901
|
Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 2013; 8:e53608. [PMID: 23308262 PMCID: PMC3538547 DOI: 10.1371/journal.pone.0053608] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/03/2012] [Indexed: 01/12/2023] Open
Abstract
Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.
Collapse
MESH Headings
- Bayes Theorem
- DNA Barcoding, Taxonomic/methods
- DNA Barcoding, Taxonomic/statistics & numerical data
- Genes, Bacterial
- Genes, rRNA
- High-Throughput Nucleotide Sequencing
- Metagenome
- Microbial Consortia/genetics
- Phylogeny
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- Research Design
- Sequence Analysis, DNA/methods
- Sequence Analysis, DNA/statistics & numerical data
Collapse
Affiliation(s)
- Orna Mizrahi-Man
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Emily R. Davenport
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
902
|
Kutikhin AG, Yuzhalin AE, Brusina EB. Organ Microbiota in Cancer Development: The Holy Grail of Biological Carcinogenesis. Infect Agent Cancer 2013. [DOI: 10.1007/978-94-007-5955-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
903
|
The Role of Bacteria in Cancer Development. Infect Agent Cancer 2013. [DOI: 10.1007/978-94-007-5955-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
904
|
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 2012; 25:403-16. [PMID: 23123499 DOI: 10.1016/j.cellsig.2012.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | | | | | | | | | | |
Collapse
|
905
|
de Vos WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 2012; 70 Suppl 1:S45-56. [PMID: 22861807 DOI: 10.1111/j.1753-4887.2012.00505.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recorded observations indicating an association between intestinal microbes and health are long-standing in terms of specific diseases, but emerging high-throughput technologies that characterize microbial communities in the intestinal tract are suggesting new roles for the supposedly normal microbiome. This review considers the nature of the evidence supporting a relationship between the microbiota and the predisposition to disease as associative, correlative, or causal. Altogether, indirect or associative support currently dominates the evidence base, which now suggests that the intestinal microbiome can be linked to a growing number of over 25 diseases or syndromes. While only a handful of cause-and-effect studies have been performed, this form of evidence is increasing. The results of such studies are expected to be useful in monitoring disease development, in providing a basis for personalized treatments, and in indicating future therapeutic avenues.
Collapse
Affiliation(s)
- Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
906
|
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48:612-26. [PMID: 23063526 DOI: 10.1016/j.molcel.2012.08.033] [Citation(s) in RCA: 616] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
Widespread changes in gene expression drive tumorigenesis, yet our knowledge of how aberrant epigenomic and transcriptome profiles arise in cancer cells is poorly understood. Here, we demonstrate that metabolic transformation plays an important role. Butyrate is the primary energy source of normal colonocytes and is metabolized to acetyl-CoA, which was shown to be important not only for energetics but also for HAT activity. Due to the Warburg effect, cancerous colonocytes rely on glucose as their primary energy source, so butyrate accumulated and functioned as an HDAC inhibitor. Although both mechanisms increased histone acetylation, different target genes were upregulated. Consequently, butyrate stimulated the proliferation of normal colonocytes and cancerous colonocytes when the Warburg effect was prevented from occurring, whereas it inhibited the proliferation of cancerous colonocytes undergoing the Warburg effect. These findings link a common metabolite to epigenetic mechanisms that are differentially utilized by normal and cancerous cells because of their inherent metabolic differences.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
907
|
Abstract
The microbial communities that colonize different regions of the human gut influence many aspects of health. In the healthy state, they contribute nutrients and energy to the host via the fermentation of nondigestible dietary components in the large intestine, and a balance is maintained with the host's metabolism and immune system. Negative consequences, however, can include acting as sources of inflammation and infection, involvement in gastrointestinal diseases, and possible contributions to diabetes mellitus and obesity. Major progress has been made in defining some of the dominant members of the microbial community in the healthy large intestine, and in identifying their roles in gut metabolism. Furthermore, it has become clear that diet can have a major influence on microbial community composition both in the short and long term, which should open up new possibilities for health manipulation via diet. Achieving better definition of those dominant commensal bacteria, community profiles and system characteristics that produce stable gut communities beneficial to health is important. The extent of interindividual variation in microbiota composition within the population has also become apparent, and probably influences individual responses to drug administration and dietary manipulation. This Review considers the complex interplay between the gut microbiota, diet and health.
Collapse
|
908
|
Clark MJ, Robien K, Slavin JL. Effect of prebiotics on biomarkers of colorectal cancer in humans: a systematic review. Nutr Rev 2012; 70:436-43. [PMID: 22835137 DOI: 10.1111/j.1753-4887.2012.00495.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prebiotics may prevent colorectal cancer (CRC) development in humans by modifying the composition or activity of the colorectal microflora. Epidemiologic and animal studies have shown a reduction in CRC or CRC biomarkers after the administration of prebiotics. Studies using indirect chemical biomarkers of CRC in humans, however, gave mixed results. Recently, human studies measuring direct physical indices of CRC risk after prebiotic consumption have been published. The purpose of this review is to summarize those studies to provide recommendations for the use of prebiotics in CRC risk reduction. A PubMed search was conducted, revealing nine studies. One tested lactulose, two evaluated a blend of oligofructose and inulin, and six measured resistant starch. Lactulose reduced adenoma recurrence, while resistant starch had no effect on adenoma or CRC development. Crypt mitotic location, gene expression, and DNA methylation were somewhat improved after resistant starch consumption. No changes in cell proliferation and apoptosis, crypt morphology, or aberrant crypt foci were found. More human studies measuring physical changes to the gut are needed.
Collapse
Affiliation(s)
- Michelle J Clark
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
909
|
A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55-60. [PMID: 23023125 DOI: 10.1038/nature11450] [Citation(s) in RCA: 4680] [Impact Index Per Article: 360.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 07/27/2012] [Indexed: 12/11/2022]
Abstract
Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.
Collapse
|
910
|
Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharmacol Res 2012; 69:75-86. [PMID: 23017673 DOI: 10.1016/j.phrs.2012.09.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/17/2022]
Abstract
The human gastrointestinal tract is home to an extremely numerous and diverse collection of microbes, collectively termed the "intestinal microbiota". This microbiota is considered to play a number of key roles in the maintenance of host health, including aiding digestion of otherwise indigestible dietary compounds, synthesis of vitamins and other beneficial metabolites, immune system regulation and enhanced resistance against colonisation by pathogenic microorganisms. Conversely, the intestinal microbiota is also a potent source of antigens and potentially harmful compounds. In health, humans can therefore be considered to exist in a state of natural balance with their microbial inhabitants. A shift in the balance of microbiota composition such that it may become deleterious to host health is termed "dysbiosis". Dysbiosis of the gut microbiota has been implicated in numerous disorders, ranging from intestinal maladies such as inflammatory bowel diseases and colorectal cancer to disorders with more systemic effects such as diabetes, metabolic syndrome and atopy. Given the far reaching influence of the intestinal microbiota on human health a clear future goal must be to develop reliable means to alter the composition of the microbiota and restore a healthy balance of microbial species. While it is clear that much fundamental research remains to be done, potentially important therapeutic options include narrow spectrum antibiotics, novel probiotics, dietary interventions and more radical techniques such as faecal transplantation, all of which aim to suppress clinical dysbiosis, restore intestinal microbiota diversity and improve host health.
Collapse
Affiliation(s)
- Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, UK.
| | | |
Collapse
|
911
|
Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 2012; 7:e42529. [PMID: 22880019 PMCID: PMC3411811 DOI: 10.1371/journal.pone.0042529] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/09/2012] [Indexed: 01/02/2023] Open
Abstract
Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q2>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.
Collapse
|
912
|
Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 2012; 7:e39764. [PMID: 22844397 PMCID: PMC3406026 DOI: 10.1371/journal.pone.0039764] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/26/2012] [Indexed: 01/14/2023] Open
Abstract
Intestinal microbiota mediate toxicity of irinotecan (CPT-11) cancer therapies and cause systemic infection after CPT-11-induced loss of barrier function. The intestinal microbiota and their functions are thus potential targets for treatment to mitigate CPT-11 toxicity. However, microbiota changes during CPT-11 therapy remain poorly described. This study analysed changes in intestinal microbiota induced by CPT-11 chemotherapy. Qualitative and quantitative taxonomic analyses, and functional analyses were combined to characterize intestinal microbiota during CPT-11-based chemotherapy, and in presence or absence of oral glutamine, a treatment known to reduce CPT-11 toxicity. In the first set of experiments tumour-bearing rats received a dose-intensive CPT-11 regimen (125 mg kg−1×3 days), with or without oral glutamine bolus (0.75 g kg−1). In a subsequent more clinically-oriented chemotherapy regimen, rats received two cycles of CPT-11 (50 mg kg−1) followed by 5-flurouracil (50 mg kg−1). The analysis of fecal samples over time demonstrated that tumours changed the composition of intestinal microbiota, increasing the abundance of clostrridial clusters I, XI, and Enterobacteriaceae. CPT-11 chemotherapy increased cecal Clostridium cluster XI and Enterobacteriaceae, particularly after the dose-intensive therapy. Glutamine treatment prevented the reduced abundance of major bacterial groups after CPT-11 administration; i.e. total bacteria, Clostridium cluster VI, and the Bacteroides-group. Virulence factor/toxin genes of pathogenic Escherichia coli and Clostridium difficile were not detected in the cecal microbiota. In conclusion, both colon cancer implantation and CPT-11-based chemotherapies disrupted the intestinal microbiota. Oral glutamine partially mitigated CPT-11 toxicity and induced temporary changes of the intestinal microbiota.
Collapse
|
913
|
Abstract
PURPOSE OF REVIEW Human colitis-associated cancers (CAC) represent a heterogeneous group of conditions in which multiple oncogenic pathways are involved. In this article, we review the latest studies using genetic, chemical, bacterial and innate immune-mediated experimental models of CAC. RECENT FINDINGS Using the azoxymethane-dextran sodium sulfate model, wound healing pathways seem to be required in the development of CAC. There is also an emerging understanding that commensal and/or pathogenic bacteria can promote tumorigenesis, through T cell and TLR-mediated inflammation. Using specific transgenic mice (villin-CD98, T cell SMAD7, villin-TLR4) or specific knockout mice, investigators have determined that derangements in epithelial or innate and adaptive immune pathways can result in CAC. Subtle perturbations in epithelial repair - both too little or too exuberant - can render mice susceptible to tumorigenesis. SUMMARY With the aid of animal models, we have witnessed a rapid expansion of our knowledge of the molecular and immunologic mechanisms underlying inflammatory cancers. Though animal models have contributed a discrete amount of information to our understanding of tumorigenesis in the setting of intestinal inflammation, it is clear that no single animal model will be able to adequately recapitulate the pathogenesis of complex colorectal cancers, but each model gets us one step closer to comprehending the nature of CAC.
Collapse
|
914
|
Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7:e39743. [PMID: 22761885 PMCID: PMC3386193 DOI: 10.1371/journal.pone.0039743] [Citation(s) in RCA: 683] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/25/2012] [Indexed: 12/12/2022] Open
Abstract
Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; howerer the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host.
Collapse
Affiliation(s)
- Weiguang Chen
- State Key Laboratory for Infectious Diseases Diagnostics and Treatment, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fanlong Liu
- Department of Anus and Intestine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Infectious Diseases Diagnostics and Treatment, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Tong
- State Key Laboratory for Infectious Diseases Diagnostics and Treatment, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- State Key Laboratory for Infectious Diseases Diagnostics and Treatment, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
915
|
Zhao L, Nicholson JK, Lu A, Wang Z, Tang H, Holmes E, Shen J, Zhang X, Li JV, Lindon JC. Targeting the human genome-microbiome axis for drug discovery: inspirations from global systems biology and traditional Chinese medicine. J Proteome Res 2012; 11:3509-19. [PMID: 22624854 DOI: 10.1021/pr3001628] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most chronic diseases impairing current human public health involve not only the human genome but also gene-environment interactions, and in the latter case the gut microbiome is an important factor. This makes the classical single drug-receptor target drug discovery paradigm much less applicable. There is widespread and increasing international interest in understanding the properties of traditional Chinese medicines (TCMs) for their potential utilization as a source of new drugs for Western markets as emerging evidence indicates that most TCM drugs are actually targeting both the host and its symbiotic microbes. In this review, we explore the challenges of and opportunities for harmonizing Eastern-Western drug discovery paradigms by focusing on emergent functions at the whole body level of humans as superorganisms. This could lead to new drug candidate compounds for chronic diseases targeting receptors outside the currently accepted "druggable genome" and shed light on current high interest issues in Western medicine such as drug-drug and drug-diet-gut microbial interactions that will be crucial in the development and delivery of future therapeutic regimes optimized for the individual patient.
Collapse
Affiliation(s)
- Liping Zhao
- Shanghai Center for Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
916
|
Szigeti R, Pangas SA, Nagy-Szakal D, Dowd SE, Shulman RJ, Olive AP, Popek EJ, Finegold MJ, Kellermayer R. SMAD4 haploinsufficiency associates with augmented colonic inflammation in select humans and mice. ANNALS OF CLINICAL AND LABORATORY SCIENCE 2012; 42:401-408. [PMID: 23090737 PMCID: PMC3875295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
SMAD4 is a common mediator of the TGF-beta signaling pathway. One of the members of this pathway, TGF-beta 1, has an important role in controlling gut inflammation in relation to the continuous stimulation of the intestinal microbiota. SMAD4 haploinsufficiency in humans has been linked to juvenile polyposis hereditary hemorrhagic telangiectasia syndrome (JP/HHT; OMIM#17505). Hematochezia and colonic mucosal inflammation suggestive of inflammatory bowel diseases (IBD) have been reported in JP/HHT. Stimulated by recent experience with two affected pediatric patients presented here, we explored the potential role of Smad4 haploinsufficiency in a murine model of colonic inflammation. Smad4(+/-) mice were maintained on a mixed C57/129SvEv background. Chronic colitis was induced with repeated administration of dextran sulfate sodium (DSS) in drinking water. The colonic mucosal microbiota was interrogated by massively parallel pyrosequencing of the bacterial 16S rRNA gene. 66.7% of Smad4(+/-) mice were sensitive to DSS colitis compared to 14.3% of wild type (Chi-Square p=0.036). The augmented colitis was associated with microbiota separation in the Smad4(+/-) mice. Enterococcus and Enterococcus faecalis specifically was increased in abundance in the colitis-prone animals. Smad4 haploinsufficiency can associate with increased susceptibility to large bowel inflammation in mammals with variable penetrance in association with the colonic mucosal microbiota. These findings may reveal implications not only towards colonic inflammation in the setting of SMAD4 haploinsufficiency, but for colorectal cancer as well.
Collapse
Affiliation(s)
- Reka Szigeti
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Stephanie A. Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Dorottya Nagy-Szakal
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Scot E. Dowd
- MR DNA Molecular Research LP, Shallowater, TX, USA
| | - Robert J. Shulman
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Anthony P. Olive
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Edwina J. Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Milton J. Finegold
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
917
|
|
918
|
White AK, Smith RJ, Bigler CR, Brooke WF, Schauer PR. Head and neck manifestations of neurofibromatosis. Laryngoscope 1986; 47:75-85. [PMID: 3088347 DOI: 10.1249/jes.0000000000000183] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurofibromatosis is a neurocutaneous systemic disease that occurs in 1:2500 to 3300 live births. Prevalence figures have shown it to be as common as cystic fibrosis or Down's syndrome and more than twice as common as muscular dystrophy. In this study, our experience with 257 cases of neurofibromatosis seen since 1972 is reviewed. Intracranial, bony, and extracranial anomalies are described in the 223 patients (87%) who presented with, or ultimately developed, head and neck manifestations of the disease. The most common intracranial tumor was optic glioma, found in 35 patients (14%), 19 younger than 10 years of age. Acoustic neuromas were diagnosed in eight individuals (3%) and were bilateral in three. The most common skull anomaly was macrocephaly, noted 78 times (30%). Absence of the sphenoid wing occurred in 11 patients (4%) and 19 others (7%) had facial asymmetry due to other skull abnormalities. Extracranial manifestations included neurofibromas of the plexiform and nonplexiform type, Lisch nodules, and cafe-au-lait spots.
Collapse
|