this review, we shed some light on the molecular identity of the factors that are required for cell death to be perceived as immunogenic. We discuss the intriguing observations that the most abundant endoplasmic reticulum protein, calreticulin, the most abundant intracellular metabolite, ATP, and the most abundant non-histone chromatin-binding protein, HMGB1, can determine whether cell death is immunogenic as they appear on the surface or in the microenvironment of dying cells.
Collapse
Affiliation(s)
- Oliver Kepp
- INSERM, U848, Institut Gustave Roussy, Pavillon de Recherche 1, 94805 Villejuif (Paris), France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
906
|
Abstract
Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus-infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti-inflammatory manner. Such ″silent″ clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age-associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance.
Collapse
|
907
|
Gu BJ, Saunders BM, Petrou S, Wiley JS. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP. THE JOURNAL OF IMMUNOLOGY 2011; 187:2365-75. [PMID: 21821797 DOI: 10.4049/jimmunol.1101178] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Ben J Gu
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, New South Wales 2750, Australia
| | | | | | | |
Collapse
|
908
|
Quesada Calvo F, Fillet M, Renaut J, Crahay C, Gueders M, Hacha J, Paulissen G, Foidart JM, Noel A, Rocks N, Leprince P, Cataldo D. Potential therapeutic target discovery by 2D-DIGE proteomic analysis in mouse models of asthma. J Proteome Res 2011; 10:4291-301. [PMID: 21751807 DOI: 10.1021/pr200494n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As asthma physiopathology is complex and not fully understood to date; it is expected that new key mediators are still to be unveiled in this disease. The main objective of this study was to discover potential new target proteins with a molecular weight >20 kDa by using two-dimensional differential in-gel electrophoresis (2D-DIGE) on lung parenchyma extracts from control or allergen-exposed mice (ovalbumin). Two different mouse models leading to the development of acute airway inflammation (5 days allergen exposure) and airway remodeling (10 weeks allergen exposure) were used. This experimental setting allowed the discrimination of 33 protein spots in the acute inflammation model and 31 spots in the remodeling model displaying a differential expression. Several proteins were then identified by MALDI-TOF/TOF MS. Among those differentially expressed proteins, PDIA6, GRP78, Annexin A6, hnRPA3, and Enolase display an increased expression in lung parenchyma from mice exposed to allergen for 5 days. Conversely, Apolipoprotein A1 was shown to be decreased after allergen exposure in the same model. Analysis on lung parenchyma of mice exposed to allergens for 10 weeks showed decreased calreticulin levels. Changes in the levels of those different mediators were confirmed by Western blot and immunohistochemical analysis. Interestingly, alveolar macrophages isolated from lungs in the acute inflammation model displayed enhanced levels of GRP78. Moreover, intratracheal instillation of anti-GRP78 siRNA in allergen-exposed animals led to a decrease in eosinophilic inflammation and bronchial hyperresponsiveness. This study unveils new mediators of potential importance that are up- and down-regulated in asthma. Among up-regulated mediators, GRP-78 appears as a potential new therapeutic target worthy of further investigations.
Collapse
Affiliation(s)
- Florence Quesada Calvo
- GIGA-research, GIGA-I3, GIGA-cancer, and GIGA-Neurosciences, University of Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Lawrence DW, Koenig JM. Enhanced Phagocytosis in Neonatal Monocyte-Derived Macrophages is Associated with Impaired SHP-1 Signaling. Immunol Invest 2011; 41:129-43. [DOI: 10.3109/08820139.2011.595471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
910
|
Yancey PG, Ding Y, Fan D, Blakemore JL, Zhang Y, Ding L, Zhang J, Linton MF, Fazio S. Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent. Circulation 2011; 124:454-64. [PMID: 21730304 PMCID: PMC3144781 DOI: 10.1161/circulationaha.111.032268] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/25/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND We previously demonstrated that macrophage low-density lipoprotein receptor (LDLR)-related protein 1 (LRP1) deficiency increases atherosclerosis despite antiatherogenic changes including decreased uptake of remnants and increased secretion of apolipoprotein E (apoE). Thus, our objective was to determine whether the atheroprotective effects of LRP1 require interaction with apoE, one of its ligands with multiple beneficial effects. METHODS AND RESULTS We examined atherosclerosis development in mice with specific deletion of macrophage LRP1 (apoE(-/-) MΦLRP1(-/-)) and in LDLR(-/-) mice reconstituted with apoE(-/-) MΦLRP1(-/-) bone marrow. The combined absence of apoE and LRP1 promoted atherogenesis more than did macrophage apoE deletion alone in both apoE-producing LDLR(-/-) mice (+88%) and apoE(-/-) mice (+163%). The lesions of both mouse models with apoE(-/-) LRP1(-/-) macrophages had increased macrophage content. In vitro, apoE and LRP1 additively inhibit macrophage apoptosis. Furthermore, there was excessive accumulation of apoptotic cells in lesions of both LDLR(-/-) mice (+110%) and apoE(-/-) MΦLRP1(-/-) mice (+252%). The apoptotic cell accumulation was partially due to decreased efferocytosis as the ratio of free to cell-associated apoptotic nuclei was 3.5-fold higher in lesions of apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice. Lesion necrosis was also increased (6 fold) in apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice. Compared with apoE(-/-) mice, the spleens of apoE(-/-) MΦLRP1(-/-) mice contained 1.6- and 2.4-fold more total and Ly6-C(high) monocytes. Finally, there were 3.6- and 2.4-fold increases in Ly6-C(high) and CC-chemokine receptor 2-positive cells in lesions of apoE(-/-) MΦLRP1(-/-) versus apoE(-/-) mice, suggesting that accumulation of apoptotic cells enhances lesion development and macrophage content by promoting the recruitment of inflammatory monocytes. CONCLUSION Low-density lipoprotein receptor protein 1 exerts antiatherogenic effects via pathways independent of apoE involving macrophage apoptosis and monocyte recruitment.
Collapse
Affiliation(s)
- Patricia G Yancey
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A 2011; 108:13224-9. [PMID: 21788504 DOI: 10.1073/pnas.1101398108] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2(-/-)IL-2Rγc(-/-) mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4(+) or CD8(+) single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.
Collapse
|
912
|
Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 2011; 32:350-7. [PMID: 21782511 DOI: 10.1016/j.it.2011.04.009] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 12/14/2022]
Abstract
Maintenance of circulating, functional neutrophils and their robust recruitment to tissues in response to injury and/or microbial infection are crucial for host defense. Equally important, although less well understood, are the processes for removal of these short-lived cells. Here, we review recent findings of novel neutrophil characteristics that determine removal. These neutrophil-derived signals, in turn, can shape the responses of other cells and surrounding tissues and promote a return to homeostasis. If not removed, dying neutrophils disintegrate and release phlogistic cargo that can further contribute to ongoing inflammation, tissue destruction, or autoimmunity.
Collapse
Affiliation(s)
- Donna L Bratton
- National Jewish Health, 1400 Jackson Street, Room A540, Denver, CO 80206, USA.
| | | |
Collapse
|
913
|
Peters LR, Raghavan M. Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:919-31. [PMID: 21670312 PMCID: PMC3371385 DOI: 10.4049/jimmunol.1100690] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of immunological functions are ascribed to cell surface-expressed forms of the endoplasmic reticulum (ER) chaperone calreticulin (CRT). In this study, we examined the impact of ER stress-inducing drugs upon cell surface CRT induction and the resulting immunological consequences. We showed that cell surface expression of CRT and secretion of CRT, BiP, gp96, and PDI were induced by thapsigargin (THP) treatment, which depletes ER calcium, but not by tunicamycin treatment, which inhibits protein glycosylation. Surface expression of CRT in viable, THP-treated fibroblasts correlated with their enhanced phagocytic uptake by bone marrow-derived dendritic cells. Incubation of bone marrow-derived dendritic cells with THP-treated fibroblasts enhanced sterile IL-6 production and LPS-induced generation of IL-1β, IL-12, IL-23, and TNF-α. However, extracellular CRT is not required for enhanced proinflammatory responses. Furthermore, the pattern of proinflammatory cytokine induction by THP-treated cells and cell supernatants resembled that induced by THP itself and indicated that other ER chaperones present in supernatants of THP-treated cells also do not contribute to induction of the innate immune response. Thus, secretion of various ER chaperones, including CRT, is induced by ER calcium depletion. CRT, previously suggested as an eat-me signal in dead and dying cellular contexts, can also promote phagocytic uptake of cells subject to ER calcium depletion. Finally, there is a strong synergy between calcium depletion in the ER and sterile IL-6, as well as LPS-dependent IL-1β, IL-12, IL-23, and TNF-α innate responses, findings that have implications for understanding inflammatory diseases that originate in the ER.
Collapse
Affiliation(s)
- Larry Robert Peters
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| |
Collapse
|
914
|
Navarro-Alvarez N, Yang YG. CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol 2011; 8:285-288. [PMID: 21258362 PMCID: PMC3644051 DOI: 10.1038/cmi.2010.83] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022] Open
Abstract
Organ transplantation is limited by the availability of human donor organs. The transplantation of organs and tissues from other species (xenotransplantation) would supply an unlimited number of organs and offer many other advantages for which the pig has been identified as the most suitable source. However, the robust immune responses to xenografts remain a major obstacle to clinical application of xenotransplantation. The more vigorous xenograft rejection relative to allograft rejection is largely accounted for by the extensive genetic disparities between the donor and recipient. Xenografts activate host immunity not only by expressing immunogenic xenoantigens that provide the targets for immune recognition and rejection, but also by lacking ligands for the host immune inhibitory receptors. This review is focused on recent findings regarding the role of CD47, a ligand of an immune inhibitory receptor, signal regulatory protein alpha (SIRPα), in phagocytosis and xenograft rejection.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
915
|
Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y, Kaneko T, Kusakari S, Kotani T, Mori M, Murata Y, Okazawa H, Ware CF, Oldenborg PA, Nojima Y, Matozaki T. Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:291-7. [PMID: 21632712 PMCID: PMC3492956 DOI: 10.4049/jimmunol.1100528] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular basis for formation of lymphoid follicle and its homeostasis in the secondary lymphoid organs remains unclear. Signal regulatory protein α (SIRPα), an Ig superfamily protein that is predominantly expressed in dendritic cells or macrophages, mediates cell-cell signaling by interacting with CD47, another Ig superfamily protein. In this study, we show that the size of the T cell zone as well as the number of CD4(+) T cells were markedly reduced in the spleen of mice bearing a mutant (MT) SIRPα that lacks the cytoplasmic region compared with those of wild-type mice. In addition, the expression of CCL19 and CCL21, as well as of IL-7, which are thought to be important for development or homeostasis of the T cell zone, was markedly decreased in the spleen of SIRPα MT mice. By the use of bone marrow chimera, we found that hematopoietic SIRPα is important for development of the T cell zone as well as the expression of CCL19 and CCL21 in the spleen. The expression of lymphotoxin and its receptor, lymphotoxin β receptor, as well as the in vivo response to lymphotoxin β receptor stimulation were also decreased in the spleen of SIRPα MT mice. CD47-deficient mice also manifested phenotypes similar to SIRPα MT mice. These data suggest that SIRPα as well as its ligand CD47 are thus essential for steady-state homeostasis of T cells in the spleen.
Collapse
Affiliation(s)
- Miho Sato-Hashimoto
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yasuyuki Saito
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Hiroko Iwamura
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yoshitake Kanazawa
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Tetsuya Kaneko
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Kusakari
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Takenori Kotani
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Munemasa Mori
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hideki Okazawa
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yoshihisa Nojima
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
916
|
Dragovic SM, Hill T, Christianson GJ, Kim S, Elliott T, Scott D, Roopenian DC, Van Kaer L, Joyce S. Proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with antigen processing control CD4+ Th cell responses by regulating indirect presentation of MHC class II-restricted cytoplasmic antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6683-92. [PMID: 21572029 PMCID: PMC3537507 DOI: 10.4049/jimmunol.1100525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic Ags derived from viruses, cytosolic bacteria, tumors, and allografts are presented to T cells by MHC class I or class II molecules. In the case of class II-restricted Ags, professional APCs acquire them during uptake of dead class II-negative cells and present them via a process called indirect presentation. It is generally assumed that the cytosolic Ag-processing machinery, which supplies peptides for presentation by class I molecules, plays very little role in indirect presentation of class II-restricted cytoplasmic Ags. Remarkably, upon testing this assumption, we found that proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with Ag processing, but not tapasin, partially destroyed or removed cytoplasmic class II-restricted Ags, such that their inhibition or deficiency led to dramatically increased Th cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags, both of which are indirectly presented. This effect was neither due to enhanced endoplasmic reticulum-associated degradation nor competition for Ag between class I and class II molecules. From these findings, a novel model emerged in which the cytosolic Ag-processing machinery regulates the quantity of cytoplasmic peptides available for presentation by class II molecules and, hence, modulates Th cell responses.
Collapse
Affiliation(s)
- Srdjan M. Dragovic
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy Hill
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Sungjune Kim
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Tim Elliott
- Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD
| | - Diane Scott
- Transplantation Biology Group, Department of Immunology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | | - Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
917
|
He X, Wang J, Dou J, Yu F, Cai K, Li X, Zhang H, Gu N. Antitumor efficacy induced by a B16F10 tumor cell vaccine treated with mitoxantrone alone or in combination with reserpine and verapamil in mice. Exp Ther Med 2011; 2:911-916. [PMID: 22977597 DOI: 10.3892/etm.2011.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/20/2011] [Indexed: 12/17/2022] Open
Abstract
An apoptotic tumor cell serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. In the present study, a B16F10 tumor cell vaccine treated with mitoxantrone (MIT) was developed, and its antitumor effect on mice was evaluated. The results indicated that the B16F10 tumor cell vaccine treated with MIT alone or in combination with reserpine (RP) and verapamil (VP) for 12 h triggered apoptosis, and that the expression of CD80, the MHC II class molecule, NKG2D and its ligand were significantly increased compared to the expression levels in the control group. The tumor vaccine immunogenicity was significantly enhanced in the vaccinated mice, resulting in augmented cytotoxicity of splenocytes and NK cells as well as the splenocyte proliferative response compared to the control group mice. Notably, the mice vaccinated with the B16F10 tumor cell vaccine treated with MIT, RP and VP did not generate tumors only after 60 days into the observation, but the mice also generated a powerful immune prophylactic efficiency against the B16F10 tumor cell challenge. These findings demonstrated the safety and efficacy of the B16F10 tumor cell vaccine treated with MIT alone or in combination with RP and VP in the murine model, and suggest that an apoptotic tumor cell vaccine modeled on naturally occurring tumor immune responses in vivo may provide a safe and immunogenic tumor vaccine for potential applications in humans.
Collapse
Affiliation(s)
- Xiangfeng He
- Department of Pathogenic Biology and Immunology, Medical School
| | | | | | | | | | | | | | | |
Collapse
|
918
|
Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH, Henson PM, Jordan MB. Hemophagocytosis causes a consumptive anemia of inflammation. ACTA ACUST UNITED AC 2011; 208:1203-14. [PMID: 21624938 PMCID: PMC3173248 DOI: 10.1084/jem.20102538] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytopenias of uncertain etiology are commonly observed in patients during severe inflammation. Hemophagocytosis, the histological appearance of blood-eating macrophages, is seen in the disorder hemophagocytic lymphohistiocytosis and other inflammatory contexts. Although it is hypothesized that these phenomena are linked, the mechanisms facilitating acute inflammation-associated cytopenias are unknown. We report that interferon γ (IFN-γ) is a critical driver of the acute anemia observed during diverse microbial infections in mice. Furthermore, systemic exposure to physiologically relevant levels of IFN-γ is sufficient to cause acute cytopenias and hemophagocytosis. Demonstrating the significance of hemophagocytosis, we found that IFN-γ acts directly on macrophages in vivo to alter endocytosis and provoke blood cell uptake, leading to severe anemia. These findings define a unique pathological process of broad clinical and immunological significance, which we term the consumptive anemia of inflammation.
Collapse
Affiliation(s)
- Erin E Zoller
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
919
|
Goh YC, Yap CT, Huang BH, Cronshaw AD, Leung BP, Lai PBS, Hart SP, Dransfield I, Ross JA. Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell Mol Life Sci 2011; 68:1581-92. [PMID: 20953657 PMCID: PMC11114798 DOI: 10.1007/s00018-010-0534-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/29/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
Heat-shock protein 60 (Hsp60) is a highly conserved stress protein which has chaperone functions in prokaryotes and mammalian cells. Hsp60 is associated with the mitochondria and the plasma membrane through phosphorylation by protein kinase A, and is incorporated into lipid membranes as a protein-folding chaperone. Its diverse intracellular chaperone functions include the secretion of proteins where it maintains the conformation of precursors and facilitates their translocation through the plasma membrane. We report here that Hsp60 is concentrated in apoptotic membrane blebs and translocates to the surface of cells undergoing apoptosis. Hsp60 is also enriched in platelets derived from terminally differentiated megakaryocytes and expressed at the surface of senescent platelets. Furthermore, the exposure of monocytic U937 cells to Hsp60 enhanced their phagocytic activity. Our results suggests that externalized Hsp60 in apoptotic cells and senescent platelets influences events subsequent to apoptosis, such as the clearance of apoptotic cells by phagocytes.
Collapse
Affiliation(s)
- Yaw Chong Goh
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bao Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrew D. Cronshaw
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, UK
| | - Bernard P. Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul B. S. Lai
- Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Simon P. Hart
- Department of Respiratory Medicine, University of Hull, Hull, UK
| | - Ian Dransfield
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James A. Ross
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| |
Collapse
|
920
|
Rapid decrease of CD16 (FcγRIII) expression on heat-shocked neutrophils and their recognition by macrophages. J Biomed Biotechnol 2011; 2011:284759. [PMID: 21541219 PMCID: PMC3085332 DOI: 10.1155/2011/284759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/22/2011] [Indexed: 12/19/2022] Open
Abstract
Accumulation of neutrophils in the site of inflammation is a
typical mechanism of innate immunity. The accumulated neutrophils
are exposed to stressogenic factors usually associated with
inflammation. Here, we studied response of human peripheral blood
neutrophils subjected to short, febrile-range heat stress. We
show that 90 min heat stress slowed down the spontaneous apoptosis
of neutrophils. In the absence of typical markers of apoptosis the
heat-shocked neutrophils induced antiinflammatory effect in human
monocyte-derived macrophages (hMDMs), yet without being engulfed.
Importantly, the expression of FcγRIII (CD16) was sharply reduced.
Surprisingly, concentration of the soluble CD16 did not change in
heat-shocked neutrophil supernates indicating that the reduction
of the cell surface CD16 was achieved mainly by inhibition of
fresh CD16 delivery. Inhibitors of 90 kDa heat shock protein
(HSP90), a molecular chaperone found in membrane platforms
together with CD16 and CD11b, significantly increased the observed
effects caused by heat shock. The presented data suggest a novel
systemic aspect of increased temperature which relies on immediate
modification by heat of a neutrophil molecular pattern. This
effect precedes cell death and may be beneficial in the initial
phase of inflammation providing a nonphlogistic signal to
macrophages before it comes from apoptotic cells.
Collapse
|
921
|
Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, Weiskopf K, Willingham SB, Raveh T, Park CY, Majeti R, Weissman IL. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2011; 2:63ra94. [PMID: 21178137 DOI: 10.1126/scitranslmed.3001375] [Citation(s) in RCA: 576] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Under normal physiological conditions, cellular homeostasis is partly regulated by a balance of pro- and anti-phagocytic signals. CD47, which prevents cancer cell phagocytosis by the innate immune system, is highly expressed on several human cancers including acute myeloid leukemia, non-Hodgkin's lymphoma, and bladder cancer. Blocking CD47 with a monoclonal antibody results in phagocytosis of cancer cells and leads to in vivo tumor elimination, yet normal cells remain mostly unaffected. Thus, we postulated that cancer cells must also display a potent pro-phagocytic signal. Here, we identified calreticulin as a pro-phagocytic signal that was highly expressed on the surface of several human cancers, but was minimally expressed on most normal cells. Increased CD47 expression correlated with high amounts of calreticulin on cancer cells and was necessary for protection from calreticulin-mediated phagocytosis. Blocking the interaction of target cell calreticulin with its receptor, low-density lipoprotein receptor-related protein, on phagocytic cells prevented anti-CD47 antibody-mediated phagocytosis. Furthermore, increased calreticulin expression was an adverse prognostic factor in diverse tumors including neuroblastoma, bladder cancer, and non-Hodgkin's lymphoma. These findings identify calreticulin as the dominant pro-phagocytic signal on several human cancers, provide an explanation for the selective targeting of tumor cells by anti-CD47 antibody, and highlight the balance between pro- and anti-phagocytic signals in the immune evasion of cancer.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Center, and Ludwig Center at Stanford, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
922
|
|
923
|
Guzik K, Skret J, Smagur J, Bzowska M, Gajkowska B, Scott DA, Potempa JS. Cigarette smoke-exposed neutrophils die unconventionally but are rapidly phagocytosed by macrophages. Cell Death Dis 2011; 2:e131. [PMID: 21412277 PMCID: PMC3101810 DOI: 10.1038/cddis.2011.13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Pulmonary accumulation of neutrophils is typical for active smokers who are also predisposed to multiple inflammatory and infectious lung diseases. We show that human neutrophil exposure to cigarette smoke extract (CSE) leads to an atypical cell death sharing features of apoptosis, autophagy and necrosis. Accumulation of tar-like substances in autophagosomes is also apparent. Before detection of established cell death markers, CSE-treated neutrophils are effectively recognized and non-phlogistically phagocytosed by monocyte-derived macrophages. Blockade of LOX-1 and scavenger receptor A, but not MARCO or CD36, as well as pre-incubation with oxLDL, inhibited phagocytosis, suggesting that oxLDL-like structures are major phagocytosis signals. Specific lipid (β-carotene and quercetin), but not aqueous, antioxidants increased the pro-phagocytic effects of CSE. In contrast to non-phlogistic phagocytosis, degranulation of secondary granules, as monitored by lactoferrin release, was apparent on CSE exposure, which is likely to promote pulmonary inflammation and tissue degradation. Furthermore, CSE-exposed neutrophils exhibited a compromised ability to ingest the respiratory pathogen, Staphylococcus aureus, which likely contributes to bacterial persistence in the lungs of smokers and is likely to promote further pulmonary recruitment of neutrophils. These data provide mechanistic insight into the lack of accumulation of apoptotic neutrophil populations in the lungs of smokers and their increased susceptibility to degradative pulmonary diseases and bacterial infections.
Collapse
Affiliation(s)
- K Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Skret
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - M Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Gajkowska
- Laboratory of Cell Ultrastructure, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - D A Scott
- Oral Health and Systemic Disease Research Group, School of Dentistry, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - J S Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Oral Health and Systemic Disease Research Group, School of Dentistry, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
924
|
Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther 2011; 13:202. [PMID: 21371352 PMCID: PMC3157636 DOI: 10.1186/ar3206] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus is a multifactorial autoimmune disease with an as yet unknown etiopathogenesis. It is widely thought that self-immunization in systemic lupus is driven by defective clearance of dead and dying cells. In lupus patients, large numbers of apoptotic cells accumulate in various tissues including germinal centers. In the present review, we discuss the danger signals released by apoptotic cells, their triggering of inflammatory responses, and the breakdown of B-cell tolerance. We also review the pathogenic role of apoptotic cell clearance in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Department of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | |
Collapse
|
925
|
Païdassi H, Tacnet-Delorme P, Verneret M, Gaboriaud C, Houen G, Duus K, Ling WL, Arlaud GJ, Frachet P. Investigations on the C1q-calreticulin-phosphatidylserine interactions yield new insights into apoptotic cell recognition. J Mol Biol 2011; 408:277-90. [PMID: 21352829 DOI: 10.1016/j.jmb.2011.02.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/02/2011] [Accepted: 02/11/2011] [Indexed: 02/09/2023]
Abstract
Both C1q and calreticulin (CRT) are involved in the recognition of apoptotic cells. CRT was initially characterized as a receptor for the C1q collagen-like fragment (CLF), whereas C1q was shown to bind apoptotic cells through its globular region (GR). Using purified CRT and recombinant CRT domains, we now provide unambiguous experimental evidence that, in addition to its CLF, the C1q GR also binds CRT and that both types of interactions are mediated by the CRT globular domain. Surface plasmon resonance analyses revealed that the C1q CLF and GR domains each bind individually to immobilized CRT and its globular domain with K(D) values of (2.6-8.3) × 10(-7) M. Further evidence that CRT binds to the C1q GR was obtained by electron microscopy. The role of CRT in the recognition of apoptotic HeLa cells by C1q was analyzed. The C1q GR partially colocalized with CRT on the surface of early apoptotic cells, and siRNA (small interfering RNA)-induced CRT deficiency resulted in increased apoptotic cell binding to C1q. The interaction between CRT and phosphatidylserine (PS), a known C1q ligand on apoptotic cells, was also investigated. The polar head of PS was shown to bind to CRT with a 10-fold higher affinity (K(D)=1.5 × 10(-5) M) than that determined for C1q, and, accordingly, the C1q GR-PS interaction was impaired in the presence of CRT. Together, these observations indicate that CRT, C1q, and PS are all closely involved in the uptake of apoptotic cells and strongly suggest a combinatorial role of these three molecules in the recognition step.
Collapse
Affiliation(s)
- Helena Païdassi
- Université Joseph Fourier Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
926
|
Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, Park CY, Weissman IL, Majeti R. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011; 71:1374-84. [PMID: 21177380 PMCID: PMC3041855 DOI: 10.1158/0008-5472.can-10-2238] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and constitutes 15% of adult leukemias. Although overall prognosis for pediatric ALL is favorable, high-risk pediatric patients and most adult patients have significantly worse outcomes. Multiagent chemotherapy is standard of care for both pediatric and adult ALL, but is associated with systemic toxicity and long-term side effects and is relatively ineffective against certain ALL subtypes. Recent efforts have focused on the development of targeted therapies for ALL including monoclonal antibodies. Here, we report the identification of CD47, a protein that inhibits phagocytosis, as an antibody target in standard and high-risk ALL. CD47 was found to be more highly expressed on a subset of human ALL patient samples compared with normal cell counterparts and to be an independent predictor of survival and disease refractoriness in several ALL patient cohorts. In addition, a blocking monoclonal antibody against CD47 enabled phagocytosis of ALL cells by macrophages in vitro and inhibited tumor engraftment in vivo. Significantly, anti-CD47 antibody eliminated ALL in the peripheral blood, bone marrow, spleen, and liver of mice engrafted with primary human ALL. These data provide preclinical support for the development of an anti-CD47 antibody therapy for treatment of human ALL.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Center, and Ludwig Center at Stanford, Palo Alto, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
927
|
Petrovski G, Berényi E, Moe MC, Vajas A, Fésüs L, Berta A, Facskó A. Clearance of dying ARPE-19 cells by professional and nonprofessional phagocytes in vitro- implications for age-related macular degeneration (AMD). Acta Ophthalmol 2011; 89:e30-4. [PMID: 21091941 DOI: 10.1111/j.1755-3768.2010.02047.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Failure of retinal pigment epithelial (RPE) cells and macrophages to engulf different dying cells in the retina may result in accumulation of debris and development of age-related macular degeneration (AMD). The dynamics and influence of different treatments on this clearance process can be studied in vitro using human ARPE-19 cells and macrophages as phagocytes modelling dry and wet type of AMD, respectively. METHODS Death through extracellular matrix detachment using polyHEMA-coated surfaces (anoikis) and UV irradiation (apoptosis) was induced in ARPE-19 cells. Two-coloured phagocytic assays were performed to quantify the amount of dying cells phagocytes engulfed (flow cytometry) and for visualization (fluorescent and scanning electron microscopy). The effect of phosphatidylserine inhibition with recombinant annexin-V and glucocorticoid (triamcinolone) treatment on the phagocytic process was tested. RESULTS The clearance of anoikic and apoptotic cells by nondying ARPE-19 cells over 8 hr of co-incubation increased over time (at 8 hr, over 53% and 35% of the phagocytes contained engulfed dying cells, respectively). The human macrophages engulfed the anoikic and apoptotic ARPE-19 cells with seven and four times lower capacity, respectively. Phosphatidylserine appearance on the dying cells did not affect, but triamcinolone treatment enhanced the phagocytosis of the dying cells by macrophages. CONCLUSIONS ARPE-19 cells are more efficient in clearing anoikic than UV-induced apoptotic cells. Macrophages are less efficient in the clearance process than ARPE-19 cells. The present model can be used for studying both dry and wet type of AMD in vitro and for testing different pharmacological aspects affecting this disease.
Collapse
Affiliation(s)
- Goran Petrovski
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
928
|
Catani L, Sollazzo D, Ricci F, Polverelli N, Palandri F, Baccarani M, Vianelli N, Lemoli RM. The CD47 pathway is deregulated in human immune thrombocytopenia. Exp Hematol 2011; 39:486-94. [PMID: 21211546 DOI: 10.1016/j.exphem.2010.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVE A novel mechanism of platelet destruction involving the CD47/ signal regulatory protein-α (SIRPα) system has recently been suggested in a mouse model of immune thrombocytopenia (ITP). The CD47 molecule serves as ligand for SIRPα receptor and as receptor for thrombospondin acting as antagonistic to phagocyte activity and a regulator of apoptosis, respectively. In this study, we evaluated if the CD47/SIRPα axis may be involved in the apoptosis and clearance of platelets in human ITP. MATERIALS AND METHODS Using flow cytometry, we characterized whether expression of CD47 on fresh and in vitro-aged platelets- and of SIRPα receptor on CD14-derived dendritic cells (DCs), macrophages, circulating DCs, and monocytes is reduced is ITP; whether the in vitro platelet phagocytic capacity of CD14-derived DCs and macrophages is differentially modulated in the presence or absence of antibodies against CD47 and SIRPα in ITP; and whether platelets are more susceptible to the CD47-induced death signal in ITP. RESULTS We demonstrated that low platelet count in ITP is not due to increased phagocytosis associated with decreased expression of CD47 on the platelet surface and, despite reduced SIRPα expression, blockage of SIRPα on immature CD14-derived DCs or CD47 on platelets by specific antibodies failed to modify platelet uptake/phagocytosis of DCs. In contrast, targeting platelet CD47 with specific antibody significantly increases platelet phagocytosis of CD14-derived macrophages, and platelets are not healthy because they show increased apoptosis and are resistant to CD47-induced death signal. CONCLUSIONS Our results demonstrate that the CD47 pathway in ITP patients abnormally modulates platelet homeostasis.
Collapse
Affiliation(s)
- Lucia Catani
- Department of Hematology and Oncological Sciences L. & A. Seràgnoli, Institute of Hematology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
929
|
Boucher P, Herz J. Signaling through LRP1: Protection from atherosclerosis and beyond. Biochem Pharmacol 2011; 81:1-5. [PMID: 20920479 PMCID: PMC2991482 DOI: 10.1016/j.bcp.2010.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 11/18/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP1) is a multifunctional cell surface receptor that belongs to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 consists of an 85-kDa membrane-bound carboxyl fragment (β chain) and a non-covalently attached 515-kDa (α chain) amino-terminal fragment. Through its extracellular domain, LRP1 binds at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. LRP-1 has also been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. LRP-1 is thus implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth/differentiation processes, degradation of proteases, and tissue invasion. The embryonic lethal phenotype obtained after target disruption of the LRP-1 gene in the mouse highlights the biological importance of this receptor and revealed a critical, but yet undefined role in development. Tissue-specific gene deletion studies also reveal an important contribution of LRP1 in vascular remodeling, foam cell biology, the central nervous system, and in the molecular mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Philippe Boucher
- CNRS, UMR7175, Université de Strasbourg, 74, route du Rhin, Illkirch F-67401, France.
| | | |
Collapse
|
930
|
Wang X, Olberding KE, White C, Li C. Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ 2011; 18:38-47. [PMID: 20539308 PMCID: PMC2947581 DOI: 10.1038/cdd.2010.68] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 01/25/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis may arise from multiple environmental and pharmacological causes, but the precise mechanism(s) involved are not completely known. Members of Bcl-2 protein family are important regulators of apoptosis. In this study, we report that in a process dependent on the proapoptotic Bcl-2 members Bax and Bak, exogenously expressed fluorescent protein localized to the ER lumen is released into the cytosol in cells undergoing ER stress. Upon ER stress induction, endogenous ER luminal proteins are also released into the cytosol in a similar manner accompanied by translocation and anchorage of Bax to the ER membrane. In addition, Bax and truncated-Bid (tBid) mediate a global increase in ER membrane permeability to ER luminal proteins in vitro. Importantly, antiapoptotic Bcl-X(L) antagonizes the effects of proapoptotic Bcl-2 proteins on ER membrane permeability. Consistent with Bax translocation to the ER membrane in whole apoptotic cells, there is also increased tight association of Bax with the ER membrane correlated with the increase in ER membrane permeability in vitro. Overall, these data suggest that the regulation of ER membrane permeability by Bcl-2 proteins could be an important molecular mechanism of ER stress-induced apoptosis.
Collapse
Affiliation(s)
- X Wang
- Molecular Targets Group, James Graham Brown Cancer Center, Departments of Medicine, and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - K E Olberding
- Molecular Targets Group, James Graham Brown Cancer Center, Departments of Medicine, and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - C White
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - C Li
- Molecular Targets Group, James Graham Brown Cancer Center, Departments of Medicine, and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
931
|
Banjerdpongchai R, Kongtawelert P, Khantamat O, Srisomsap C, Chokchaichamnankit D, Subhasitanont P, Svasti J. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. J Hematol Oncol 2010; 3:50. [PMID: 21190589 PMCID: PMC3018374 DOI: 10.1186/1756-8722-3-50] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/30/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Zearalenone (ZEA) is a phytoestrogen from Fusarium species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved. METHODS Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach. RESULTS ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and calreticulin, whereas only ERp29 mRNA transcript increased. CONCLUSION ZEA induced human leukemic cell apoptosis via endoplasmic stress and mitochondrial pathway.
Collapse
Affiliation(s)
- Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prachya Kongtawelert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
932
|
Mevorach D. Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system. Apoptosis 2010; 15:1114-23. [PMID: 20683667 DOI: 10.1007/s10495-010-0530-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease of unknown etiology characterized by the presence of pathogenic high-titer autoantibodies to a diverse group of autoantigens. In 88% of patients, autoantibodies are present an average of 3.3 years before diagnosis. Antinuclear, anti-Ro, anti-La, and anti-phospholipid antibodies appear first, followed by anti-DNA, anti-Smith and anti-ribonucleoprotein. These autoantibodies have features of an antigen-driven, T-cell-dependent immune response. Once present, the course of SLE is characterized by disease flares and autoimmune dysregulation. Programmed cell death (PCD), an essential developmental and homeostatic mechanism, is the preferred physiological death processes for cells as well as an important immune response regulator. Appropriate clearance of apoptotic material completes the PCD process, and is essential for regulating of inflammation and maintaining self-tolerance. Early complement proteins are important in protecting humans against the development of SLE and the protective role of C1q and complement in SLE is mainly related to their role in clearance of dying cells. However, the complement system is also an important ingredient in inflammation, which mediates SLE pathogenesis. Thus, the question remains whether complement factors have either a protective or a destructive role, or a combination of both.
Collapse
Affiliation(s)
- Dror Mevorach
- Rheumatology Research Centre, Department of Medicine, Hadassah and the Hebrew University, Kiryat Hadassah, Jerusalem, Israel.
| |
Collapse
|
933
|
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 2010; 15:1124-36. [PMID: 20552278 DOI: 10.1007/s10495-010-0516-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c(+) dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.
Collapse
|
934
|
Kinchen JM. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 2010; 15:998-1006. [PMID: 20461556 DOI: 10.1007/s10495-010-0509-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Programmed cell death is used during developmental morphogenesis to eliminate superfluous cells or cells with inappropriate developmental potential (e.g., self-reactive immune cells, tumorigenic cells). Recent work in genetic models has led to a number of key observations, revealing signal transduction pathways and identifying new roles for genes previously studied in corpse removal (e.g., removal of broken synapses in the nervous system). Further, studies using mouse models have suggested a role for removal of apoptotic cells in the establishment or maintenance of immune tolerance. In this review, we survey current knowledge of phagocytic pathways derived from studies in the nematode (Caenorhabditis elegans), the fly (Drosophila melanogaster), and mouse (Mus musculus) model systems.
Collapse
Affiliation(s)
- Jason M Kinchen
- Department of Microbiology, Center for Cell Clearance, University of Virginia, Charlottesville, 22908, USA.
| |
Collapse
|
935
|
Abstract
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms-"recognition, response and removal"-that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices-Dead-Cert Nanoparticles-can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.
Collapse
|
936
|
Wemeau M, Kepp O, Tesnière A, Panaretakis T, Flament C, De Botton S, Zitvogel L, Kroemer G, Chaput N. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 2010; 1:e104. [PMID: 21368877 PMCID: PMC3032293 DOI: 10.1038/cddis.2010.82] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experiments performed in mice revealed that anthracyclines stimulate immunogenic cell death that is characterized by the pre-apoptotic exposure of calreticulin (CRT) on the surface of dying tumor cells. Here, we determined whether CRT exposure at the cell surface (ecto-CRT) occurs in human cancer in response to anthracyclines in vivo, focusing on acute myeloid leukemia (AML), which is currently treated with a combination of aracytine and anthracyclines. Most of the patients benefit from the induction chemotherapy but relapse within 1–12 months. In this study, we investigated ecto-CRT expression on malignant blasts before and after induction chemotherapy. We observed that leukemic cells from some patients exhibited ecto-CRT regardless of chemotherapy and that this parameter was not modulated by in vivo chemotherapy. Ecto-CRT correlated with the presence of phosphorylated eIF2α within the blasts, in line with the possibility that CRT exposure results from an endoplasmic reticulum stress response. Importantly, high levels of ecto-CRT on malignant myeloblasts positively correlated with the ability of autologous T cells to secrete interferon-γ on stimulation with blast-derived dendritic cell. We conclude that the presence of ecto-CRT on leukemia cells facilitates cellular anticancer immune responses in AML patients.
Collapse
Affiliation(s)
- M Wemeau
- Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
937
|
Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, Houen G. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. FEBS J 2010; 277:4956-64. [PMID: 21054788 DOI: 10.1111/j.1742-4658.2010.07901.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91.
Collapse
Affiliation(s)
- Karen Duus
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
938
|
Cao CY, Han Y, Ren YS, Wang YL. Apoptotic B16-F1 cells coated with recombinant calreticulin mediated anti-tumor immune response in mice. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
939
|
Abstract
Every day billions of cells die in our bodies to eliminate those that are harmful, useless, or senescent. The process can be divided into two steps: cell dying and cell clearance. In the first step, death machinery is activated in the cells and quickly kills them. During the second step, dead cells are engulfed by phagocytes, and their components are degraded in the lysosomes of the phagocytes. The death mechanism and the clearance of dead cells have been extensively studied. Mouse lines that are deficient in the death or clearance process have been established, and human patients carrying a mutation in the death machinery have been identified. Data from these mutant mice and human patients indicate that defects in cell death or dead-cell clearance leads to autoimmunity. This review examines the cell death and clearance processes and briefly discusses the diseases they cause.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, University of Kyoto, Yoshida, Konoe, Sakyo, Kyoto, Japan.
| |
Collapse
|
940
|
Alyamkina EA, Nikolin VP, Popova NA, Dolgova EV, Proskurina AS, Orishchenko KE, Efremov YR, Chernykh ER, Ostanin AA, Sidorov SV, Ponomarenko DM, Zagrebelniy SN, Bogachev SS, Shurdov MA. A strategy of tumor treatment in mice with doxorubicin-cyclophosphamide combination based on dendritic cell activation by human double-stranded DNA preparation. GENETIC VACCINES AND THERAPY 2010; 8:7. [PMID: 21040569 PMCID: PMC2987767 DOI: 10.1186/1479-0556-8-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/01/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Immunization of mice with tumor homogenate after combined treatment with cyclophosphamide (CP) and double-stranded DNA (dsDNA) preparation is effective at inhibition of growth of tumor challenged after the treatment. It was assumed that this inhibition might be due to activation of the antigen-presenting cells. The purpose was to develop improved antitumor strategy using mice. We studied the combined action of cytostatics doxorubicin (Dox) plus CP with subsequent dsDNA preparation on tumor growth. METHODS Three-month old CBA/Lac mice were used in the experiments. Mice were injected with CP and human dsDNA preparation. The percentage of mature dendritic cells (DCs) was estimated by staining of mononuclear cells isolated from spleen and bone marrow 3, 6, and 9 days later with monoclonal antibodies CD34, CD80, and CD86. In the next set of experiments, mice were given intramuscularly injections of 1-3 × 105 tumor cells. Four days later, they were injected intravenously with 6-6.7 mg/kg Dox and intraperitoneally with 100-200 mg/kg CP; 200 mkg human DNA was injected intraperitoneally after CP administration. Differences in tumor size between groups were analyzed for statistical significance by Student's t-test. The MTT-test was done to determine the cytotoxic index of mouse leucocytes from treated groups. RESULTS The conducted experiments showed that combined treatment with CP and dsDNA preparation produce an increase in the total amount of mature DCs in vivo. Treatment of tumor bearers with preparation of fragmented dsDNA on the background of pretreatment with Dox plus CP demonstrated a strong suppression of tumor growth in two models. RLS, a weakly immunogenic, resistant to alkalyting cytostatics tumor, grew 3.4-fold slower when compared with the control (p < 0.001). In experiment with Krebs-2 tumor, only 2 of the 10 mice in the Dox+CP+DNA group had a palpable tumor on day 16. The cytotoxic index of leucocytes was 86.5% in the Dox+CP+DNA group, but it was 0% in the Dox+CP group. CONCLUSIONS Thus, the set of experiments we performed showed that exogenous dsDNA, when administered on the background of pretreatment with Dox plus CP, has an antitumor effect possibly due to DC activation.
Collapse
Affiliation(s)
- Ekaterina A Alyamkina
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nelly A Popova
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin E Orishchenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena R Chernykh
- Institute of Clinical Immunology, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Alexandr A Ostanin
- Institute of Clinical Immunology, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | | | | | | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
941
|
Caberoy NB, Zhou Y, Li W. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO J 2010; 29:3898-910. [PMID: 20978472 DOI: 10.1038/emboj.2010.265] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/27/2010] [Indexed: 12/29/2022] Open
Abstract
Tubby and tubby-like protein 1 (Tulp1) are newly identified phagocytosis ligands to facilitate retinal pigment epithelium (RPE) and macrophage phagocytosis. Both proteins without classical signal peptide have been demonstrated with unconventional secretion. Here, we characterized them as novel MerTK ligands to facilitate phagocytosis. Tulp1 interacts with Tyro3, Axl and MerTK of the TAM receptor tyrosine kinase subfamily, whereas tubby binds only to MerTK. Excessive soluble MerTK extracellular domain blocked tubby- or Tulp1-mediated phagocytosis. Both ligands induced MerTK activation with receptor phosphorylation and signalling cascade, including non-muscle myosin II redistribution and co-localization with phagosomes. Tubby and Tulp1 are bridging molecules with their N-terminal region as MerTK-binding domain and C-terminal region as phagocytosis prey-binding domain (PPBD). Five minimal phagocytic determinants (MPDs) of K/R(X)(1-2)KKK in Tulp1 N-terminus were defined as essential motifs for MerTK binding, receptor phosphorylation and phagocytosis. PPBD was mapped to the highly conserved 54 amino acids at the C-terminal end of tubby and Tulp1. These data suggest that tubby and Tulp1 are novel bridging molecules to facilitate phagocytosis through MerTK.
Collapse
Affiliation(s)
- Nora B Caberoy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
942
|
Gregory CD, Pound JD. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol 2010; 223:177-94. [PMID: 21125674 DOI: 10.1002/path.2792] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/12/2010] [Accepted: 09/21/2010] [Indexed: 12/24/2022]
Abstract
Here we consider the impact of the physiological cell-death programme on normal tissue homeostasis and on disease pathogenesis, with particular reference to evolution and progression of neoplasia. We seek to describe the direct contributions played by apoptosis in creating the microenvironments of normal and malignant tissues and to discuss the molecular mechanisms underlying the elements of the '3Rs' that define the meaning of apoptosis: recognition, response, and removal. Apoptotic cells elicit responses in other cell types-both phagocytic and non-phagocytic-through short- and long-range signalling modes that range from direct contact to intercellular communication via membrane-bound microparticles. Such cellular responses include migration, proliferation, and differentiation, as well as production of immunomodulatory and anti-inflammatory mediators together with, in the case of phagocytes, engulfment, and breakdown of apoptotic cells. In normal tissues, the removal of apoptotic cells is rapid and typically non-phlogistic. We discuss the importance of this clearance process in tissue homeostasis and the consequences of its failure in disease pathogenesis. Using the typical cell culture environment in vitro as an illustrative example in which apoptosis occurs commonly in the absence of the removal mechanisms, we also discuss the inhibitory effects of persistent apoptotic cells on their otherwise viable neighbours. Since apoptosis is a common and sustained event in high-grade malignancies, we hypothesize on its purposeful role in conditioning the tumour microenvironment. We propose that apoptosis subserves several pro-tumour functions-trophic, anti-inflammatory, and immunomodulatory-and we identify strategies targeting host responses to apoptotic cells as promising modes of future therapies that could be applied to multiple cancer types in which tumour-cell apoptosis is active.
Collapse
Affiliation(s)
- Christopher D Gregory
- MRC Centre for Inflammation Research, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | |
Collapse
|
943
|
Ma Y, Aymeric L, Locher C, Kroemer G, Zitvogel L. The dendritic cell-tumor cross-talk in cancer. Curr Opin Immunol 2010; 23:146-52. [PMID: 20970973 DOI: 10.1016/j.coi.2010.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 02/02/2023]
Abstract
The question as to whether the tumor grows because of or despite the host immune system is being progressively addressed with refined technology, gene targeting in mice and human translational research. The productive interplay between major actors of the antitumor immunity is actively compromised by the tumor microenvironment subverting the links between innate and cognate immunity and/or generating devastating new players. The complexity of the host-tumor equilibrium could be dissected at the reduced level of the dialogue between professional antigen presenting cells (APC), more precisely dendritic cells, and tumor cells that may profoundly dictate the outcome of the neoplasma. This review will summarize the novel mechanisms by which tumor cells regulate DC recruitment, differentiation, activation and cross-presenting functions in tumor beds and how innate players might counterbalance these interactions. Finally, we will highlight interesting strategies that harness the DC potential to fight against cancer.
Collapse
Affiliation(s)
- Yuting Ma
- INSERM, U1015, Institut Gustave Roussy, Université Paris-Sud, F-94805 Villejuif, France
| | | | | | | | | |
Collapse
|
944
|
Zappasodi R, Pupa SM, Ghedini GC, Bongarzone I, Magni M, Cabras AD, Colombo MP, Carlo-Stella C, Gianni AM, Di Nicola M. Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res 2010; 70:9062-72. [PMID: 20884630 DOI: 10.1158/0008-5472.can-10-1825] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing evidence argues that the success of an anticancer treatment may rely on immunoadjuvant side effects including the induction of immunogenic tumor cell death. Based on the assumption that this death mechanism is a similar prerequisite for the efficacy of an active immunotherapy using killed tumor cells, we examined a vaccination strategy using dendritic cells (DC) loaded with apoptotic and necrotic cell bodies derived from autologous tumors. Using this approach, clinical and immunologic responses were achieved in 6 of 18 patients with relapsed indolent non-Hodgkin's lymphoma (NHL). The present report illustrates an impaired ability of the neoplastic cells used to vaccinate nonresponders to undergo immunogenic death on exposure to a cell death protocol based on heat shock, γ-ray, and UVC ray. Interestingly, when compared with doxorubicin, this treatment increased surface translocation of calreticulin and cellular release of high-mobility group box 1 and ATP in histologically distinct NHL cell lines. In contrast, treated lymphoma cells from responders displayed higher amounts of calreticulin and heat shock protein 90 (HSP90) compared with those from nonresponders and boosted the production of specific antibodies when loaded into DCs for vaccination. Accordingly, the extent of calreticulin and HSP90 surface expression in the DC antigenic cargo was significantly associated with the clinical and immunologic responses achieved. Our results indicate that a positive clinical effect is obtained when immunogenically killed autologous neoplastic cells are used for the generation of a DC-based vaccine. Therapeutic improvements may thus be accomplished by circumventing the tumor-impaired ability to undergo immunogenic death and prime the antitumor immune response.
Collapse
Affiliation(s)
- Roberta Zappasodi
- C. Gandini Medical Oncology, Bone Marrow Transplantation Unit, Department of Experimental Oncology, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale per lo Studio e la Cura dei Tumori, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
945
|
Duus K, Hansen EW, Tacnet P, Frachet P, Arlaud GJ, Thielens NM, Houen G. Direct interaction between CD91 and C1q. FEBS J 2010; 277:3526-37. [PMID: 20716178 DOI: 10.1111/j.1742-4658.2010.07762.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C1q-mediated removal of immune complexes and apoptotic cells plays an important role in tissue homeostasis and the prevention of autoimmune conditions. It has been suggested that C1q mediates phagocytosis of apoptotic cells through a receptor complex assembled from CD91 (alpha-2- macroglobulin receptor, or low-density lipoprotein receptor-related protein) and calreticulin, with CD91 being the transmembrane part and calreticulin acting as the C1q-binding molecule. In the present study, we observe that C1q binds cells from a CD91 expressing monocytic cell line as well as monocytes from human blood. C1q binding to monocytes was shown to be correlated with CD91 expression and could be inhibited by the CD91 chaperone, receptor-associated protein. We also report data showing a direct interaction between CD91 and C1q. The interaction was investigated using various protein interaction assays. A direct interaction between purified C1q and CD91 was observed both by ELISA and a surface plasmon resonance assay, with either C1q or CD91 immobilized. The interaction showed characteristics of specificity because it was time-dependent, saturable and could be inhibited by known ligands of both CD91 and C1q. The results obtained show for the first time that CD91 recognizes C1q directly. On the basis of these findings, we propose that CD91 is a receptor for C1q and that this multifunctional scavenger receptor uses a subset of its ligand-binding sites for clearance of C1q and C1q bound material.
Collapse
Affiliation(s)
- Karen Duus
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
946
|
Hong C, Qiu X, Li Y, Huang Q, Zhong Z, Zhang Y, Liu X, Sun L, Lv P, Gao XM. Functional analysis of recombinant calreticulin fragment 39-272: implications for immunobiological activities of calreticulin in health and disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:4561-9. [PMID: 20855873 DOI: 10.4049/jimmunol.1000536] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although calreticulin (CRT) is a major Ca(2+)-binding luminal resident protein, it can also appear on the surface of various types of cells and it functions as an immunopotentiating molecule. However, molecular mechanisms underlying the potent immunobiological activity of cell surface CRT are still unclear. In the present study, a recombinant fragment (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed in Escherichia coli. The affinity-purified rCRT/39-272 assembles into homodimers and oligomers in solution and exhibits high binding affinity to various glycans, including carrageenan, alginic acids, and hyaluronic acids. Functionally, rCRT/39-272 is capable of driving the activation and maturation of B cells and cytokine production by macrophages in a TLR-4-dependent manner in vitro. It specifically binds recombinant mouse CD14, but not BAFFR and CD40. It is also able to trigger Ig class switching by B cells in the absence of T cell help both in vitro and in vivo. Furthermore, this fragment of CRT exhibits strong adjuvanticity when conjugated to polysaccharides or expressed as part of a fusion protein. Soluble CRT can be detected in the sera of patients with rheumatoid arthritis or systemic lupus erythematosus, but not in healthy subjects. We argue that CRT, either on the membrane surface of cells or in soluble form, is a potent stimulatory molecule to B cells and macrophages via the TLR-4/CD14 pathway and plays important roles in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Chao Hong
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
947
|
Susta F, Chiasserini D, Fettucciari K, Orvietani PL, Quotadamo F, Noce R, Bartoli A, Marconi P, Corazzi L, Binaglia L. Protein expression changes induced in murine peritoneal macrophages by Group B Streptococcus. Proteomics 2010; 10:2099-112. [PMID: 20336680 DOI: 10.1002/pmic.200900642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein expression changes induced in thioglycolate-elicited peritoneal murine macrophages (M Phi) by infection with type III Group B Streptococcus (GBS) are described. Proteins from control M Phi and M Phi incubated 2 h with live or heat-inactivated GBS were separated by 2-DE. Proteins whose expression was significantly different in infected M Phi, as compared with control cells, were identified by MS/MS analysis. Changes in the expression level of proteins involved in both positive and negative modulation of phagocytic functions, stress response and cell death were induced in M Phi by GBS infection. In particular, expression of enzymes playing a key role in production of reactive oxygen species was lowered in GBS-infected M Phi. Significant alterations in the expression of some metabolic enzymes were also observed, most of the glycolytic and of the pentose-cycle enzymes being down-regulated in M Phi infected with live GBS. Finally, evidence was obtained that GBS infection affects the expression of enzymes or enzyme subunits involved in ATP synthesis and in adenine nucleotides interconversion processes.
Collapse
Affiliation(s)
- Federica Susta
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
948
|
Lee WY, Weber DA, Laur O, Stowell SR, McCall I, Andargachew R, Cummings RD, Parkos CA. The role of cis dimerization of signal regulatory protein alpha (SIRPalpha) in binding to CD47. J Biol Chem 2010; 285:37953-63. [PMID: 20826801 DOI: 10.1074/jbc.m110.180018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interaction of SIRPα with its ligand, CD47, regulates leukocyte functions, including transmigration, phagocytosis, oxidative burst, and cytokine secretion. Recent progress has provided significant insights into the structural details of the distal IgV domain (D1) of SIRPα. However, the structural roles of proximal IgC domains (D2 and D3) have been largely unstudied. The high degree of conservation of D2 and D3 among members of the SIRP family as well as the propensity of known IgC domains to assemble in cis has led others to hypothesize that SIRPα forms higher order structures on the cell surface. Here we report that SIRPα forms noncovalently linked cis homodimers. Treatment of SIRPα-expressing cells with a membrane-impermeable cross-linker resulted in the formation of SDS-stable SIRPα dimers and oligomers. Biochemical analyses of soluble recombinant extracellular regions of SIRPα, including domain truncation mutants, revealed that each of the three extracellular immunoglobulin loops of SIRPα formed dimers in solution. Co-immunoprecipitation experiments using cells transfected with different affinity-tagged SIRPα molecules revealed that SIRPα forms cis dimers. Interestingly, in cells treated with tunicamycin, SIRPα dimerization but not CD47 binding was inhibited, suggesting that a SIRPα dimer is probably bivalent. Last, we demonstrate robust dimerization of SIRPa in adherent, stimulated human neutrophils. Collectively, these data are consistent with SIRPα being expressed on the cell surface as a functional cis-linked dimer.
Collapse
Affiliation(s)
- Winston Y Lee
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
949
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
950
|
Fang Q, Wang L, Zhu J, Li Y, Song Q, Stanley DW, Akhtar ZR, Ye G. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 2010; 11:484. [PMID: 20813030 PMCID: PMC2996980 DOI: 10.1186/1471-2164-11-484] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae), comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. RESULTS At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs) derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs) from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH) data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. CONCLUSIONS Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically, the venom treatments led to reductions in expression of a large number of genes. Many of the down-regulated genes act in immunity, although others act in non-immune areas of host biology. We conclude that the actions of venom on host gene expression influence immunity as well as other aspects of host biology in ways that benefit the development and emergence of the next generation of parasitoids.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Lei Wang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jiaying Zhu
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yanmin Li
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - David W Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Zunnu-raen Akhtar
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|