901
|
Inamdar AA, Inamdar AC. Culture conditions for growth of clinical grade human tissue derived mesenchymal stem cells: comparative study between commercial serum-free media and human product supplemented media. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-1218-2-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
902
|
Huntsman HD, Zachwieja N, Zou K, Ripchik P, Valero MC, De Lisio M, Boppart MD. Mesenchymal stem cells contribute to vascular growth in skeletal muscle in response to eccentric exercise. Am J Physiol Heart Circ Physiol 2013; 304:H72-81. [DOI: 10.1152/ajpheart.00541.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The α7β1-integrin is an adhesion molecule highly expressed in skeletal muscle that can enhance regeneration in response to eccentric exercise. We have demonstrated that mesenchymal stem cells (MSCs), predominantly pericytes, accumulate in muscle (mMSCs) overexpressing the α7B-integrin (MCK:α7B; α7Tg) and contribute to new fiber formation following exercise. Since vascularization is a common event that supports tissue remodeling, we hypothesized that the α7-integrin and/or mMSCs may stimulate vessel growth following eccentric exercise. Wild-type (WT) and α7Tg mice were subjected to single or multiple (3 times/wk, 4 wk) bouts of downhill running exercise. Additionally, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) -labeled mMSCs were intramuscularly injected into WT recipients. A subset of recipient mice were run downhill before injection to recapitulate the exercised microenvironment. While total number of CD31+ vessels declined in both WT and α7Tg muscle following a single bout of exercise, the number of larger CD31+ vessels with a visible lumen was preferentially increased in α7Tg mice following eccentric exercise training ( P < 0.05). mMSC transplantation similarly increased vessel diameter and the total number of neuron-glial antigen-2 (NG2+) arterioles postexercise. Secretion of arteriogenic factors from mMSCs in response to mechanical strain, including epidermal growth factor and granulocyte macrophage-colony stimulating factor, may account for vessel remodeling. In conclusion, this study demonstrates that the α7-integrin and mMSCs contribute to increased vessel diameter size and arteriolar density in muscle in response to eccentric exercise. The information in this study has implications for the therapeutic treatment of injured muscle and disorders that result in vessel occlusion, including peripheral artery disease.
Collapse
Affiliation(s)
- Heather D. Huntsman
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Nicole Zachwieja
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Kai Zou
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Pauline Ripchik
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - M. Carmen Valero
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| |
Collapse
|
903
|
Budoni M, Fierabracci A, Luciano R, Petrini S, Di Ciommo V, Muraca M. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant 2013; 22:369-379. [PMID: 23433427 DOI: 10.3727/096368911x582769b] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immunomodulatory properties of mesenchymal stromal cells are the subject of increasing interest and of widening clinical applications, but the reproducibility of their effects is controversial and the underlying mechanisms have not been fully clarified. We investigated the transfer of membrane vesicles, a recently recognized pathway of intercellular communication, as possible mediator of the interaction between mesenchymal stromal cells and B lymphocytes. Mesenchymal stromal cells exhibited a strong dose-dependent inhibition of B-cell proliferation and differentiation in a CpG-stimulated peripheral blood mononuclear cell coculture system. We observed that these effects could be fully reproduced by membrane vesicles isolated from mesenchymal stromal cell culture supernatants in a dose-dependent fashion. Next, we evaluated the localization of fluorescently labeled membrane vesicles within specific cell subtypes both by flow cytometry and by confocal microscopy analysis. Membrane vesicles were found to be associated with stimulated B lymphocytes, but not with other cell phenotypes (T lymphocytes, dendritic cells, natural killer cells), in peripheral blood mononuclear cell culture. These results suggest that membrane vesicles derived from mesenchymal stromal cells are the conveyors of the immunosuppressive effect on B lymphocytes. These particles should be further evaluated as immunosuppressive agents in place of the parent cells, with possible advantages in term of standardization, safety, and feasibility.
Collapse
Affiliation(s)
- Manuela Budoni
- Research Laboratories, Children's Hospital Bambino Gesù Research Institute, 00165 Rome, Italy
| | | | | | | | | | | |
Collapse
|
904
|
Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK, Gibon E, Schambach A, Mätzig T, Günther KP, Goodman SB, Stiehler M. Stem cell attraction via SDF-1α expressing fat tissue grafts. J Biomed Mater Res A 2012; 101:2067-74. [PMID: 23281045 DOI: 10.1002/jbm.a.34512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/08/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cell (MSCs) are key cellular components for site-specific tissue regeneration. The chemokine stromal derived factor 1 alpha (SDF-1α) is known to attract stem cells via the C-X-C chemokine receptor-4 (CXCR4) receptor. The aim of the study was to develop a model for stem cell attraction using SDF-1α overexpressing fat tissue grafts. Murine MSCs were lentiviral transduced to express the genes for enhanced green fluorescent protein, firefly luciferace, and human CXCR4 (hCXCR4). Murine fat tissue was adenoviral transduced to express SDF-1α and red fluorescent protein transgenes. MSCs were cultured on transwells with SDF-1α containing supernatants from transduced fat tissue. The numbers of migrated MSCs in four groups (with hCXCR4 positive (+) or hCXCR4 negative (-) MSCs with or without SDF-1α containing supernatant) were investigated. After 36 h of culture, 9025 ± 925 cells migrated through the membrane of the transwells in group 1 (CXCR4+/SDF-1α+), 4817 ± 940 cells in group 2 (CXCR4-/SDF-1α+), 2050 ± 766 cells in group 3 (CXCR4+/SDF-1α-), and 2108 ± 426 cells in group 4 (CXCR4-/SDF-1α-). Both, the presence of SDF-1α and the expression of hCXCR4 significantly increased the migration rates (p < 0.0001). MSCs overexpressing the CXCR4 receptor by lentiviral transduction are highly attracted by medium from SDF-1α expressing fat tissue in vitro. Thus, SDF-1α activated tissue grafts may be a strategy to enhance site-specific musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Stefan Zwingenberger
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
905
|
Shin L, Peterson DA. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med 2012; 2:33-42. [PMID: 23283490 DOI: 10.5966/sctm.2012-0041] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been investigated as a clinical therapy to promote tissue repair. However, the disappearance of grafted cells soon after engraftment suggests a possible role as initiators of repair rather than effectors. We evaluated the relative contribution of grafted human MSCs and host stem/progenitor cells in promoting wound healing by using a novel asymmetric wound model in normal and impaired healing diabetic (db/db) mice to discriminate between the effect of direct engraftment and the subsequent systemic response. Experimental animals received paired wounds, with one wound receiving human mesenchymal stem cells (hMSCs) and the other wound receiving vehicle to assess local and systemic effects, respectively. Control animals received vehicle in both wounds. Grafted hMSCs significantly improved healing in both normal and impaired healing animals; produced significant elevation of signals such as Wnt3a, vascular endothelial growth factor, and platelet-derived growth factor receptor-α; and increased the number of pre-existing host MSCs recruited to the wound bed. Improvement was also seen in both the grafted and nongrafted sides, suggesting a systemic response to hMSC engraftment. Healing was enhanced despite the rapid loss of hMSCs, suggesting that mobilizing the host response is the major outcome of grafting MSCs to tissue repair. We validate that hMSCs evoke a host response that is clinically relevant, and we suggest that therapeutic efforts should focus on maximizing the mobilization of host MSCs.
Collapse
Affiliation(s)
- Laura Shin
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | |
Collapse
|
906
|
Castiglione F, Hedlund P, Van der Aa F, Bivalacqua TJ, Rigatti P, Van Poppel H, Montorsi F, De Ridder D, Albersen M. Reply from Authors re: Ching-Shwun Lin, Tom F. Lue. Adipose-derived Stem Cells for the Treatment of Peyronie's Disease? Eur Urol 2013;63:561-2: Xenogeneic Adipose Stem Cell Treatment in a Rat Model of Peyronie's Disease. Eur Urol 2012; 63:563-4. [PMID: 23265388 DOI: 10.1016/j.eururo.2012.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Fabio Castiglione
- Urological Research Institute, Department of Urology, University Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
907
|
Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials 2012. [PMID: 23206876 DOI: 10.1016/j.biomaterials.2012.11.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For the successful treatment of ischemia, it is important to resupply sufficient blood into ischemic regions by inducing angiogenesis. Many stem cell transplantation studies have been reported to enhance angiogenesis, especially those relating to mesenchymal stem cells (MSCs); however cell transplantation has a number of limitations, such as the low rate of cell survival and donor cell shortage. In this study, we developed bioactive peptides by immobilizing substance P into self-assembling peptides, and their MSCs recruiting ability and therapeutic effects were evaluated by using ischemic hind limb models. Limb ischemia was produced in athymic mice, and 1% (wt/vol) peptides were injected into ischemic sites (n = 6 in each group: ischemia, substance P, RADA16-II, RADA16-II + substance P, and RADA16-II + RADA-SP (bioactive peptides)). The tissues were harvested for histological analysis and tissue perfusion measurement at 1, 3, 7, and 28 days after injection. We observed that bioactive peptides assembled themselves (<10 nm nanofibers) and formed 3-dimensional (3D) microenvironments within ischemic regions. In the animal study, it was observed that by applying bioactive peptides, substance P continued to be released at 28 days, and consequently, MSCs were successfully recruited into ischemic regions. Bioactive peptides could prevent fibrosis, promote neovascularization, enhance tissue perfusion, and prevent limb salvages. Our results demonstrated that bioactive peptides are one of the most powerful tools for the treatment of ischemia, through their recruitment of autologous MSCs and promotion of angiogenesis without cells transplantation.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | |
Collapse
|
908
|
Mascarenhas S, Avalos B, Ardoin SP. An update on stem cell transplantation in autoimmune rheumatologic disorders. Curr Allergy Asthma Rep 2012; 12:530-40. [PMID: 22956390 DOI: 10.1007/s11882-012-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cell transplant (SCT) has long been the standard of care for several hematologic, immunodeficient, and oncologic disorders. Recently, SCT has become an increasingly utilized therapy for refractory autoimmune rheumatologic disorders (ARDs). The efficacy of SCT in ARDs has been attributed to resetting an aberrant immune system either through direct immune replacement with hematopoietic stem cells or through immunomodulation with mesenchymal stem cells. Among ARDs, refractory systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are the most common indications for SCT. SCT has also been used in refractory rheumatoid arthritis, inflammatory myopathies, antiphospholipid syndrome, granulomatosis with polyangiitis, and pediatric ARDs. Complete responses have been reported in approximately 30 % of patients in all disease categories. Transplant-related mortality, however, remains a concern. Future large multi-center prospective randomized clinical trials will help to better define the specific role of SCT in the treatment of patients with ARDs.
Collapse
Affiliation(s)
- Sheryl Mascarenhas
- Division of Rheumatology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
909
|
Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 2012; 73:1305-17. [PMID: 22849692 DOI: 10.2460/ajvr.73.8.1305] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To isolate and characterize mesenchymal stem cells (MSCs) from canine muscle and periosteum and compare proliferative capacities of bone marrow-, adipose tissue-, muscle-, and periosteum-derived MSCs (BMSCs, AMSCs, MMSCs, and PMSCs, respectively). SAMPLE -7 canine cadavers. PROCEDURES -MSCs were characterized on the basis of morphology, immunofluorescence of MSC-associated cell surface markers, and expression of pluripotency-associated transcription factors. Morphological and histochemical methods were used to evaluate differentiation of MSCs cultured in adipogenic, osteogenic, and chondrogenic media. Messenger ribonucleic acid expression of alkaline phosphatase, RUNX2, OSTERIX, and OSTEOPONTIN were evaluated as markers for osteogenic differentiation. Passage-1 MSCs were counted at 24, 48, 72, and 96 hours to determine tissue-specific MSC proliferative capacity. Mesenchymal stem cell yield per gram of tissue was calculated for confluent passage-1 MSCs. RESULTS -Successful isolation of BMSCs, AMSCs, MMSCs, and PMSCs was determined on the basis of morphology; expression of CD44 and CD90; no expression of CD34 and CD45; mRNA expression of SOX2, OCT4, and NANOG; and adipogenic and osteogenic differentiation. Proliferative capacity was not significantly different among BMSCs, AMSCs, MMSCs, and PMSCs over a 4-day culture period. Periosteum provided a significantly higher MSC yield per gram of tissue once confluent in passage 1 (mean ± SD of 19,400,000 ± 12,800,000 of PMSCs/g of periosteum obtained in a mean ± SD of 13 ± 1.64 days). CONCLUSIONS AND CLINICAL RELEVANCE -Results indicated that canine muscle and periosteum may be sources of MSCs. Periosteum was a superior tissue source for MSC yield and may be useful in allogenic applications.
Collapse
Affiliation(s)
- Agatha H Kisiel
- Companion Animal Department, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.
| | | | | | | | | | | |
Collapse
|
910
|
Binato R, de Souza Fernandez T, Lazzarotto-Silva C, Du Rocher B, Mencalha A, Pizzatti L, Bouzas LF, Abdelhay E. Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy. Cell Prolif 2012; 46:10-22. [PMID: 23163975 DOI: 10.1111/cpr.12002] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/08/2012] [Indexed: 01/30/2023] Open
Abstract
Ex vivo expansion and manipulation of human mesenchymal stem cells are important approaches to immunoregulatory and regenerative cell therapies. Although these cells show great potential for use, issues relating to their overall nature emerge as problems in the field. The need for extensive cell quantity amplification in vitro to obtain sufficient cell numbers for use, poses a risk of accumulating genetic and epigenetic abnormalities that could lead to sporadic malignant cell transformation. In this study, we have examined human mesenchymal stem cells derived from bone marrow, over extended culture time, using cytogenetic analyses, mixed lymphocyte reactions, proteomics and gene expression assays to determine whether the cultures would retain their potential for use in subsequent passages. Results indicate that in vitro cultures of these cells demonstrated chromosome variability after passage 4, but their immunomodulatory functions and differentiation capacity were maintained. At the molecular level, changes were observed from passage 5 on, indicating initiation of differentiation. Together, these results lead to the hypothesis that human mesenchymal stem cells cultures can be used successfully in cell therapy up to passage 4. However, use of cells from higher passages would have to be analysed case by case.
Collapse
Affiliation(s)
- R Binato
- Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
911
|
Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev 2012; 22:193-203. [PMID: 23025629 DOI: 10.1089/scd.2012.0417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Not too long ago, several motivated and forward-looking articles were published describing the cellular and molecular properties of mesenchymal stem cells (MSCs), specially highlighting their potential for self-renewal, commitment, differentiation, and maturation into specific mesoderm-derived lineages. A very influential publication of that period entitled "Mesenchymal stem cells: No longer second class marrow citizens" [1] raised the point of view that "…challenges to harness MSC cell therapy to treat diseases … need to wait for the full comprehension that marrow is a rich source of mesenchyme-derived cells whose potential is still far from fully appreciated." Whether or not the prophecy of Gerson was fulfilled, in the last 8 years it has become evident that infusing MSCs into patients suffering a variety of disorders represents a viable option for medical treatment. Accordingly, a vast number of articles have explored the privileged cellular and molecular features of MSCs prepared from sources other than the canonical, represented by the bone marrow. This review will provide more information neither related to the biological attractiveness of MSCs nor to the success after their clinical use. Rather, we would like to underscore several "critical and tangential" issues, not always discussed in biomedical publications, but relevant to the clinical utilization of bone-marrow-derived MSCs.
Collapse
Affiliation(s)
- Jose J Minguell
- TCA Cellular Therapy, 101 Judge Tanner Boulevard, Covington, LA 70433, USA.
| | | | | |
Collapse
|
912
|
Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2012; 22:845-54. [PMID: 23002959 DOI: 10.1089/scd.2012.0395] [Citation(s) in RCA: 673] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.
Collapse
Affiliation(s)
- Tingfen Li
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
913
|
Saldanha-Araujo F, Haddad R, Farias KCRMD, Souza ADPA, Palma PV, Araujo AG, Orellana MD, Voltarelli JC, Covas DT, Zago MA, Panepucci RA. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and non-canonical NF-κB signalling. J Cell Mol Med 2012; 16:1232-44. [PMID: 21777379 PMCID: PMC3823077 DOI: 10.1111/j.1582-4934.2011.01391.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy, Regional Blood Center and Faculty of Medicine, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
914
|
Gómez-Aristizábal A, Ng C, Ng J, Davies JE. Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transpl 2012; 18:1384-94. [PMID: 22753359 DOI: 10.1002/lt.23500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory response to liver injury plays an important role in the onset of liver fibrosis, which may ultimately lead to liver failure. The attenuation of inflammation and hepatocyte rescue are, therefore, of the utmost importance for recovery. Mesenchymal stromal cells (MSCs) from adult bone marrow have been shown to rescue hepatocyte function. Here we explore a more plentiful source of neonatal MSCs: human umbilical cord perivascular cells (HUCPVCs). We cocultured HUCPVCs or bone marrow-derived mesenchymal stromal cells (BM-MSCs) with rat hepatocytes or human peripheral blood mononuclear cells in order to identify their effects on hepatocyte functionality and the proliferation of phytohemagglutinin-stimulated peripheral blood mononuclear cells (phaPBMCs). The expression of hepatotrophic factors by both types of MSCs in the presence of hepatocytes and the functional implications of blocking putative MSC anti-inflammatory factors were compared. Both types of MSCs improved albumin secretion, ureagenesis, hepatospecific gene expression, cytochrome P450 (CYP) activity, and functional hepatocyte mass maintenance. However, although HUCPVCs had an improved effect on the maintenance of ureagenesis, BM-MSCs had a strong effect on hepatocyte CYP activity. Additionally, each MSC type differentially expressed putative hepatotrophic factors, whereas phaPBMC proliferation was significantly decreased. Indoleamine 2,3-dioxygenase (IDO) was the main immunosuppressive mechanism used by both types of MSCs, but HUCPVCs exhibited higher expression of programmed death 1 ligands. However, the functional significance of the difference in anti-inflammatory factor expression still remains to be elucidated. Thus, both MSC types can serve as hepatocyte stromal cells and mitigate inflammation with IDO, but they present differences in the manner in which they affect hepatocytes and in the expression of both hepatotrophic and anti-inflammatory factors.
Collapse
|
915
|
Lee JK, Schuchman EH, Jin HK, Bae JS. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer's disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 2012; 30:1544-55. [PMID: 22570192 DOI: 10.1002/stem.1125] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microglia have the ability to eliminate amyloid β (Aβ) by a cell-specific phagocytic mechanism, and bone marrow (BM) stem cells have shown a beneficial effect through endogenous microglia activation in the brains of Alzheimer's disease (AD) mice. However, the mechanisms underlying BM-induced activation of microglia have not been resolved. Here we show that BM-derived mesenchymal stem cells (MSCs) induced the migration of microglia when exposed to Aβ in vitro. Cytokine array analysis of the BM-MSC media obtained after stimulation by Aβ further revealed elevated release of the chemoattractive factor, CCL5. We also observed that CCL5 was increased when BM-MSCs were transplanted into the brains of Aβ-deposited AD mice, but not normal mice. Interestingly, alternative activation of microglia in AD mice was associated with elevated CCL5 expression following intracerebral BM-MSC transplantation. Furthermore, by generating an AD-green fluorescent protein chimeric mouse, we ascertained that endogenous BM cells, recruited into the brain by CCL5, induced microglial activation. Additionally, we observed that neprilysin and interleukin-4 derived from the alternative microglia were associated with a reduction in Aβ deposition and memory impairment in AD mice. These results suggest that the beneficial effects observed in AD mice after intracerebral SC transplantation may be explained by alternative microglia activation. The recruitment of the alternative microglia into the brain is driven by CCL5 secretion from the transplanted BM-MSCs, which itself is induced by Aβ deposition in the AD brain.
Collapse
Affiliation(s)
- Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|
916
|
Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 2012; 60:1012-22. [PMID: 23036928 DOI: 10.1053/j.ajkd.2012.08.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 08/13/2012] [Indexed: 01/01/2023]
Abstract
Acute kidney injury (AKI) is a common clinical entity with high morbidity and mortality rates and ever increasing medical costs. A large number of patients who are hospitalized with morbidities such as diabetes, vascular disease, or chronic kidney disease are at high risk to develop AKI due to ischemic and nephrotoxic insults. The pathophysiology of ischemic and toxic forms of AKI is complex and includes tubular and vascular cell damage and inflammation. Given the seriousness of this essentially therapy-resistant complication, treatment beyond supportive measures and renal replacement therapy is urgently needed. Recent stem cell research has shown promising results, and cell therapy-based interventions are advancing into clinical trials. An example is our phase 1 clinical trial (NCT00733876) in which cardiac surgery patients at high risk of postoperative AKI were treated safely with allogeneic mesenchymal stem cells. Together with the introduction of biomarkers for an earlier and specific AKI diagnosis, currently tested stem cell-based therapies are expected to provide an entirely new class of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Florian E Tögel
- Department of Medicine, Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
917
|
Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 2012; 8:329-42. [PMID: 21881832 DOI: 10.1007/s12015-011-9311-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.
Collapse
|
918
|
Higuera GA, van Boxtel A, van Blitterswijk CA, Moroni L. The physics of tissue formation with mesenchymal stem cells. Trends Biotechnol 2012; 30:583-90. [PMID: 22959896 DOI: 10.1016/j.tibtech.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 01/22/2023]
Abstract
Cells react to various forms of physical phenomena that promote and maintain the formation of tissues. The best example of this are cells of musculoskeletal origin, such as mesenchymal stem cells (MSCs), which consistently proliferate or differentiate under cues from hydrostatic pressure, diffusive mass transport, shear stress, surface chemistry, mechanotransduction, and molecular kinetics. To date, no other cell type shows greater receptiveness to macroscopic and microscopic cues, highlighting the acute sensitivity of MSCs and the importance of physical principles in tissue homeostasis. In this review, we describe the literature that has shown how physical phenomena govern MSCs biology and provide insight into the mechanisms and strategies that can spur new biotechnological applications with tissue biology.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
919
|
Harris VK, Sadiq SA. Response to “Multimodality in mesenchymal stem cell transplantation highlights the need for stem cell ‘ethology’”. J Neurol Sci 2012. [DOI: 10.1016/j.jns.2012.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
920
|
Lai RC, Yeo RWY, Tan KH, Lim SK. Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Biotechnol Adv 2012; 31:543-51. [PMID: 22959595 DOI: 10.1016/j.biotechadv.2012.08.008] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 02/07/2023]
Abstract
Exosomes are the most extensively characterized class of secreted membrane vesicles that carry proteins and RNAs for intercellular communication. They are increasingly seen as possible alternatives to liposomes as drug delivery vehicles. Like liposomes, they could deliver their cargo across the plasma membrane and provide a barrier against premature transformation and elimination. In addition, these naturally-occurring secreted membrane vesicles are less toxic and better tolerated in the body as evidenced by their ubiquitous presence in biological fluids, and have an intrinsic homing ability. They are also amenable to in vivo and in vitro loading of therapeutic agents, and membrane modifications to enhance tissue-specific homing. Here we propose human mesenchymal stem cells as the ideal cell source of exosomes for drug delivery. Mesenchymal stem cell transplantation for various disease indications has been extensively tested and shown to be safe in numerous clinical trials. These cells are also prolific producers of immunologically inert exosomes. Immortalization of these cells does not compromise the quantity or quality of exosome production, thus enabling infinite and reproducible exosome production from a single cell clone.
Collapse
Affiliation(s)
- Ruenn Chai Lai
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, 138648 Singapore
| | | | | | | |
Collapse
|
921
|
Blaber SP, Webster RA, Hill CJ, Breen EJ, Kuah D, Vesey G, Herbert BR. Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med 2012; 10:172. [PMID: 22913454 PMCID: PMC3479070 DOI: 10.1186/1479-5876-10-172] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs). Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF) is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs) at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of < 0.05 was considered statistically different. To assess the overall changes that may occur as a result of co-culture we compared the proteomes of SVF and SVF co-cultured with adipocytes using iTRAQ quantitative mass spectrometry. Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the SVF with adipocytes may be considered as an alternative to MSCs or fresh SVF alone.
Collapse
Affiliation(s)
- Sinead P Blaber
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Office 256, Building E8C, Balaclava Rd, North Ryde, NSW 2109, Australia
| | | | | | | | | | | | | |
Collapse
|
922
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
923
|
Wang N, Li Q, Zhang L, Lin H, Hu J, Li D, Shi S, Cui S, Zhou J, Ji J, Wan J, Cai G, Chen X. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6. PLoS One 2012; 7:e43768. [PMID: 22912904 PMCID: PMC3422344 DOI: 10.1371/journal.pone.0043768] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs) are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS Rat bone marrow-derived MSCs (5 × 10(6)) were injected into Sprague-Dawley (SD) rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF)-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM) intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG)-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm) TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
- Medical College, NanKai University, Tianjin, China
| | - Qinggang Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Li Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Hongli Lin
- Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Jie Hu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Diangeng Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Suozhu Shi
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Shaoyuan Cui
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Jianhui Zhou
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Jiayao Ji
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
- Medical College, NanKai University, Tianjin, China
| | - Jiajia Wan
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
- Medical College, NanKai University, Tianjin, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
- * E-mail: (XC); (GC)
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, PLA General Hospital and Military Medical Postgraduate College, Beijing, China
- * E-mail: (XC); (GC)
| |
Collapse
|
924
|
Miranda HC, Herai RH, Thomé CH, Gomes GG, Panepucci RA, Orellana MD, Covas DT, Muotri AR, Greene LJ, Faça VM. A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics 2012; 12:2607-17. [PMID: 22778083 DOI: 10.1002/pmic.201200111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 12/26/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.
Collapse
|
925
|
Govoni M, Lotti F, Biagiotti L, Lannocca M, Pasquinelli G, Valente S, Muscari C, Bonafè F, Caldarera CM, Guarnieri C, Cavalcanti S, Giordano E. An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold. J Tissue Eng Regen Med 2012; 8:787-93. [PMID: 22865609 DOI: 10.1002/term.1578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 04/16/2012] [Accepted: 06/18/2012] [Indexed: 01/18/2023]
Abstract
Much evidence in the literature demonstrates the effect of cyclic mechanical stretch in maintaining, or addressing, a muscle phenotype. Such results were obtained using several technical approaches, useful for the experimental collection of proofs of principle but probably unsuitable for application in clinical regenerative medicine. Here we aimed to design a reliable innovative bioreactor, acting as a stand-alone cell culture incubator, easy to operate and effective in addressing mesenchymal stem cells (MSCs) seeded onto a 3D bioreabsorbable scaffold, towards a muscle phenotype via the transfer of a controlled and highly-reproducible cyclic deformation. Electron microscopy, immunohistochemistry and biochemical analysis of the obtained pseudotissue constructs showed that cells 'trained' over 1 week: (a) displayed multilayer organization and invaded the 3D mesh of the scaffold; and (b) expressed typical markers of muscle cells. This effect was due only to physical stimulation of the cells, without the need of any other chemical or genetic manipulation. This device is thus proposed as a prototypal instrument to obtain pseudotissue constructs to test in cardiovascular regenerative medicine, using good manufacturing procedures.
Collapse
Affiliation(s)
- Marco Govoni
- Department of Biochemistry 'G. Moruzzi', University of Bologna, Italy; Laboratory of Cellular and Molecular Engineering, University of Bologna, Cesena, Italy; Health Science and Technology-Interdepartmental Centre for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
926
|
Vaegler M, Lenis AT, Daum L, Amend B, Stenzl A, Toomey P, Renninger M, Damaser MS, Sievert KD. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol 2012; 9:435-47. [PMID: 22710667 PMCID: PMC3769422 DOI: 10.1038/nrurol.2012.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voiding dysfunction comprises a variety of disorders, including stress urinary incontinence and overactive bladder, and affects millions of men and women worldwide. Erectile dysfunction (ED) also decreases quality of life for millions of men, as well as for their partners. Advanced age and diabetes are common comorbidities that can exacerbate and negatively impact upon the development of these disorders. Therapies that target the pathophysiology of these conditions to halt progression are not currently available. However, stem cell therapy could fill this therapeutic void. Stem cells can reduce inflammation, prevent fibrosis, promote angiogenesis, recruit endogenous progenitor cells, and differentiate to replace damaged cells. Adult multipotent stem cell therapy, in particular, has shown promise in case reports and preclinical animal studies. Stem cells also have a role in urological tissue engineering for ex vivo construction of bladder wall and urethral tissue (using a patient's own cells) prior to transplantation. More recent studies have focused on bioactive factor secretion and homing of stem cells. In the future, clinicians are likely to utilize allogeneic stem cell sources, intravenous systemic delivery, and ex vivo cell enhancement to treat voiding dysfunction and ED.
Collapse
Affiliation(s)
- Martin Vaegler
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Andrew T Lenis
- The Cleveland Clinic, Case Western Reserve University School of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Lisa Daum
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Patricia Toomey
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Markus Renninger
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| | - Margot S Damaser
- The Cleveland Clinic, Case Western Reserve University School of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Karl-Dietrich Sievert
- Department of Urology, University of Tuebingen, Hoppe-Seyler-Strasse 3, D72076 Tuebingen, Germany
| |
Collapse
|
927
|
Faça VM. Human mesenchymal stromal cell proteomics: contribution for identification of new markers and targets for medicine intervention. Expert Rev Proteomics 2012; 9:217-30. [PMID: 22462791 DOI: 10.1586/epr.12.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs) have become of great interest for cell-based therapy owing to their roles in tissue repair and immune suppression. MSCs have the ability to differentiate into specialized tissues, including bone, cartilage and muscle, among several others. Furthermore, it has been found that MSCs can also serve as cellular factories that secrete mediators to stimulate in situ regeneration of injured tissues. Proteomics has contributed significantly to the identification of new proteins to improve cellular characterization of MSCs, to identify new targets for therapeutic intervention and to elucidate important pathways utilized by MSCs to differentiate into distinct tissues. As proteomics technology advances, several studies can be revisited and analyzed in depth, employing state-of-the-art approaches, helping to uncover the cellular mechanisms utilized by MSCs to exert their regenerative functionalities. In this article, we will review the progress made so far and discuss further opportunities for proteomics to contribute to the clinical applications of MSCs.
Collapse
Affiliation(s)
- Vitor Marcel Faça
- Department of Biochemistry & Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
928
|
Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 2012; 33:6691-7. [PMID: 22766242 DOI: 10.1016/j.biomaterials.2012.06.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023]
Abstract
Pancreatic islet encapsulation within biosynthetic materials has had limited clinical success due to loss of islet function and cell death. As an alternative encapsulation material, a silk-based scaffold was developed to reestablish the islet microenvironment lost during cell isolation. Islets were encapsulated with ECM proteins (laminin and collagen IV) and mesenchymal stromal cells (MSCs), known to have immunomodulatory properties or to enhance islet cell graft survival and function. After a 7 day in vitro encapsulation, islets remained viable and maintained insulin secretion in response to glucose stimulation. Islets encapsulated with collagen IV, or laminin had increased insulin secretion at day 2 and day 7, respectively. A 3.2-fold synergistic improvement in islet insulin secretion was observed when islets were co-encapsulated with MSCs and ECM proteins. Furthermore, encapsulated islets had increased gene expression of functional genes; insulin I, insulin II, glucagon, somatostatin, and PDX-1, and lower expression of the de-differentiation genes cytokeratin 19 and vimentin compared to non-encapsulated cells. This work demonstrates that encapsulation in silk with both MSCs and ECM proteins enhances islet function and with further development may have potential as a suitable platform for islet delivery in vivo.
Collapse
|
929
|
Hastings CL, Kelly HM, Murphy MJ, Barry FP, O'Brien FJ, Duffy GP. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J Control Release 2012; 161:73-80. [DOI: 10.1016/j.jconrel.2012.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 12/01/2022]
|
930
|
Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology 2012; 136:133-8. [PMID: 22321024 DOI: 10.1111/j.1365-2567.2012.03567.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as regenerative therapeutics. Cultured MSCs secrete various modulatory factors, which contribute to the immunosuppressive effects of transplanted MSCs as a therapy. Although the in vitro phenotype of MSCs has been well characterized, identification of MSCs in vivo is made difficult by the lack of specific markers. Current advances in murine MSC research provide valuable tools for studying the localization and function of MSCs in vivo. Recent findings suggest that MSCs exert diverse functions depending on tissue context and physiological conditions. This review focuses on bone marrow MSCs and their roles in haematopoiesis and immune responses.
Collapse
Affiliation(s)
- Chao Shi
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
931
|
Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500. [PMID: 22745769 PMCID: PMC3380009 DOI: 10.1371/journal.pone.0039500] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue.
Collapse
Affiliation(s)
- Renaud Quertainmont
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Dorothée Cantinieaux
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Olivier Botman
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Selim Sid
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Jean Schoenen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Rachelle Franzen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|
932
|
Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30:266-79. [PMID: 22102554 DOI: 10.1002/stem.787] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells that are predominantly localized in the bone marrow (BM). Mesenchymal stromal cells (MSCs) give rise to most BM stromal cells that interact with MM cells. However, the direct involvement of MSCs in the pathophysiology of MM has not been well addressed. In this study, in vitro and in vivo migration assays revealed that MSCs have tropism toward MM cells, and CCL25 was identified as a major MM cell-produced chemoattractant for MSCs. By coculture experiments, we found that MSCs favor the proliferation of stroma-dependent MM cells through soluble factors and cell to cell contact, which was confirmed by intrafemoral coengraftment experiments. We also demonstrated that MSCs protected MM cells against spontaneous and Bortezomib-induced apoptosis. The tumor-promoting effect of MSCs correlated with their capacity to enhance AKT and ERK activities in MM cells, accompanied with increased expression of CyclinD2, CDK4, and Bcl-XL and decreased cleaved caspase-3 and poly(ADP-ribose) polymerase expression. In turn, MM cells upregulated interleukin-6 (IL-6), IL-10, insulin growth factor-1, vascular endothelial growth factor, and dickkopf homolog 1 expression in MSCs. Finally, infusion of in vitro-expanded murine MSCs in 5T33MM mice resulted in a significantly shorter survival. MSC infusion is a promising way to support hematopoietic recovery and to control graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation. However, our data suggest that MSC-based cytotherapy has a potential risk for MM disease progression or relapse and should be considered with caution in MM patients.
Collapse
Affiliation(s)
- Song Xu
- Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
933
|
Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A. Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 2012; 35:293-311; discussion 311. [PMID: 22539011 DOI: 10.1007/s10143-012-0385-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/27/2011] [Accepted: 11/20/2011] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) often results in significant dysfunction and disability. A series of treatments have been proposed to prevent and overcome the formation of the glial scar and inhibitory factors to axon regrowth. In the last decade, cell therapy has emerged as a new tool for several diseases of the nervous system. Stem cells act as minipumps providing trophic and immunomodulatory factors to enhance axonal growth, to modulate the environment, and to reduce neuroinflammation. This capability can be boosted by genetical manipulation to deliver trophic molecules. Different types of stem cells have been tested, according to their properties and the therapeutic aims. They differ from each other for origin, developmental stage, stage of differentiation, and fate lineage. Related to this, stem cells differentiating into neurons could be used for cell replacement, even though the feasibility that stem cells after transplantation in the adult lesioned spinal cord can differentiate into neurons, integrate within neural circuits, and emit axons reaching the muscle is quite remote. The timing of cell therapy has been variable, and may be summarized in the acute and chronic phases of disease, when stem cells interact with a completely different environment. Even though further experimental studies are needed to elucidate the mechanisms of action, the therapeutic, and the side effects of cell therapy, several clinical protocols have been tested or are under trial. Here, we report the state-of-the-art of cell therapy in SCI, in terms of feasibility, outcome, and side effects.
Collapse
Affiliation(s)
- D Garbossa
- Department of Neurosurgery, S. Giovanni Battista Hospital, University of Torino, Via Cherasco 15, 10126, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
934
|
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12:383-96. [PMID: 22531326 DOI: 10.1038/nri3209] [Citation(s) in RCA: 745] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have unique immunoregulatory and regenerative properties that make them an attractive tool for the cellular treatment of autoimmunity and inflammation. Their underlying molecular mechanisms of action together with their clinical benefit - for example, in autoimmunity - are being revealed by an increasing number of clinical trials and preclinical studies of MSCs. However, autoimmunity and therapy-related alloimmunity are not only triggered and sustained by responses of the adaptive immune system; there is growing evidence that components of the innate immune system also have a key role. It is therefore important to study the crosstalk between MSCs and innate immunity, which ranges from the bone marrow niche to injured tissue.
Collapse
Affiliation(s)
- Katarina Le Blanc
- Department of Medicine, Karolinska Institutet, Haematology Centre, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
935
|
Wilson SM, Goldwasser MS, Clark SG, Monaco E, Bionaz M, Hurley WL, Rodriguez-Zas S, Feng L, Dymon Z, Wheeler MB. Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine. J Oral Maxillofac Surg 2012; 70:e193-203. [PMID: 22374062 DOI: 10.1016/j.joms.2011.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/21/2022]
Abstract
PURPOSE This study investigated the effect of adipose-derived mesenchymal stem cells (ASCs) injected locally or systemically on the bone regeneration of a 10-mm-diameter cylindrical noncritical-size defect in the ramus of the pig mandible. MATERIALS AND METHODS Fifteen Yorkshire pigs, weighing 60 to 80 kg, received bilateral 10-mm-diameter cylindrical surgical defects in each ramus of the mandible. Pigs received 1) a direct injection into the defect of 2.5 million carboxy-fluorescein diacetate succinimidyl ester-labeled ASCs from 1 of 2 pig donors (n = 6); 2) an ear vein injection of 5 million carboxy-fluorescein diacetate succinimidyl ester-labeled ASCs from 1 of 2 pig donors (n = 6); or 3) an ear vein injection of culture Dulbecco's Modified Eagle's Medium without stem cells (control; n = 3). Pigs from each treatment were sacrificed at 1 hour, 2 weeks, or 4 weeks after surgery. Healing of the defect was evaluated by dual-energy x-ray absorptiometry, micro-computed tomography, fluorescent microscopy, and histology. RESULTS Bone healing was accelerated in the ASC-injected treatment groups at 2 and 4 weeks after surgery compared with the control pigs. CONCLUSIONS Results from this animal model provide evidence that the injection of ASC locally into a bone defect or systemically can accelerate the healing of bone.
Collapse
Affiliation(s)
- Shanna M Wilson
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
936
|
Houtgraaf JH, de Jong R, Monkhorst K, Tempel D, van de Kamp E, den Dekker WK, Kazemi K, Hoefer I, Pasterkamp G, Lewis AL, Stratford PW, Wallrapp C, Zijlstra F, Duckers HJ. Feasibility of intracoronary GLP-1 eluting CellBead™ infusion in acute myocardial infarction. Cell Transplant 2012; 22:535-43. [PMID: 22507673 DOI: 10.3727/096368912x638973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell therapy is a field of growing interest in the prevention of post acute myocardial infarction (AMI) heart failure. Stem cell retention upon local delivery to the heart, however, is still unsatisfactory. CellBeads were recently developed as a potential solution to this problem. CellBeads are 170-μm alginate microspheres that contain mesenchymal stem cells (MSCs) genetically modified to express glucagon-like peptide-1 (GLP-1) supplementary to inherent paracrine factors. GLP-1 is an incretin hormone that has both antiapoptotic and cardioprotective effects. Transplanting CellBeads in the post-AMI heart might induce cardiomyocyte salvage and ultimately abrogate adverse cardiac remodeling. We aimed to investigate the feasibility of intracoronary infusion of CellBeads in a large animal model of AMI. Four pigs were used in a pilot study to assess the maximal safe dose of CellBeads. In the remaining 21 animals, an AMI was induced by balloon occlusion of the left circumflex coronary artery for 90 min. During reperfusion, 60,000 CellBeads (n = 11), control beads (n = 4), or lactated Ringers' (n = 6) were infused. Animals were sacrificed after 2 or 7 days, and the hearts were excised for histological analyses. Intracoronary infusion did not permanently affect coronary flow in any of the groups. Histological analysis revealed CellBeads containing viable MSCs up to 7 days. Viability and activity of the MSCs was confirmed by qPCR analysis that showed expression of recombinant GLP-1 and human genes after 2 and 7 days. CellBeads reduced inflammatory infiltration by 29% (p = 0.001). In addition, they decreased the extent of apoptosis by 25% (p = 0.001) after 2 days. We show that intracoronary infusion of 5 million encapsulated MSCs is safe and feasible. Also, several parameters indicate that the cells have paracrine effects, suggesting a potential therapeutic benefit of this new approach.
Collapse
Affiliation(s)
- Jaco H Houtgraaf
- Molecular Cardiology Laboratory, Thoraxcenter, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
937
|
Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials 2012; 33:3388-400. [DOI: 10.1016/j.biomaterials.2012.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
938
|
Goldman HB, Sievert KD, Damaser MS. Will we ever use stem cells for the treatment of SUI? ICI-RS 2011. Neurourol Urodyn 2012; 31:386-9. [PMID: 22431263 DOI: 10.1002/nau.22217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
AIMS To review the current state of research in the use of stem cells (SCs) for stress urinary incontinence (SUI) and assess the likelihood of this becoming a relevant treatment option. METHODS The peer-reviewed literature consisting of relevant clinical and animal studies on the topic of SUI was surveyed and reviewed. RESULTS Animal studies have demonstrated the potential utility of SCs in promoting functional recovery of the urethra after simulated childbirth injury. Research in animals suggests similar urethral recovery after injection of bone marrow derived mesenchymal SC secretions as after injection of the SCs themselves. Therefore, whether the improvements result from the injection of the SCs themselves or from their secretion of specific proteins is unclear. Early clinical trials have demonstrated the feasibility and short-term safety of injecting muscle-derived SCs into the urethra to treat SUI. CONCLUSIONS Larger and longer-term clinical trials are needed. Nonetheless, efficacious SC-based therapy for the treatment of SUI is practical, achievable and should be available as a treatment modality in the near future.
Collapse
Affiliation(s)
- Howard B Goldman
- Section of Female Pelvic Medicine and Reconstructive Surgery, Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
939
|
Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 2012; 7:e32481. [PMID: 22412878 PMCID: PMC3296722 DOI: 10.1371/journal.pone.0032481] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis data might indicate differences in therapeutic application.
Collapse
Affiliation(s)
- Elisa Monaco
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Massimo Bionaz
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra Rodriguez-Zas
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Walter L. Hurley
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew B. Wheeler
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
940
|
Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 2012; 33:136-43. [PMID: 22227317 PMCID: PMC3412175 DOI: 10.1016/j.it.2011.11.004] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/29/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs), also called multipotent mesenchymal stromal cells, exist in almost all tissues and are a key cell source for tissue repair and regeneration. Under pathological conditions, such as tissue injury, these cells are mobilized towards the site of damage. Tissue damage is usually accompanied by proinflammatory factors, produced by both innate and adaptive immune responses, to which MSCs are known to respond. Indeed, recent studies have shown that there are bidirectional interactions between MSCs and inflammatory cells, which determine the outcome of MSC-mediated tissue repair processes. Although many details of these interactions remain to be elucidated, we provide here a synthesis of the current status of this newly emerging and rapidly advancing field.
Collapse
Affiliation(s)
- Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
941
|
Tasso R, Gaetani M, Molino E, Cattaneo A, Monticone M, Bachi A, Cancedda R. The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials 2012; 33:2086-96. [DOI: 10.1016/j.biomaterials.2011.11.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/20/2011] [Indexed: 12/21/2022]
|
942
|
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci 2012; 27:423-430. [PMID: 21597948 DOI: 10.1007/s10103-011-0930-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 04/18/2011] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for use in regenerative medicine. Several studies have shown that low-level laser irradiation (LLLI) could affect the differentiation and proliferation of MSCs. The aim of this study was to examine the influence of LLLI at different energy densities on BMSCs differentiation into neuron and osteoblast. Human BMSCs were cultured and induced to differentiate to either neuron or osteoblast in the absence or presence of LLLI. Gallium aluminum arsenide (GaAlAs) laser irradiation (810 nm) was applied at days 1, 3, and 5 of differentiation process at energy densities of 3 or 6 J/cm(2) for BMSCs being induced to neurons, and 2 or 4 J/cm(2) for BMSCs being induced to osteoblasts. BMSCs proliferation was evaluated by MTT assay on the seventh day of differentiation. BMSCs differentiation to neurons was assessed by immunocytochemical analysis of neuron-specific enolase on the seventh day of differentiation. BMSCs differentiation to osteoblast was tested on the second, fifth, seventh, and tenth day of differentiation via analysis of alkaline phosphatase (ALP) activity. LLLI promoted BMSCs proliferation significantly at all energy densities except for 6 J/cm(2) in comparison to control groups on the seventh day of differentiation. LLLI at energy densities of 3 and 6 J/cm(2) dramatically facilitated the differentiation of BMSCs into neurons (p < 0.001). Also, ALP activity was significantly enhanced in irradiated BMSCs differentiated to osteoblast on the second, fifth, seventh, and tenth day of differentiation (p < 0.001 except for the second day). Using LLLI at 810 nm wavelength enhances BMSCs differentiation into neuron and osteoblast in the range of 2-6 J/cm(2), and at the same time increases BMSCs proliferation (except for 6 J/cm(2)). The effect of LLLI on differentiation and proliferation of BMSCs is dose-dependent. Considering these findings, LLLI could improve current in vitro methods of differentiating BMSCs prior to transplantation.
Collapse
Affiliation(s)
- Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
943
|
Mauri M, Lentini D, Gravati M, Foudah D, Biella G, Costa B, Toselli M, Parenti M, Coco S. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol Cell Neurosci 2012; 49:395-405. [PMID: 22388097 DOI: 10.1016/j.mcn.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.
Collapse
Affiliation(s)
- Mario Mauri
- Department of Experimental Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
944
|
Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future? J Biomed Biotechnol 2012; 2012:480289. [PMID: 22496609 PMCID: PMC3303614 DOI: 10.1155/2012/480289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 12/16/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs) show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.
Collapse
|
945
|
Rodriguez JP, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH. Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. Int Arch Med 2012; 5:5. [PMID: 22313603 PMCID: PMC3296619 DOI: 10.1186/1755-7682-5-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/08/2012] [Indexed: 02/08/2023] Open
Abstract
Advancements in rheumatoid arthritis (RA) treatment protocols and introduction of targeted biological therapies have markedly improved patient outcomes, despite this, up to 50% of patients still fail to achieve a significant clinical response. In veterinary medicine, stem cell therapy in the form of autologous stromal vascular fraction (SVF) is an accepted therapeutic modality for degenerative conditions with 80% improvement and no serious treatment associated adverse events reported. Clinical translation of SVF therapy relies on confirmation of veterinary findings in targeted patient populations. Here we describe the rationale and preclinical data supporting the use of autologous SVF in treatment of RA, as well as provide 1, 3, 6, and 13 month safety outcomes in 13 RA patients treated with this approach.
Collapse
|
946
|
Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zaffa C, Sartori P, Rodella LF, Vescovi A, Maione S, Rossi F, Sacerdote P, Colleoni M, Panerai AE. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012; 153:850-861. [PMID: 22321918 DOI: 10.1016/j.pain.2012.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/20/2011] [Accepted: 01/11/2012] [Indexed: 01/24/2023]
Abstract
A nonphysiological repair of the lesioned nerve leading to the formation of neurinomas, altered nerve conduction, and spontaneous firing is considered the main cause of the events underlying neuropathic pain. It was investigated whether neural stem cell (NSCs) administration could lead to a physiological nerve repair, thus to a reduction of neuropathic pain symptoms such as hyperalgesia and allodynia in a well-established model of this pain (sciatic nerve chronic constriction injury [CCI]). Moreover, since we and others showed that the peripheral nerve lesion starts a cascade of neuroinflammation-related events that may maintain and worsen the original lesion, the effect of NSCs on sciatic nerve pro- and antiinflammatory cytokines in CCI mice was investigated. NSCs injected intravenously, when the pathology was already established, induced a significant reduction in allodynia and hyperalgesia already 3 days after administration, demonstrating a therapeutic effect that lasted for at least 28 days. Responses changed with the number of administered NSCs, and the effect on hyperalgesia could be boosted by a new NSC administration. Treatment significantly decreased proinflammatory, activated antiinflammatory cytokines in the sciatic nerve, and reduced spinal cord Fos expression in laminae I-VI. Moreover, in NSC-treated animals, a reparative process and an improvement of nerve morphology is present at a later time. Since NSC effect on pain symptoms preceded nerve repair and was maintained after cells had disappeared from the lesion site, we suggest that regenerative, behavioral, and immune NSC effects are largely due to microenvironmental changes they might induce at the lesion site.
Collapse
Affiliation(s)
- Silvia Franchi
- Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milano, Italy Divisione di Anatomia Umana, Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, Brescia, Italy Dipartimento di Morfologia Umana e Scienze Biomediche, Università degli Studi di Milano, Milano, Italy Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Milano, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy Dipartimento di Medicina Sperimentale - Sezione di Farmacologia "L. Donatelli", Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
947
|
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 2012; 18:453-63. [PMID: 22196031 DOI: 10.1089/ten.tec.2011.0395] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable "off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe, animal product-free medium containing 2%, 5%, and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery, viability, apoptosis, proliferation rate, expression of a broad panel of MSC markers, and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO, respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO, respectively, were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity, ALP surface expression and Ca⁺⁺ deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution, also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery, respectively, less than 10% of apoptotic cells, and normal proliferation, marker expression, and osteogenic potential. Overall, our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.
Collapse
Affiliation(s)
- Irene Ginis
- Cell Therapy Laboratory, Teva Pharmaceutical Industries, Petach Tikva, Israel.
| | | | | |
Collapse
|
948
|
Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg 2012; 21:278-94. [PMID: 22244071 DOI: 10.1016/j.jse.2011.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.
Collapse
Affiliation(s)
- Alan J Nixon
- Comparative Orthopaedics Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
949
|
Helledie T, Dombrowski C, Rai B, Lim ZXH, Hin ILH, Rider DA, Stein GS, Hong W, van Wijnen AJ, Hui JH, Nurcombe V, Cool SM. Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow. Stem Cells Dev 2012; 21:1897-910. [PMID: 22066689 DOI: 10.1089/scd.2011.0367] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Insufficient cell number hampers therapies utilizing adult human mesenchymal stem cells (hMSCs) and current ex vivo expansion strategies lead to a loss of multipotentiality. Here we show that supplementation with an embryonic form of heparan sulfate (HS-2) can both increase the initial recovery of hMSCs from bone marrow aspirates and increase their ex vivo expansion by up to 13-fold. HS-2 acts to amplify a subpopulation of hMSCs harboring longer telomeres and increased expression of the MSC surface marker stromal precursor antigen-1. Gene expression profiling revealed that hMSCs cultured in HS-2 possess a distinct signature that reflects their enhanced multipotentiality and improved bone-forming ability when transplanted into critical-sized bone defects. Thus, HS-2 offers a novel means for decreasing the expansion time necessary for obtaining therapeutic numbers of multipotent hMSCs without the addition of exogenous growth factors that compromise stem cell fate.
Collapse
Affiliation(s)
- Torben Helledie
- Laboratory of Stem Cells and Tissue Repair, Institute of Medical Biology, Immunos, A*STAR, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
950
|
Potential of mesenchymal stem cell applications in plastic and reconstructive surgery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:55-67. [PMID: 23128957 DOI: 10.1007/10_2012_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
: Novel therapy with mesenchymal stem cells from bone marrow, adipose tissue, or other sources has raised high hopes for treatment of a variety of diseases. For plastic and reconstructive surgery, first pilot studies and clinical trials using stem cells for treatment of chronic wounds, radiation injury, or soft tissue augmentation have furnished encouraging results compared with the limitations of standard therapy, for example autologous fat grafting. Further research must be conducted to reveal the complex physiological interactions between activated stem cells and the host environment. Long-term effects and safety aspects of these novel treatment options also require randomized controlled studies. For future clinical applications, guidelines and standardized procedures for stem cell isolation and preparation, and techniques for application must be established.
Collapse
|