901
|
Ma D, Li S, Molusky MM, Lin JD. Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol Metab 2012; 23:319-25. [PMID: 22520961 PMCID: PMC3389582 DOI: 10.1016/j.tem.2012.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
Nutrient and energy metabolism in mammals exhibits a strong diurnal rhythm that aligns with the body clock. Circadian regulation of metabolism is mediated through reciprocal signaling between the clock and metabolic regulatory networks. Recent work has demonstrated that autophagy is rhythmically activated in a clock-dependent manner. Because autophagy is a conserved biological process that contributes to nutrient and cellular homeostasis, its cyclic induction may provide a novel link between clock and metabolism. This review discusses the mechanisms underlying circadian autophagy regulation, the role of rhythmic autophagy in nutrient and energy metabolism, and its implications in physiology and metabolic disease.
Collapse
Affiliation(s)
- Di Ma
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
902
|
Lang SM, Kazi AA, Hong-Brown L, Lang CH. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice. PLoS One 2012; 7:e38910. [PMID: 22745686 PMCID: PMC3382153 DOI: 10.1371/journal.pone.0038910] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023] Open
Abstract
The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.
Collapse
Affiliation(s)
- Susan M. Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Abid A. Kazi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ly Hong-Brown
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
903
|
Abstract
Ubiquitination has long been recognised as a key determinator of protein fate by tagging proteins for proteasomal degradation. Most recently, the ability of conjugated ubiquitin chains to confer selectivity to autophagy was demonstrated. Although autophagy was first believed to be a bulk, non-selective 'self-eating' degradative process, the molecular mechanisms of selectivity are now starting to emerge. With the discovery of autophagy receptors - which bind both ubiquitinated substrates and autophagy specific light chain 3 (LC3) modifier on the inner sheath of autophagosomes - a new pathway of selective autophagy is being unravelled. In this review, we focus on the special role of ubiquitin signals and selective autophagy receptors in sorting a variety of autophagic cargos.
Collapse
|
904
|
Ebert SM, Dyle MC, Kunkel SD, Bullard SA, Bongers KS, Fox DK, Dierdorff JM, Foster ED, Adams CM. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 2012; 287:27290-301. [PMID: 22692209 DOI: 10.1074/jbc.m112.374777] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
905
|
O'Leary MFN, Vainshtein A, Carter HN, Zhang Y, Hood DA. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Cell Physiol 2012; 303:C447-54. [PMID: 22673615 DOI: 10.1152/ajpcell.00451.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. The purpose of this study was to determine whether denervation-induced muscle disuse would result in the activation of autophagy gene expression in both wild-type (WT) and Bax/Bak double knockout (DKO) animals, which display an attenuated apoptotic response. Denervation caused a reduction in muscle mass for WT and DKO animals; however, there was a 40% attenuation in muscle atrophy in DKO animals. Mitochondrial state 3 respiration was significantly reduced, and reactive oxygen species production was increased by two- to threefold in both WT and DKO animals. Apoptotic markers, including cytosolic AIF and DNA fragmentation, were elevated in WT, but not in DKO animals following denervation. Autophagy proteins including LC3II, ULK1, ATG7, p62, and Beclin1 were increased similarly following denervation for both WT and DKO. Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.
Collapse
Affiliation(s)
- Michael F N O'Leary
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
906
|
Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci 2012; 70:89-103. [PMID: 22669258 PMCID: PMC3535400 DOI: 10.1007/s00018-012-1032-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases.
Collapse
Affiliation(s)
- Kanchan Phadwal
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
| | - Alexander Scarth Watson
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
| | - Anna Katharina Simon
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
| |
Collapse
|
907
|
Sakuma K, Yamaguchi A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 2012; 3:77-94. [PMID: 22476916 PMCID: PMC3374017 DOI: 10.1007/s13539-011-0052-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin-proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan,
| | | |
Collapse
|
908
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
909
|
Neufeld TP. Autophagy and cell growth--the yin and yang of nutrient responses. J Cell Sci 2012; 125:2359-68. [PMID: 22649254 DOI: 10.1242/jcs.103333] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a response to nutrient deprivation and other cell stresses, autophagy is often induced in the context of reduced or arrested cell growth. A plethora of signaling molecules and pathways have been shown to have opposing effects on cell growth and autophagy, and results of recent functional screens on a genomic scale support the idea that these processes might represent mutually exclusive cell fates. Understanding the ways in which autophagy and cell growth relate to one another is becoming increasingly important, as new roles for autophagy in tumorigenesis and other growth-related phenomena are uncovered. This Commentary highlights recent findings that link autophagy and cell growth, and explores the mechanisms underlying these connections and their implications for cell physiology and survival. Autophagy and cell growth can inhibit one another through a variety of direct and indirect mechanisms, and can be independently regulated by common signaling pathways. The central role of the mammalian target of rapamycin (mTOR) pathway in regulating both autophagy and cell growth exemplifies one such mechanism. In addition, mTOR-independent signaling and other more direct connections between autophagy and cell growth will also be discussed.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
910
|
Yamada E, Bastie CC, Koga H, Wang Y, Cuervo AM, Pessin JE. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep 2012; 1:557-69. [PMID: 22745922 DOI: 10.1016/j.celrep.2012.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 02/06/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle atrophy induced by aging (sarcopenia), inactivity, and prolonged fasting states (starvation) is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Eijiro Yamada
- Department of Medicine, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
911
|
Derde S, Vanhorebeek I, Güiza F, Derese I, Gunst J, Fahrenkrog B, Martinet W, Vervenne H, Ververs EJ, Larsson L, Van den Berghe G. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 2012; 153:2267-76. [PMID: 22396453 DOI: 10.1210/en.2011-2068] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Muscular and hepatic abnormalities observed in artificially fed critically ill patients strikingly resemble the phenotype of autophagy-deficient mice. Autophagy is the only pathway to clear damaged organelles and large ubiquitinated proteins and aggregates. Fasting is its strongest physiological trigger. Severity of autophagy deficiency in critically ill patients correlated with the amount of infused amino acids. We hypothesized that impaired autophagy in critically ill patients could partly be evoked by early provision of parenteral nutrition enriched with amino acids in clinically used amounts. In a randomized laboratory investigation, we compared the effect of isocaloric moderate-dose iv feeding with fasting during illness on the previously studied markers of autophagy deficiency in skeletal muscle and liver. Critically ill rabbits were allocated to fasting or to iv nutrition (220 kcal/d, 921 kJ/d) supplemented with 50 kcal/d (209 kJ/d) of either glucose, amino acids, or lipids, while maintaining normoglycemia, and were compared with healthy controls. Fasted critically ill rabbits revealed weight loss and activation of autophagy. Feeding abolished these responses, with most impact of amino acid-enriched nutrition. Accumulation of p62 and ubiquitinated proteins in muscle and liver, indicative of insufficient autophagy, occurred with parenteral feeding enriched with amino acids and lipids. In liver, this was accompanied by fewer autophagosomes, fewer intact mitochondria, suppressed respiratory chain activity, and an increase in markers of liver damage. In muscle, early parenteral nutrition enriched with amino acids or lipids aggravated vacuolization of myofibers. In conclusion, early parenteral nutrition during critical illness evoked a phenotype of autophagy deficiency in liver and skeletal muscle.
Collapse
Affiliation(s)
- Sarah Derde
- Department and Laboratory of Intensive Care Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
912
|
Attaix D, Baracos VE, Pichard C. Muscle wasting: a crosstalk between protein synthesis and breakdown signalling. Curr Opin Clin Nutr Metab Care 2012; 15:209-10. [PMID: 22466927 DOI: 10.1097/mco.0b013e328352b80c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
913
|
Sambataro F, Pennuto M. Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol 2012; 97:152-72. [DOI: 10.1016/j.pneurobio.2011.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/21/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022]
|
914
|
Sanchez AMJ, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, Candau R. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem 2012; 113:695-710. [PMID: 22006269 DOI: 10.1002/jcb.23399] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In skeletal muscle, protein levels are determined by relative rates of protein synthesis and breakdown. The balance between synthesis and degradation of intracellular components determines the overall muscle fiber size. AMP-activated protein kinase (AMPK), a sensor of cellular energy status, was recently shown to increase myofibrillar protein degradation through the expression of MAFbx and MuRF1. In the present study, the effect of AMPK activation by AICAR on autophagy was investigated in muscle cells. Our results show that FoxO3a transcription factor activation by AMPK induces the expression of the autophagy-related proteins LC3B-II, Gabarapl1, and Beclin1 in primary mouse skeletal muscle myotubes and in the Tibialis anterior (TA) muscle. Time course studies reveal that AMPK activation by AICAR leads to a transient nuclear relocalization of FoxO3a followed by an increase of its cytosolic level. Moreover, AMPK activation leads to the inhibition of mTORC1 and its subsequent dissociation of Ulk1, Atg13, and FIP200 complex. Interestingly, we identify Ulk1 as a new interacting partner of AMPK in muscle cells and we show that Ulk1 is associated with AMPK under normal conditions and dissociates from AMPK during autophagy process. Moreover, we find that AMPK phosphorylates FoxO3a and Ulk1. In conclusion, our data show that AMPK activation stimulates autophagy in skeletal muscle cells through its effects on the transcriptional function of FoxO3a and takes part in the initiation of autophagosome formation by interacting with Ulk1. Here, we present new evidences that AMPK plays a crucial role in the fine tuning of protein expression programs that control skeletal muscle mass.
Collapse
Affiliation(s)
- Anthony M J Sanchez
- INRA, UMR866 Dynamique Musculaire et Métabolisme, 2 Place Viala, F-34060 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
915
|
Bhatnagar S, Mittal A, Gupta SK, Kumar A. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J Cell Physiol 2012; 227:1042-51. [PMID: 21567392 DOI: 10.1002/jcp.22821] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proinflammatory cytokine TWEAK has now emerged as a key mediator of skeletal muscle-wasting in many catabolic conditions. However, the mechanisms by which TWEAK induces muscle proteolysis remain poorly understood. Here, we have investigated the role of ubiquitin-proteasome system, autophagy, and caspases in TWEAK-induced muscle wasting. Addition of TWEAK to C2C12 myotubes stimulated the ubiquitination of myosin heavy chain (MyHC) and augmented the expression of E3 ubiquitin ligase MuRF1. Pretreatment of myotubes with proteasome inhibitors MG132 or lactacystin or knockdown of MuRF1 by RNAi blocked the TWEAK-induced degradation of MyHC and myotube atrophy. TWEAK increased the expression of several autophagy-related molecules. Moreover, the inhibitors of autophagy improved the levels of MyHC in TWEAK-treated myotubes. TWEAK also increased activity of caspases in C2C12 myotubes. Pan-caspase or caspase 3 inhibitory peptide inhibited the TWEAK-induced loss of MyHC and myotube diameter. Our study demonstrates that nuclear factor-kappa B (NF-κB) transcription factor is essential for TWEAK-induced expression of MuRF1 and Beclin1. Furthermore, our results suggest that caspases contribute, at least in part, to the activation of NF-κB in response to TWEAK treatment. Collectively, the present study provides novel insight into the mechanisms of action of TWEAK in skeletal muscle.
Collapse
Affiliation(s)
- Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
916
|
Nalbandian A, Ghimbovschi S, Radom-Aizik S, Dec E, Vesa J, Martin B, Knoblach S, Smith C, Hoffman E, Kimonis VE. Global gene profiling of VCP-associated inclusion body myopathy. Clin Transl Sci 2012; 5:226-34. [PMID: 22686199 DOI: 10.1111/j.1752-8062.2012.00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder caused by mutations in the Valosin-containing protein (VCP) gene on chromosome 9p12-13. Patients demonstrate limb girdle muscle weakness, which eventually progresses to involve respiratory muscles, and death from respiratory and cardiac failure. This is the first investigation to analyze key molecular mediators and signaling cascades in skeletal muscle causing myopathy by global gene microarray in hopes of understanding the dysregulated genes and molecular mechanisms underlying IBMPFD and the hope of finding novel therapeutic targets. We determined expression profiles using Human Genome Array microarray technology in Vastus lateralis muscles from patients and their first-degree relatives. We analyzed gene annotations by Database for Annotation, Visualization and Integration Discovery and identified differentially dysregulated genes with roles in several novel biological pathways, including regulation of actin cytoskeleton, ErbB signaling, cancer, in addition to regulation of autophagy, and lysosomal signaling, known disrupted pathways in VCP disease. In this report, we present data from the first global microarray analyzing IBMPFD patient muscles and elucidating dysregulated pathways to further understand the pathogenesis of the disease and discover potential therapeutics.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
917
|
Abstract
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles.
Collapse
Affiliation(s)
- Heather M Gransee
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
918
|
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11:230-41. [PMID: 22186033 DOI: 10.1016/j.arr.2011.12.005] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
Efficient control of energy metabolic homeostasis, enhanced stress resistance, and qualified cellular housekeeping are the hallmarks of improved healthspan and extended lifespan. AMPK signaling is involved in the regulation of all these characteristics via an integrated signaling network. Many studies with lower organisms have revealed that increased AMPK activity can extend the lifespan. Experiments in mammals have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling which augment the quality of cellular housekeeping. Moreover, AMPK-induced stimulation of FoxO/DAF-16, Nrf2/SKN-1, and SIRT1 signaling pathways improves cellular stress resistance. Furthermore, inhibition of NF-κB signaling by AMPK suppresses inflammatory responses. Emerging studies indicate that the responsiveness of AMPK signaling clearly declines with aging. The loss of sensitivity of AMPK activation to cellular stress impairs metabolic regulation, increases oxidative stress and reduces autophagic clearance. These age-related changes activate innate immunity defence, triggering a low-grade inflammation and metabolic disorders. We will review in detail the signaling pathways of this integrated network through which AMPK controls energy metabolism, autophagic degradation and stress resistance and ultimately the aging process.
Collapse
|
919
|
Sandonà D, Desaphy JF, Camerino GM, Bianchini E, Ciciliot S, Danieli-Betto D, Dobrowolny G, Furlan S, Germinario E, Goto K, Gutsmann M, Kawano F, Nakai N, Ohira T, Ohno Y, Picard A, Salanova M, Schiffl G, Blottner D, Musarò A, Ohira Y, Betto R, Conte D, Schiaffino S. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One 2012; 7:e33232. [PMID: 22470446 PMCID: PMC3314659 DOI: 10.1371/journal.pone.0033232] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/06/2012] [Indexed: 11/23/2022] Open
Abstract
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Giulia M. Camerino
- Section of Pharmacology, Department of Pharmacobiology, University of Bari, Italy
| | - Elisa Bianchini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Ciciliot
- Department of Human Anatomy and Physiology, University of Padova, Italy
| | | | - Gabriella Dobrowolny
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, IIM, Rome, Italy
| | - Sandra Furlan
- National Research Council, Institute of Neuroscience, Padova, Italy
| | - Elena Germinario
- Department of Human Anatomy and Physiology, University of Padova, Italy
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi Sozo University, Toyohashi-shi, Aichi, Japan
| | - Martina Gutsmann
- Charité-Universitätsmedizin Berlin, Vegetative Anatomy and Zentrum für Weltraummedizin Berlin, Berlin, Germany
| | - Fuminori Kawano
- Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan
| | - Naoya Nakai
- Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan
| | - Takashi Ohira
- Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan
| | - Yoshitaka Ohno
- Department of Physiology, Graduate School of Health Sciences, Toyohashi Sozo University, Toyohashi-shi, Aichi, Japan
| | - Anne Picard
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Vegetative Anatomy and Zentrum für Weltraummedizin Berlin, Berlin, Germany
| | - Gudrun Schiffl
- Charité-Universitätsmedizin Berlin, Vegetative Anatomy and Zentrum für Weltraummedizin Berlin, Berlin, Germany
| | - Dieter Blottner
- Charité-Universitätsmedizin Berlin, Vegetative Anatomy and Zentrum für Weltraummedizin Berlin, Berlin, Germany
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, IIM, Rome, Italy
| | - Yoshinobu Ohira
- Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan
| | - Romeo Betto
- National Research Council, Institute of Neuroscience, Padova, Italy
- * E-mail: (RB); (DC); (SS)
| | - Diana Conte
- Section of Pharmacology, Department of Pharmacobiology, University of Bari, Italy
- * E-mail: (RB); (DC); (SS)
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Padova, Italy
- * E-mail: (RB); (DC); (SS)
| |
Collapse
|
920
|
Nedergaard A, Jespersen JG, Pingel J, Christensen B, Sroczynski N, Langberg H, Kjaer M, Schjerling P. Effects of 2 weeks lower limb immobilization and two separate rehabilitation regimens on gastrocnemius muscle protein turnover signaling and normalization genes. BMC Res Notes 2012; 5:166. [PMID: 22455386 PMCID: PMC3405443 DOI: 10.1186/1756-0500-5-166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/28/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Limb immobilization causes a rapid loss of muscle mass and strength that requires appropriate rehabilitation to ensure restoration of normal function. Whereas the knowledge of muscle mass signaling with immobilization has increased in recent years, the molecular regulation in the rehabilitation of immobilization-induced muscle atrophy is only sparsely studied. To investigate the phosphorylation and expression of candidate key molecular muscle mass regulators after immobilization and subsequent rehabilitation we performed two separate studies. METHODS We immobilized the lower limb for 2 weeks followed by the in-house hospital standard physiotherapy rehabilitation (Study 1). Secondly, we conducted an intervention study using the same 2 weeks immobilization protocol during which protein/carbohydrate supplementation was given. This was followed by 6 weeks of rehabilitation in the form of resistance training and continued protein/carbohydrate supplementation (Study 2). We obtained muscle biopsies from the medial gastrocnemius prior to immobilization (PRE), post-immobilization (IMMO) and post-rehabilitation (REHAB) and measured protein expression and phosphorylation of Akt, mTOR, S6k, 4E-BP1, GSK3β, ubiquitin and MURF1 and mRNA expression of Atrogin-1, MURF1, FOXO1, 3 and 4 as well as appropriate housekeeping genes. RESULTS In both studies, no changes in protein expression or phosphorylation for any measured protein were observed. In Study 1, FOXO3 and FOXO4 mRNA expression decreased after IMMO and REHAB compared to PRE, whereas other mRNAs remained unchanged. Interestingly, we found significant changes in expression of the putative housekeeping genes GAPDH, HADHA and S26 with immobilization in both studies. CONCLUSIONS In neither study, the changes in muscle mass associated with immobilization and rehabilitation were accompanied by expected changes in expression of atrophy-related genes or phosphorylation along the Akt axis. Unexpectedly, we observed significant changes in several of the so-called housekeeping genes GAPDH, HADHA and S26 with immobilization in both studies, thereby questioning the usefulness of these genes for normalization of RNA data purposes in muscle immobilization studies.
Collapse
Affiliation(s)
- Anders Nedergaard
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
921
|
Gallagher IJ, Stephens NA, MacDonald AJ, Skipworth RJE, Husi H, Greig CA, Ross JA, Timmons JA, Fearon KCH. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin Cancer Res 2012; 18:2817-27. [PMID: 22452944 DOI: 10.1158/1078-0432.ccr-11-2133] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The mechanisms underlying muscle wasting in patients with cancer remain poorly understood, and consequently there remains an unmet clinical need for new biomarkers and treatment strategies. EXPERIMENTAL DESIGN Microarrays were used to examine the transcriptome in single biopsies from healthy controls (n = 6) and in paired biopsies [pre-resection baseline (weight-loss 7%) and 8 month post-resection follow-up (disease-free/weight-stable for previous 2 months)] from quadriceps muscle of patients with upper gastrointestinal cancer (UGIC; n = 12). RESULTS Before surgery, 1,868 genes were regulated compared with follow-up (false discovery rate, 6%). Ontology analysis showed that regulated genes belonged to both anabolic and catabolic biologic processes with overwhelming downregulation in baseline samples. No literature-derived genes from preclinical cancer cachexia models showed higher expression in baseline muscle. Comparison with healthy control muscle (n = 6) revealed that despite differences in the transcriptome at baseline (941 genes regulated), the muscle of patients at follow-up was similar to control muscle (2 genes regulated). Physical activity (step count per day) did not differ between the baseline and follow-up periods (P = 0.9), indicating that gene expression differences reflected the removal of the cancer rather than altered physical activity levels. Comparative gene expression analysis using exercise training signatures supported this interpretation. CONCLUSIONS Metabolic and protein turnover-related pathways are suppressed in weight-losing patients with UGIC whereas removal of the cancer appears to facilitate a return to a healthy state, independent of changes in the level of physical activity.
Collapse
Affiliation(s)
- Iain J Gallagher
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
922
|
McClung JM, McCord TJ, Keum S, Johnson S, Annex BH, Marchuk DA, Kontos CD. Skeletal muscle-specific genetic determinants contribute to the differential strain-dependent effects of hindlimb ischemia in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2156-69. [PMID: 22445571 DOI: 10.1016/j.ajpath.2012.01.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/02/2012] [Accepted: 01/13/2012] [Indexed: 01/15/2023]
Abstract
Genetics plays an important role in determining peripheral arterial disease (PAD) pathology, which causes a spectrum of clinical disorders that range from clinically silent reductions in blood flow to limb-threatening ischemia. The cell-type specificity of PAD pathology, however, has received little attention. To determine whether strain-dependent differences in skeletal muscle cells might account for the differential responses to ischemia observed in C57BL/6 and BALB/c mice, endothelial and skeletal muscle cells were subjected to hypoxia and nutrient deprivation (HND) in vitro, to mimic ischemia. Muscle cells were more susceptible to HND than were endothelial cells. In vivo, C57BL/6 and BALB/c mice displayed strain-specific differences in myofiber responses after hindlimb ischemia, with significantly greater myofiber atrophy, greater apoptosis, and attenuated myogenic regulatory gene expression and stress-responsive signaling in BALB/c mice. Strain-specific deficits were recapitulated in vitro in primary muscle cells from both strains after HND. Muscle cells from BALB/c mice congenic for the C57BL/6 Lsq-1 quantitative trait locus were protected from HND-induced atrophy, and gene expression of vascular growth factors and their receptors was significantly greater in C57BL/6 primary muscle cells. Our results indicate that the previously identified specific genetic locus regulating strain-dependent collateral vessel density has a nonvascular or muscle cell-autonomous role involving both the myogenic program and traditional vascular growth factor receptor expression.
Collapse
Affiliation(s)
- Joseph M McClung
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
923
|
Guo L, Xie B, Mao Z. Autophagy in premature senescent cells is activated via AMPK pathway. Int J Mol Sci 2012; 13:3563-3582. [PMID: 22489168 PMCID: PMC3317728 DOI: 10.3390/ijms13033563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly regulated intracellular process involved in the turnover of most cellular constituents and in the maintenance of cellular homeostasis. In this study, we show that the activity of autophagy increases in H2O2 or RasV12-induced senescent fibroblasts. Inhibiting autophagy promotes cell apoptosis in senescent cells, suggesting that autophagy activation plays a cytoprotective role. Furthermore, our data indicate that the increase of autophagy in senescent cells is linked to the activation of transcription factor FoxO3A, which blocks ATP generation by transcriptionally up-regulating the expression of PDK4, an inhibitor of pyruvate dehydrogenase complex, thus leading to AMPK activation and mTOR inhibition. These findings suggest a novel mechanism by which FoxO3A factors can activate autophagy via metabolic alteration.
Collapse
Affiliation(s)
- Liujing Guo
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; E-Mails:
| | - Bushan Xie
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; E-Mail:
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; E-Mails:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-10-82805138
| |
Collapse
|
924
|
Huang Y, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012; 11:1247-59. [PMID: 22356768 DOI: 10.4161/cc.11.6.19670] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cisplatin was shown to induce the ataxia telangiectasia mutated (ATM)-dependent phosphorylation of tumor protein p63 isoform, (ΔNp63α), leading to a transcriptional regulation of specific genes implicated in the control of cell death of squamous cell carcinoma (SCC) cells. We previously observed that the cisplatin-induced phosphorylated (p)-ΔNp63α transcriptionally regulates the expression of specific microRNAs (miRNAs) in SCC cells. We found here that cisplatin exposure of SCC cells led to modulation of the members of the autophagic pathway, such as Atg1/Ulk1, Atg3, Atg4A, Atg5, Atg6/Becn1, Atg7, Atg9A and Atg10, by a direct p-ΔNp63α-dependent transcriptional regulation. We further found that specific miRNAs (miR-181a, miR-519a, miR-374a and miR-630), which are critical downstream targets of the p-ΔNp63α, modulated the protein levels of ATG5, ATG6/BECN1, ATG10, ATG12, ATG16L1 and UVRAG, adding another level of expression control for autophagic pathways in SCC cells upon cisplatin exposure. Our data support the notion that the cisplatin-induced p-ΔNp63α could regulate key pathways implicated in response of cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
925
|
Busquets S, Toledo M, Orpí M, Massa D, Porta M, Capdevila E, Padilla N, Frailis V, López-Soriano FJ, Han HQ, Argilés JM. Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J Cachexia Sarcopenia Muscle 2012; 3:37-43. [PMID: 22450815 PMCID: PMC3302990 DOI: 10.1007/s13539-011-0049-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cachexia is a multiorganic syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting and inflammation. METHODS The aim of this investigation was to examine the effect of the soluble receptor antagonist of myostatin (sActRIIB) in cachectic tumor-bearing animals analyzing changes in muscle proteolysis and in quality of life. RESULTS Administration of sActRIIB resulted in an improvement in body and muscle weights. Administration of the soluble receptor antagonist of myostatin also resulted in an improvement in the muscle force. CONCLUSIONS These results suggest that blocking myostatin pathway could be a promising therapeutic strategy for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia Universitat de Barcelona Diagonal 645 08028 Barcelona
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Marcel Orpí
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - David Massa
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Maria Porta
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Eva Capdevila
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Núria Padilla
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Valentina Frailis
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
| | - H. Q. Han
- Departments of Metabolic Disorders and Protein Science Amgen Research 91320 Thousand Oaks CA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular Facultat de Biologia, Universitat de Barcelona Barcelona
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona
| |
Collapse
|
926
|
Mulukutla BC, Gramer M, Hu WS. On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab Eng 2012; 14:138-49. [DOI: 10.1016/j.ymben.2011.12.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/10/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
927
|
Shalini S, Dorstyn L, Wilson C, Puccini J, Ho L, Kumar S. Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ 2012; 19:1370-80. [PMID: 22343713 DOI: 10.1038/cdd.2012.13] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Caspase-2 has been implicated in apoptosis and in non-apoptotic processes such as cell cycle regulation, tumor suppression and ageing. Using caspase-2 knockout (casp2(-/-)) mice, we show here that the putative anti-ageing role of this caspase is due in part to its involvement in the stress response pathway. The old casp2(-/-) mice show increased cellular levels of oxidized proteins, lipid peroxides and DNA damage, suggesting enhanced oxidative stress. Furthermore, murine embryonic fibroblasts from casp2(-/-) mice showed increased reactive oxygen species generation when challenged with pro-oxidants. Reduced activities of antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were observed in the old casp2(-/-) mice. Interestingly, in the old casp2(-/-) animals expression of FoxO1 and FoxO3a was significantly reduced, whereas p21 levels and the number of senescent hepatocytes were elevated. In contrast to young wild-type mice, the casp2(-/-) animals fed an on ethanol-based diet failed to show enhanced GSH-Px and SOD activities. Thus, caspase-2, most likely via FoxO transcription factors, regulates the oxidative stress response in vivo.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
928
|
Jamart C, Francaux M, Millet GY, Deldicque L, Frère D, Féasson L. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol (1985) 2012; 112:1529-37. [PMID: 22345427 DOI: 10.1152/japplphysiol.00952.2011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, the coordinated activation of ubiquitin-proteasome pathway (UPP), autophagy-lysosomal pathway (ALP), and mitochondrial remodeling including mitophagy was assessed by measuring protein markers during ultra-endurance running exercise in human skeletal muscle. Eleven male, experienced ultra-endurance athletes ran for 24 h on a treadmill. Muscle biopsy samples were taken from the vastus lateralis muscle 2 h before starting and immediately after finishing exercise. Athletes ran 149.8 ± 16.3 km with an effective running time of 18 h 42 min ( ± 41 min). The phosphorylation state of Akt (-74 ± 5%; P < 0.001), FOXO3a (-49 ± 9%; P < 0.001), mTOR Ser2448 (-32 ± 14%; P = 0.028), and 4E-BP1 (-34 ± 7%; P < 0.001) was decreased, whereas AMPK phosphorylation state increased by 247 ± 170% (P = 0.042). Proteasome β2 subunit activity increased by 95 ± 44% (P = 0.028), whereas the activities associated with the β1 and β5 subunits remained unchanged. MuRF1 protein level increased by 55 ± 26% (P = 0.034), whereas MAFbx protein and ubiquitin-conjugated protein levels did not change. LC3bII increased by 554 ± 256% (P = 0.005), and the form of ATG12 conjugated to ATG5 increased by 36 ± 17% (P = 0.042). The mitochondrial fission marker phospho-DRP1 increased by 110 ± 47% (P = 0.003), whereas the fusion marker Mfn1 and the mitophagy markers Parkin and PINK1 remained unchanged. These results fit well with a coordinated regulation of ALP and UPP triggered by FOXO3 and AMPK during ultra-endurance exercise.
Collapse
Affiliation(s)
- Cécile Jamart
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
929
|
Abstract
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
Collapse
|
930
|
Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012; 2012:493618. [PMID: 22496611 PMCID: PMC3303694 DOI: 10.1155/2012/493618] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscles, namely, postural muscles, as soleus, suffer from atrophy under disuse. Muscle atrophy development caused by unloading differs from that induced by denervation or other stimuli. Disuse atrophy is supposed to be the result of shift of protein synthesis/proteolysis balance towards protein degradation increase. Maintaining of the balance involves many systems of synthesis and proteolysis, whose activation leads to muscle adaptation to disuse rather than muscle degeneration. Here, we review recent data on activity of signaling systems involved in muscle atrophy development under unloading and muscle adaptation to the lack of support.
Collapse
|
931
|
Dengjel J, Høyer-Hansen M, Nielsen MO, Eisenberg T, Harder LM, Schandorff S, Farkas T, Kirkegaard T, Becker AC, Schroeder S, Vanselow K, Lundberg E, Nielsen MM, Kristensen AR, Akimov V, Bunkenborg J, Madeo F, Jäättelä M, Andersen JS. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics 2012; 11:M111.014035. [PMID: 22311637 PMCID: PMC3316729 DOI: 10.1074/mcp.m111.014035] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
932
|
Affiliation(s)
- Eijiro Yamada
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | |
Collapse
|
933
|
The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012; 32:1248-59. [PMID: 22290431 DOI: 10.1128/mcb.06351-11] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.
Collapse
|
934
|
Iovino S, Oriente F, Botta G, Cabaro S, Iovane V, Paciello O, Viggiano D, Perruolo G, Formisano P, Beguinot F. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. Cell Death Differ 2012; 19:1127-38. [PMID: 22281705 PMCID: PMC3374077 DOI: 10.1038/cdd.2011.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TGF-beta1 has been shown to induce autophagy in certain cells but whether and how this action is exerted in muscle and whether this activity relates to TGF-beta1 control of muscle cell differentiation remains unknown. Here, we show that expression of the autophagy-promoting protein phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) progressively declines during L6 and C2C12 skeletal muscle cell differentiation. PED/PEA-15 underwent rapid induction upon TGF-beta1 exposure of L6 and C2C12 myoblasts, accompanied by impaired differentiation into mature myotubes. TGF-beta1 also induced autophagy in the L6 and C2C12 cells through a PP2A/FoxO1-mediated mechanism. Both the TGF-beta1 effect on differentiation and that on autophagy were blocked by specific PED/PEA-15 ShRNAs. Myoblasts stably overexpressing PED/PEA-15 did not differentiate and showed markedly enhanced autophagy. In these same cells, the autophagy inhibitor 3-methyladenine rescued TGF-beta1 effect on both autophagy and myogenesis, indicating that PED/PEA-15 mediates TGF-beta1 effects in muscle. Muscles from transgenic mice overexpressing PED/PEA-15 featured a significant number of atrophic fibers, accompanied by increased light chain 3 (LC3)II to LC3I ratio and reduced PP2A/FoxO1 phosphorylation. Interestingly, these mice showed significantly impaired locomotor activity compared with their non-transgenic littermates. TGF-beta1 causes transcriptional upregulation of the autophagy-promoting gene PED/PEA-15, which in turn is capable to induce atrophic responses in skeletal muscle in vivo.
Collapse
Affiliation(s)
- S Iovino
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
935
|
TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2012; 2:2. [PMID: 22257771 PMCID: PMC3344678 DOI: 10.1186/2044-5040-2-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/18/2012] [Indexed: 11/11/2022] Open
Abstract
Background Muscle atrophy associated with various pathophysiological conditions represents a major health problem, because of its contribution to the deterioration of patient status and its effect on mortality. Although the involvement of pro-inflammatory cytokines in this process is well recognized, the role of sphingolipid metabolism alterations induced by the cytokines has received little attention. Results We addressed this question both in vitro using differentiated myotubes treated with TNF-α, and in vivo in a murine model of tumor-induced cachexia. Myotube atrophy induced by TNF-α was accompanied by a substantial increase in cell ceramide levels, and could be mimicked by the addition of exogenous ceramides. It could be prevented by the addition of ceramide-synthesis inhibitors that targeted either the de novo pathway (myriocin), or the sphingomyelinases (GW4869 and 3-O-methylsphingomyelin). In the presence of TNF-α, ceramide-synthesis inhibitors significantly increased protein synthesis and decreased proteolysis. In parallel, they lowered the expression of both the Atrogin-1 and LC3b genes, involved in muscle protein degradation by proteasome and in autophagic proteolysis, respectively, and increased the proportion of inactive, phosphorylated Foxo3 transcription factor. Furthermore, these inhibitors increased the expression and/or phosphorylation levels of key factors regulating protein metabolism, including phospholipase D, an activator of mammalian target of rapamycin (mTOR), and the mTOR substrates S6K1 and Akt. In vivo, C26 carcinoma implantation induced a substantial increase in muscle ceramide, together with drastic muscle atrophy. Treatment of the animals with myriocin reduced the expression of the atrogenes Foxo3 and Atrogin-1, and partially protected muscle tissue from atrophy. Conclusions Ceramide accumulation induced by TNF-α or tumor development participates in the mechanism of muscle-cell atrophy, and sphingolipid metabolism is a logical target for pharmacological or nutritional interventions aiming at preserving muscle mass in pathological situations.
Collapse
|
936
|
Cantó C, Auwerx J. Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda) 2012; 26:214-24. [PMID: 21841070 DOI: 10.1152/physiol.00010.2011] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dietary restriction can extend life span in most organisms tested to date, suggesting that mechanisms sensing nutrient and energy availability might regulate longevity. The AMP-activated protein kinase (AMPK) has emerged as a key energy sensor with the ability to transcriptionally reprogram the cell and metabolically adapt to external cues. In this review, we will discuss the possible role of AMPK in the beneficial effects of calorie restriction on health and life span.
Collapse
Affiliation(s)
- Carles Cantó
- Laboratory of Integrative and Systems Physiology and Nestle Chair in Energy Metabolism, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
937
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
938
|
Park S, Lee SK, Park K, Lee Y, Hong Y, Lee S, Jeon JC, Kim JH, Lee SR, Chang KT, Hong Y. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 2012; 52:107-19. [PMID: 21854445 DOI: 10.1111/j.1600-079x.2011.00925.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the beneficial effects of endogenous and exogenous melatonin on functional recovery in an animal model of spinal cord injury (SCI). Eight-week-old male Sprague-Dawley (SD, 250-260 g) rats were used for contusion SCI surgery. All experimental groups were maintained under one of the following conditions: 12/12-hr light/dark (L/D) or 24:0-hr constant light (LL). Melatonin (10 mg/kg) was injected subcutaneously for 4 wk, twice daily (07:00, 19:00). Locomotor recovery, inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein gene expression, and muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle-specific ring-finger protein 1 (MuRF1) gene expression were evaluated. Furthermore, autophagic signaling such as Beclin-1 and LC3 protein expression was examined in the spinal cord and in skeletal muscle. The melatonin treatment resulted in increased hind-limb motor function and decreased iNOS mRNA expression in the L/D condition compared with the LL condition (P < 0.05), indicating that endogenous melatonin had neuroprotective effects. Furthermore, the MAFbx, MuRF1 mRNA level, and converted LC3 II protein expression were decreased in the melatonin-treated SCI groups under the LL (P < 0.05), possibly in response to the exogenous melatonin treatment. Therefore, it seems that both endogenous and exogenous melatonin contribute to neural recovery and to the prevention of skeletal muscle atrophy, promoting functional recovery after SCI. Finally, this study supports the benefit of endogenous melatonin and use of exogenous melatonin as a therapeutic intervention for SCI.
Collapse
Affiliation(s)
- Sookyoung Park
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
939
|
Jamart C, Benoit N, Raymackers JM, Kim HJ, Kim CK, Francaux M. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur J Appl Physiol 2011; 112:3173-7. [PMID: 22194006 DOI: 10.1007/s00421-011-2287-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/09/2011] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to evaluate whether ultra endurance exercise changes the mRNA levels of the autophagy-related and autophagy-regulatory genes. Eight men (44 ± 1 years, range: 38-50 years) took part in a 200-km running race. The average running time was 28 h 03 min ± 2 h 01 min (range: 22 h 15 min-35 h 04 min). A muscle sample was taken from the vastus lateralis 2 weeks prior to the race and 3 h after arrival. Gene expression was assessed by RT-qPCR. Transcript levels of autophagy-related genes were increased by 49% for ATG4b (P = 0.025), 57% for ATG12 (P = 0.013), 286% for Gabarapl1 (P = 0.008) and 103% for LC3b (P = 0.011). The lysosomal enzyme cathepsin L mRNA was upregulated by 123% (P = 0.003). Similarly, transcript levels of the autophagy-regulatory genes BNIP3 and BNIP3l were both increased by 113% (P = 0.031 and P = 0.007, respectively). Since upregulation of these genes has been related with an increased autophagic flux in various models, our results strongly suggest that autophagy is activated in response to ultra endurance exercise.
Collapse
Affiliation(s)
- Cécile Jamart
- Institute of Neuroscience, Research Group in Muscle and Exercise Physiology, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
940
|
Reactive oxygen species in skeletal muscle signaling. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:982794. [PMID: 22175016 PMCID: PMC3235811 DOI: 10.1155/2012/982794] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 12/13/2022]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also-within certain concentrations-useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a "positive" or "negative" response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of "physiologically compatible" levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle.
Collapse
|
941
|
Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci (Lond) 2011; 122:133-42. [PMID: 21880013 DOI: 10.1042/cs20110233] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Muscle wasting negatively affects morbidity and mortality in critically ill patients. This progressive wasting is accompanied by, in general, a normal muscle PS (protein synthesis) rate. In the present study, we investigated whether muscle protein degradation is increased in critically ill patients with sepsis and which proteolytic enzyme systems are involved in this degradation. Eight patients and seven healthy volunteers were studied. In vivo muscle protein kinetics was measured using arteriovenous balance techniques with stable isotope tracers. The activities of the major proteolytic enzyme systems were analysed in combination with mRNA expression of genes related to these proteolytic systems. Results show that critically ill patients with sepsis have a variable but normal muscle PS rate, whereas protein degradation rates are dramatically increased (up to 160%). Of the major proteolytic enzyme systems both the proteasome and the lysosomal systems had higher activities in the patients, whereas calpain and caspase activities were not changed. Gene expression of several genes related to the proteasome system was increased in the patients. mRNA levels of the two main lysosomal enzymes (cathepsin B and L) were not changed but, conversely, genes related to calpain and caspase had a higher expression in the muscles of the patients. In conclusion, the dramatic muscle wasting seen in critically ill patients with sepsis is due to increased protein degradation. This is facilitated by increased activities of both the proteasome and lysosomal proteolytic systems.
Collapse
|
942
|
Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 2011; 23:1896-906. [PMID: 21821120 PMCID: PMC3744211 DOI: 10.1016/j.cellsig.2011.07.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 01/30/2023]
Abstract
The maintenance of muscle mass is critical for health and issues associated with the quality of life. Over the last decade, extensive progress has been made with regard to our understanding of the molecules that regulate skeletal muscle mass. Not surprisingly, many of these molecules are intimately involved in the regulation of protein synthesis and protein degradation [e.g. the mammalian target of rapamycin (mTOR), eukaryotic initiation factor 2B (eIF2B), eukaryotic initiation factor 3f (eIF3f) and the forkhead box O (FoxO) transcription factors]. It is also becoming apparent that molecules which sense, or control, the energetic status of the cell play a key role in the regulation of muscle mass [e.g. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC1α)]. In this review we will attempt to summarize the current knowledge of how these molecules regulate skeletal muscle mass.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
943
|
Khambu B, Uesugi M, Kawazoe Y. Translational repression stabilizes messenger RNA of autophagy-related genes. Genes Cells 2011; 16:857-67. [PMID: 21790910 DOI: 10.1111/j.1365-2443.2011.01532.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In response to amino acid starvation, autophagy mediates the lysosome-dependent turnover of cytosolic components via autophagosome formation. Despite advances in understanding the molecular basis of autophagy process, the regulatory mechanism remains unclear. Here, we show that repression of protein synthesis stabilizes the messenger RNAs of specific autophagy-related (ATG) genes, increasing their respective half-lives. Further analysis indicated that the stabilization process is attributable to the coding region of the mRNAs. The results suggest a novel mechanism of autophagy regulation by post-transcriptional mRNA stabilization, in which repression of protein synthesis plays a direct role to sustain the autophagy process.
Collapse
Affiliation(s)
- Bilon Khambu
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
944
|
Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 2011; 26:987-1000. [PMID: 22102632 DOI: 10.1096/fj.11-189977] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Physical Therapy, 101 S. Newell Dr., University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
945
|
Bosurgi L, Manfredi AA, Rovere-Querini P. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2011; 2:62. [PMID: 22566851 PMCID: PMC3341990 DOI: 10.3389/fimmu.2011.00062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases.
Collapse
Affiliation(s)
- Lidia Bosurgi
- Unit of Innate Immunity and Tissue Remodelling, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto Scientifico San Raffaele Milano, Italy
| | | | | |
Collapse
|
946
|
Houck SA, Cyr DM. Mechanisms for quality control of misfolded transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1108-14. [PMID: 22100602 DOI: 10.1016/j.bbamem.2011.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/21/2023]
Abstract
To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Scott A Houck
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | |
Collapse
|
947
|
Lee JY, Hopkinson NS, Kemp PR. Myostatin induces autophagy in skeletal muscle in vitro. Biochem Biophys Res Commun 2011; 415:632-6. [PMID: 22079631 DOI: 10.1016/j.bbrc.2011.10.124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 01/07/2023]
Abstract
Myostatin is an important regulator of muscle mass that contributes to the loss of muscle mass in a number of chronic diseases. Myostatin is known to activate the expression of components of the ubiquitin-proteosomal pathway but its effect on the autophagic pathway is not known. We therefore analysed the effect of myostatin and TGF-β on autophagy in C2C12 cells by determining the effect of these proteins on LC3 processing, autophagosome formation and autophagy gene expression. Both myostatin and TGF-β increased LC3II expression and turnover as well as autophagosome formation (marked by the formation of puncta in LC3-GFP transfected cells). Myostatin also significantly increased the expression of ATG-4B and ULK-2 mRNA while TGF-β caused a trend towards an increase in these genes. We conclude that myostatin and TGF-β increase autophagy in skeletal muscle cells.
Collapse
Affiliation(s)
- Jen Y Lee
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
948
|
Macpherson PCD, Wang X, Goldman D. Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J Cell Biochem 2011; 112:2149-59. [PMID: 21465538 DOI: 10.1002/jcb.23136] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Muscle inactivity due to injury or disease results in muscle atrophy. The molecular mechanisms contributing to muscle atrophy are poorly understood. However, it is clear that expression of atrophy-related genes, like Atrogin-1 and MuRF-1, are intimately tied to loss of muscle mass. When these atrophy-related genes are knocked out, inactive muscles retain mass. Muscle denervation stimulates muscle atrophy and Myogenin (Myog) is a muscle-specific transcription factor that is highly induced following muscle denervation. To investigate if Myog contributes to muscle atrophy, we have taken advantage of conditional Myog null mice. We show that in the denervated soleus muscle Myog expression contributes to reduced muscle force, mass, and cross-sectional area. We found that Myog mediates these effects, at least in part, by regulating expression of the Atrogin-1 and MuRF-1 genes. Indeed Myog over-expression in innervated muscle stimulates Atrogin-1 gene expression and Myog over-expression stimulates Atrogin-1 promoter activity. Thus, Myog and the signaling cascades regulating its induction following muscle denervation may represent novel targets for therapies aimed at reducing denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Peter C D Macpherson
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
949
|
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
950
|
Powers SK, Smuder AJ, Criswell DS. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 2011; 15:2519-28. [PMID: 21457104 PMCID: PMC3208252 DOI: 10.1089/ars.2011.3973] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long periods of skeletal muscle inactivity promote a loss of muscle protein resulting in fiber atrophy. This disuse-induced muscle atrophy results from decreased protein synthesis and increased protein degradation. Recent studies have increased our insight into this complicated process, and evidence indicates that disturbed redox signaling is an important regulator of cell signaling pathways that control both protein synthesis and proteolysis in skeletal muscle. The objective of this review is to outline the role that reactive oxygen species play in the regulation of inactivity-induced skeletal muscle atrophy. Specifically, this report will provide an overview of experimental models used to investigate disuse muscle atrophy and will also highlight the intracellular sources of reactive oxygen species and reactive nitrogen species in inactive skeletal muscle. We then will provide a detailed discussion of the evidence that links oxidants to the cell signaling pathways that control both protein synthesis and degradation. Finally, by presenting unresolved issues related to oxidative stress and muscle atrophy, we hope that this review will serve as a stimulus for new research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, USA.
| | | | | |
Collapse
|