901
|
Wu PF, Gu Q. Atractylodes macrocephala for treatment of functional constipation: Underlying mechanisms. Shijie Huaren Xiaohua Zazhi 2014; 22:4934-4937. [DOI: 10.11569/wcjd.v22.i32.4934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional constipation is a common and frequently-occurring disease, and Atractylodes macrocephala has its unique advantages in treating functional constipation. This paper review recent progress in the treatment of functional constipation with Atractylodes macrocephala and the underlying mechanism, with an aim to provide a theoretical basis for clinical treatment of functional constipation with Atractylodes macrocephala, and guidance of the mechanism research in the future.
Collapse
|
902
|
The enteric nervous system and gastrointestinal innervation: integrated local and central control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:39-71. [PMID: 24997029 DOI: 10.1007/978-1-4939-0897-4_3] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The digestive system is innervated through its connections with the central nervous system (CNS) and by the enteric nervous system (ENS) within the wall of the gastrointestinal tract. The ENS works in concert with CNS reflex and command centers and with neural pathways that pass through sympathetic ganglia to control digestive function. There is bidirectional information flow between the ENS and CNS and between the ENS and sympathetic prevertebral ganglia.The ENS in human contains 200-600 million neurons, distributed in many thousands of small ganglia, the great majority of which are found in two plexuses, the myenteric and submucosal plexuses. The myenteric plexus forms a continuous network that extends from the upper esophagus to the internal anal sphincter. Submucosal ganglia and connecting fiber bundles form plexuses in the small and large intestines, but not in the stomach and esophagus. The connections between the ENS and CNS are carried by the vagus and pelvic nerves and sympathetic pathways. Neurons also project from the ENS to prevertebral ganglia, the gallbladder, pancreas and trachea.The relative roles of the ENS and CNS differ considerably along the digestive tract. Movements of the striated muscle esophagus are determined by neural pattern generators in the CNS. Likewise the CNS has a major role in monitoring the state of the stomach and, in turn, controlling its contractile activity and acid secretion, through vago-vagal reflexes. In contrast, the ENS in the small intestine and colon contains full reflex circuits, including sensory neurons, interneurons and several classes of motor neuron, through which muscle activity, transmucosal fluid fluxes, local blood flow and other functions are controlled. The CNS has control of defecation, via the defecation centers in the lumbosacral spinal cord. The importance of the ENS is emphasized by the life-threatening effects of some ENS neuropathies. By contrast, removal of vagal or sympathetic connections with the gastrointestinal tract has minor effects on GI function. Voluntary control of defecation is exerted through pelvic connections, but cutting these connections is not life-threatening and other functions are little affected.
Collapse
|
903
|
Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch 2014; 467:191-200. [PMID: 25366494 DOI: 10.1007/s00424-014-1635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/14/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
Coordinated contractions of the smooth muscle layers of the gastrointestinal (GI) tract are required to produce motor patterns that ensure normal GI motility. The crucial role of the enteric nervous system (ENS), the intrinsic ganglionated network located within the GI wall, has long been recognized in the generation of the main motor patterns. However, devising an appropriate motility requires the integration of informations emanating from the lumen of the GI tract. As already found more than half a century ago, the ability of the GI tract to respond to mechanical forces such as stretch is not restricted to neuronal mechanisms. Instead, mechanosensitivity is now recognized as a property of several non-neuronal cell types, the excitability of which is probably involved in shaping the motor patterns. This brief review gives an overview on how mechanosensitivity of different cell types in the GI tract has been established and, whenever available, on what ionic conductances are involved in mechanotransduction and their potential impact on normal GI motility.
Collapse
Affiliation(s)
- Bruno Mazet
- Aix Marseille Université, CNRS, CRN2M UMR 7286, CS80011 Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| |
Collapse
|
904
|
Harrison C, Wabbersen T, Shepherd IT. In vivo visualization of the development of the enteric nervous system using a Tg(-8.3bphox2b:Kaede) transgenic zebrafish. Genesis 2014; 52:985-90. [PMID: 25264359 DOI: 10.1002/dvg.22826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 11/07/2022]
Abstract
The phox2b gene encodes a transcription factor that is expressed in the developing enteric nervous system (ENS). An enhancer element has been identified in the zebrafish phox2b locus that can drive tissue specific expression of reporter genes in enteric neuron precursor cells. We have generated a transgenic zebrafish line in which the Kaede fluorescent protein is under the control of this phox2b enhancer. This line has stable expression of the Kaede protein in enteric neuron precursor cells over three generations. To demonstrate the utility of this line we compared the migration and division rates of enteric neuron precursor cells in wild type and the zebrafish ENS mutant lessen.
Collapse
Affiliation(s)
- Colin Harrison
- Department of Biology, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
905
|
Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 2014; 158:300-313. [PMID: 25036630 DOI: 10.1016/j.cell.2014.04.050] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/12/2013] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:
Collapse
|
906
|
Abstract
The classic piebald mutation in the endothelin receptor type B (Ednrb) gene was found on rolling Nagoya genetic background (PROD-s/s) mice with white coat spotting. To examine whether genetic background influenced the phenotype in the piebald mutant mice, we generated a congenic strain (B6.PROD-s/s), produced by repeated backcrosses to the C57BL/6J (B6) strain. Although B6.PROD-s/s mice showed white coat spotting, 7% of B6.PROD-s/s mice died between 2 and 5 weeks after birth due to megacolon. The PROD-s/s, s/s and Japanese fancy mouse 1 (JF1) strains, which also have piebald mutations on different genetic backgrounds with B6, showed only pigmentation defects without megacolon. In expression analyses, rectums of B6.PROD-s/s
with megacolon mice showed ~5% of the level of Ednrb gene expression versus B6 mice. In histological analyses, aganglionosis was detected in the rectum of megacolon animals. The aganglionic rectum was thought to lead to severe constipation and intestinal blockage, resulting in megacolon. We also observed an abnormal intestinal flora, including a marked increase in Bacteroidaceae and Erysipelotrichaceae and a marked decrease in Lactobacillus and Clostridiales, likely inducing endotoxin production and a failure of the mucosal barrier system, leading ultimately to death. These results indicate that the genetic background plays a key role in the development of enteric ganglion neurons, controlled by the Ednrb gene, and that B6 has modifier gene (s) regarding aganglionosis.
Collapse
Affiliation(s)
- Sanae Fukushima
- Research Resources Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | |
Collapse
|
907
|
Gombash SE, Cowley CJ, Fitzgerald JA, Hall JCE, Mueller C, Christofi FL, Foust KD. Intravenous AAV9 efficiently transduces myenteric neurons in neonate and juvenile mice. Front Mol Neurosci 2014; 7:81. [PMID: 25360081 PMCID: PMC4197761 DOI: 10.3389/fnmol.2014.00081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Gene therapies for neurological diseases with autonomic or gastrointestinal involvement may require global gene expression. Gastrointestinal complications are often associated with Parkinson's disease and autism. Lewy bodies, a pathological hallmark of Parkinson's brains, are routinely identified in the neurons of the enteric nervous system (ENS) following colon biopsies from patients. The ENS is the intrinsic nervous system of the gut, and is responsible for coordinating the secretory and motor functions of the gastrointestinal tract. ENS dysfunction can cause severe patient discomfort, malnourishment, or even death as in intestinal pseudo-obstruction (Ogilvie syndrome). Importantly, ENS transduction following systemic vector administration has not been thoroughly evaluated. Here we show that systemic injection of AAV9 into neonate or juvenile mice results in transduction of 25-57% of ENS myenteric neurons. Transgene expression was prominent in choline acetyltransferase positive cells, but not within vasoactive intestinal peptide or neuronal nitric oxide synthase cells, suggesting a bias for cells involved in excitatory signaling. AAV9 transduction in enteric glia is very low compared to CNS astrocytes. Enteric glial transduction was enhanced by using a glial specific promoter. Furthermore, we show that AAV8 results in comparable transduction in neonatal mice to AAV9 though AAV1, 5, and 6 are less efficient. These data demonstrate that systemic AAV9 has high affinity for peripheral neural tissue and is useful for future therapeutic development and basic studies of the ENS.
Collapse
Affiliation(s)
- Sara E Gombash
- Department of Neuroscience, Ohio State University Columbus, OH, USA
| | | | | | - Jodie C E Hall
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Ohio State University Columbus, OH, USA
| | - Christian Mueller
- Department of Pediatrics, Gene Therapy Center, University of Massachusetts Medical School Worcester, MA, USA
| | | | - Kevin D Foust
- Department of Neuroscience, Ohio State University Columbus, OH, USA
| |
Collapse
|
908
|
Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol 2014; 20:442-56. [PMID: 24965252 PMCID: PMC4206585 DOI: 10.1007/s13365-014-0259-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Latent wild-type (WT) and vaccine (vOka) varicella zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS.
Collapse
Affiliation(s)
- Lin Gan
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Mingli Wang
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Jason J. Chen
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Anne A. Gershon
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
909
|
Abstract
The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.
Collapse
|
910
|
Brumovsky PR, La JH, Gebhart GF. Distribution across tissue layers of extrinsic nerves innervating the mouse colorectum - an in vitro anterograde tracing study. Neurogastroenterol Motil 2014; 26:1494-507. [PMID: 25185752 PMCID: PMC4200533 DOI: 10.1111/nmo.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/27/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Anterograde in vitro tracing of the pelvic nerve (PN) and visualization in the horizontal plane in whole mount preparations has been fundamental in the analysis of distribution of peripheral nerves innervating the colorectum. Here, we performed a similar analysis, but in cryostat sections of the mouse colorectum, allowing for a more direct visualization of nerve distribution in all tissue layers. METHODS Colorectum with attached PNs was dissected from adult male BalbC mice. Presence of active afferents was certified by single fiber recording of fine PN fibers. This was followed by 'bulk' (all fibers) anterograde tracing using biotinamide (BTA). Histo- and immunohistochemical techniques were used for visualization of BTA-positive nerves, and evaluation of co-localization with calcitonin gene-related peptide (CGRP), respectively. Tissue was analyzed using confocal microscopy on transverse or longitudinal colorectum sections. KEY RESULTS Abundant BTA-positive nerves spanning all layers of the mouse colorectum and contacting myenteric plexus neurons, distributing within the muscle layer, penetrating deeper into the organ and contacting blood vessels, submucosal plexus neurons or even penetrating the mucosa, were regularly detected. Several traced axons co-localized CGRP, supporting their afferent nature. Finally, anterograde tracing of the PN also exposed abundant BTA-positive nerves in the major pelvic ganglion. CONCLUSIONS & INFERENCES We present the patterns of innervation of extrinsic axons across layers in the mouse colorectum, including the labile mucosal layer. The proposed approach could also be useful in the analysis of associations between morphology and physiology of peripheral nerves targeting the different layers of the colorectum.
Collapse
Affiliation(s)
- Pablo R. Brumovsky
- School of Biomedical Sciences, Austral University, Pilar 1629, Buenos Aires, Argentina,CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jun-Ho La
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - G. F. Gebhart
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
911
|
Nishikawa R, Hotta R, Shimojima N, Shibata S, Nagoshi N, Nakamura M, Matsuzaki Y, Okano HJ, Kuroda T, Okano H, Morikawa Y. Migration and differentiation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung's disease. Cytotechnology 2014; 67:661-70. [PMID: 25230796 DOI: 10.1007/s10616-014-9754-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022] Open
Abstract
Stem cell therapy offers the potential of rebuilding the enteric nervous system (ENS) in the aganglionic bowel of patients with Hirschsprung's disease. P0-Cre/Floxed-EGFP mice in which neural crest-derived cells express EGFP were used to obtain ENS stem/progenitor cells. ENS stem/progenitor cells were transplanted into the bowel of Ret(-/-) mouse, an animal model of Hirschsprung's disease. Immunohistochemical analysis was performed to determine whether grafted cells gave rise to neurons in the recipient bowel. EGFP expressing neural crest-derived cells accounted for 7.01 ± 2.52 % of total cells of gastrointestinal tract. ENS stem/progenitor cells were isolated using flow cytometry and expanded as neurosphere-like bodies (NLBs) in a serum-free culture condition. Some cells in NLBs expressed neural crest markers, p75 and Sox10 and neural stem/progenitor cells markers, Nestin and Musashi1. Multipotency of isolated ENS stem/progenitor cells was determined as they differentiated into neurons, glial cells, and myofibloblasts in culture. When co-cultured with explants of hindgut of Ret(-/-) mice, ENS stem/progenitor cells migrated into the aganglionic bowel and gave rise to neurons. ENS stem/progenitor cells used in this study appear to be clinically relevant donor cells in cell therapy to treat Hirschsprung's disease capable of colonizing the affected bowel and giving rise to neurons.
Collapse
Affiliation(s)
- Ryuhei Nishikawa
- Department of Pediatric Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
912
|
Gonsalvez DG, Li-Yuen-Fong M, Cane KN, Stamp LA, Young HM, Anderson CR. Different neural crest populations exhibit diverse proliferative behaviors. Dev Neurobiol 2014; 75:287-301. [DOI: 10.1002/dneu.22229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/02/2023]
Affiliation(s)
- David G. Gonsalvez
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Mathew Li-Yuen-Fong
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Kylie N. Cane
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Lincon A. Stamp
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Heather M. Young
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Colin R. Anderson
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| |
Collapse
|
913
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
914
|
Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 2014; 522:514-27. [PMID: 23861145 DOI: 10.1002/cne.23423] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022]
Abstract
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype.
Collapse
Affiliation(s)
- Annette J Bergner
- Department of Anatomy & Neuroscience, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
915
|
Kawai H, Satomi K, Morishita Y, Murata Y, Sugano M, Nakano N, Noguchi M. Developmental markers of ganglion cells in the enteric nervous system and their application for evaluation of Hirschsprung disease. Pathol Int 2014; 64:432-42. [DOI: 10.1111/pin.12191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Hitomi Kawai
- Department of Pathology; Tsukuba University Hospital; University of Tsukuba; Tsukuba Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Yukio Morishita
- Department of Diagnostic Pathology; Tokyo Medical University Ibaraki Medical Center; Ami Japan
| | - Yoshihiko Murata
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masato Sugano
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Noriyuki Nakano
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| |
Collapse
|
916
|
Tossas K, Qi-Huang S, Cuyar E, García-Arrarás JE. Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima. ACTA ACUST UNITED AC 2014; 1:10-26. [PMID: 27499861 PMCID: PMC4895299 DOI: 10.1002/reg2.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/18/2023]
Abstract
There is limited information on the regeneration of the enteric nervous system (ENS) following major reconstruction of the digestive tract. We have studied ENS regeneration in the sea cucumber Holothuria glaberrima which undergoes an organogenic process forming a new digestive tract at the tip of the mesentery. Our results show that (1) a degeneration of nerve fibers occurs early in the regeneration process, prior to eventual regeneration; (2) nerve fibers that innervate the regenerating intestine are of extrinsic and intrinsic origin; (3) innervation by extrinsic fibers occurs in a gradient that begins in the proximal area of the regenerate; (4) late events include the appearance of nerve fibers that project from the serosa into the connective tissue and of nerve bundles in the mesothelial layer; (5) neurons and neuroendocrine cells appear early following the formation of the epithelial layers. Our results provide not only a comparative biological approach to study ENS regeneration but also an alternative point of view for the study of enteric neuropathologies and for the innervation of organs made in vitro.
Collapse
Affiliation(s)
- Karen Tossas
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Sunny Qi-Huang
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Eugenia Cuyar
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | | |
Collapse
|
917
|
Sirakov M, Kress E, Nadjar J, Plateroti M. Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology? Cell Mol Life Sci 2014; 71:2897-907. [PMID: 24604390 PMCID: PMC11113153 DOI: 10.1007/s00018-014-1586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
Thyroid hormones participate in the development and homeostasis of several organs and tissues. It is well documented that they act via nuclear receptors, the TRs, which are transcription factors whose function is modulated by the hormone T3. Importantly, T3-induced physiological response within a cell depends on the specific TR expression and on the T3 bioavailability. However, in addition to this T3-dependent control of TR functionality, increasing data show that the action of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. By focusing on the intestinal epithelium of both amphibians and mammals we summarize here new data in support of a role for thyroid hormones and the TR nuclear receptors in stem cell biology. This new concept may be extended to other organs and have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Brussels, Belgium
| | - Elsa Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| | - Julien Nadjar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| | - Michelina Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| |
Collapse
|
918
|
Rivera LR, Leung C, Pustovit RV, Hunne BL, Andrikopoulos S, Herath C, Testro A, Angus PW, Furness JB. Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet. Neurogastroenterol Motil 2014; 26:1188-99. [PMID: 24952996 DOI: 10.1111/nmo.12385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disorders of gastrointestinal functions that are controlled by enteric neurons commonly accompany fatty liver disease. Established fatty liver disease is associated with diabetes, which itself induces enteric neuron damage. Here, we investigate the relationship between fatty liver disease and enteric neuropathy, in animals fed a high-fat, high-cholesterol diet in the absence of diabetes. METHODS Mice were fed a high-fat, high-cholesterol diet (21% fat, 2% cholesterol) or normal chow for 33 weeks. Liver injury was assessed by hematoxylin and eosin, picrosirius red staining, and measurement of plasma alanine aminotransaminase (ALT). Quantitative immunohistochemistry was performed for different types of enteric neurons. KEY RESULTS The mice developed steatosis, steatohepatitis, fibrosis, and a 10-fold increase in plasma ALT, indicative of liver disease. Oral glucose tolerance was unchanged. Loss and damage to enteric neurons occurred in the myenteric plexus of ileum, cecum, and colon. Total numbers of neurons were reduced by 15-30% and neurons expressing nitric oxide synthase were reduced by 20-40%. The RNA regulating protein, Hu, became more concentrated in the nuclei of enteric neurons after high-fat feeding, which is an indication of stress on the enteric nervous system. There was also disruption of the neuronal cytoskeletal protein, neurofilament medium. CONCLUSIONS & INFERENCES Enteric neuron loss and damage occurs in animals with fatty liver disease in the absence of glucose intolerance. The enteric neuron damage may contribute to the gastrointestinal complications of fatty liver disease.
Collapse
Affiliation(s)
- L R Rivera
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
919
|
Bulc M, Gonkowski S, Landowski P, Kamińska B, Całka J. Immunohistochemical distribution of cocaine and amphetamine regulatory peptide-like immunoreactive (CART-LI) nerve fibers in the circular muscle layer and their relationship to other peptides in the human caecum. Acta Histochem 2014; 116:1029-36. [PMID: 24907030 DOI: 10.1016/j.acthis.2014.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 01/19/2023]
Abstract
Motor activity of the gastrointestinal tract is extensively controlled by the enteric nervous system (ENS). Numerous neurotransmitters and neuromodulators are responsible for this regulation. One of them is cocaine- and amphetamine-regulated transcript peptide (CART). So far, there are few reports available concerning the distribution, functions, and co-localization of CART in the human gastrointestinal tract. The aim of the present investigation was to study the distribution and degree of co-localization of CART with substances taking part in conducting sensory stimuli, such as: substance P (SP), neurokinin A (NKA), calcitonin gene related peptide (CGRP) and Leu 5 enkephalin (L-ENK) in the circular muscle layer of the human caecum. CART-like immunoreactive (CART-LI) nerve fibers formed a very dense meshwork in the circular muscle layer of the caecum in all patients studied. Moreover, all neuronal substances tested during the present investigation were observed in CART-LI processes, but the degree of co-localization depended on the type of substance. The highest number of CART-positive nerves also contained L-ENK. A slightly lower level of co-localization was observed in the case of CART and SP or NKA, while only single nerve fibers were simultaneously CART- and CGRP-positive.
Collapse
|
920
|
Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia. J Neurosci 2014; 34:5233-44. [PMID: 24719102 DOI: 10.1523/jneurosci.0057-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated sodium (Nav) channels play a central role in gastrointestinal physiology because they transmit depolarizing impulses in enteric neurons, thereby enabling the coordination of intestinal motility. However, little is known about the ion channel machinery that specifies firing pattern of enteric neurons. Here, we used in situ patch-clamp recording of myenteric neurons from mice to define functionally the Nav channel subtypes responsible for the electrical signature of myenteric neurons. We found that mouse myenteric neurons exhibit two types of tetrodotoxin-resistant Na(+) currents: an early inactivating Na(+) current (INaT) and a persistent Na(+) current (INaP). INaT was encountered in all myenteric neurons, whereas INaP was preferentially found in Dogiel type II sensory neurons. Knock-out mouse studies, in combination with pharmacological assays, indicate that INaT is carried by the Scn5a-encoded "cardiac" Nav1.5, whereas INaP is attributed to the Scn11a-encoded Nav1.9. Current-clamp experiments show that Nav1.9 flows at subthreshold voltages, generating tonic firing. In addition, action potential (AP) clamp reveals that Nav1.5 contributes to the upstroke velocity of APs, whereas Nav1.9, which remains active during the falling phase, opposes AP repolarization. We developed a computational model of a Dogiel type II myenteric neuron that successfully reproduces all experimentally observed phenomena and highlights the differential roles of Nav1.5 and Nav1.9 in the control of excitability. Our data illustrate how excitability can be finely tuned to provide specific firing templates by the selective deployment of Nav1.5 and Nav1.9 isoforms. We propose that Nav-dependent ENS disorders of excitability may play important roles in the pathogenesis of digestive diseases.
Collapse
|
921
|
Raghavan S, Bitar KN. The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets. Biomaterials 2014; 35:7429-40. [PMID: 24929617 DOI: 10.1016/j.biomaterials.2014.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/15/2014] [Indexed: 01/29/2023]
Abstract
Differentiation of enteric neural stem cells into several appropriate neural phenotypes is crucial while considering transplantation as a cellular therapy to treat enteric neuropathies. We describe the formation of tissue engineered innervated sheets, where intestinal smooth muscle and enteric neuronal progenitor cells are brought into close association in extracellular matrix (ECM) based microenvironments. Uniaxial alignment of constituent smooth muscle cells was achieved by substrate microtopography. The smooth muscle component of the tissue engineered sheets maintained a contractile phenotype irrespective of the ECM composition, and generated equivalent contractions in response to potassium chloride stimulation, similar to native intestinal tissue. We provided enteric neuronal progenitor cells with permissive ECM-based compositional and viscoelastic cues to generate excitatory and inhibitory neuronal subtypes. In the presence of the smooth muscle cells, the enteric neuronal progenitor cells differentiated to functionally innervate the smooth muscle. The differentiation of specific neuronal subtypes was influenced by the ECM microenvironment, namely combinations of collagen I, collagen IV, laminin and/or heparan sulfate. The physiology of differentiated neurons within tissue engineered sheets was evaluated. Sheets with composite collagen and laminin had the most similar patterns of Acetylcholine-induced contraction to native intestinal tissue, corresponding to an increased protein expression of choline acetyltransferase. An enriched nitrergic neuronal population, evidenced by an increased expression of neuronal nitric oxide synthase, was obtained in tissue engineered sheets that included collagen IV. These sheets had a significantly increased magnitude of electrical field stimulated relaxation, sensitive maximally to nitric oxide synthase inhibition. Tissue engineered sheets containing laminin and/or heparan sulfate had a balanced expression of contractile and relaxant motor neurons. Our studies demonstrated that neuronal subtype was modulated by varying ECM composition. This observation could be utilized to derive enriched populations of specific enteric neurons in vitro prior to transplantation.
Collapse
Affiliation(s)
- Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA.
| |
Collapse
|
922
|
Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol 2014; 592:2959-65. [PMID: 24907307 DOI: 10.1113/jphysiol.2014.272948] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) integrates numerous sensory signals in order to control and maintain normal gut functions. Nutrients are one of the prominent factors which determine the chemical milieu in the lumen and, after absorption, also within the gut wall. This review summarizes current knowledge on the impact of key nutrients on ENS functions and phenotype, covering their acute and long-term effects. Enteric neurones contain the molecular machinery to respond specifically to nutrients. These transporters and receptors are not expressed exclusively in the ENS but are also present in other cells such as enteroendocrine cells (EECs) and extrinsic sensory nerves, signalling satiety or hunger. Glucose, amino acids and fatty acids all activate enteric neurones, as suggested by enhanced c-Fos expression or spike discharge. These excitatory effects are the result of a direct neuronal activation but also involve the activation of EECs which, upon activation by luminal nutrients, release mediators such as ghrelin, cholecystokinin or serotonin. The presence or absence of nutrients in the intestinal lumen induces long-term changes in neurotransmitter expression, excitability, neuronal survival and ultimately impact upon gut motility, secretion or intestinal permeability. Together with EECs and vagal nerves, the ENS must be recognized as an important player initiating concerted responses to nutrients. It remains to be studied how, for instance, nutrient-induced changes in the ENS may influence additional gut functions such as intestinal barrier repair, intestinal epithelial stem cell proliferation/differentiation and also the signalling of extrinsic nerves to brain regions which control food intake.
Collapse
Affiliation(s)
- Michel Neunlist
- INSERM, U913, Nantes, F-44093, France Université Nantes, Nantes, F-44093, France CHU Nantes, HôtelDieu, Institut des Maladies de l'Appareil Digestif, Nantes, F-44093, France Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michael Schemann
- Lehrstuhl für Humanbiologie, Technische Universität München, Liesel-Beckmann-Straße 4, 85350, Freising-Weihenstephan, Germany
| |
Collapse
|
923
|
Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9603. [PMID: 24352567 PMCID: PMC4082571 DOI: 10.1007/s11357-013-9603-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/25/2013] [Indexed: 05/23/2023]
Abstract
Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain-gut-enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department of Life Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, MK7 6AA, UK,
| |
Collapse
|
924
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
925
|
Benarroch EE. The clinical approach to autonomic failure in neurological disorders. Nat Rev Neurol 2014; 10:396-407. [DOI: 10.1038/nrneurol.2014.88] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
926
|
Abstract
The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.
Collapse
|
927
|
Is L-glutathione more effective than L-glutamine in preventing enteric diabetic neuropathy? Dig Dis Sci 2014; 59:937-48. [PMID: 24370785 DOI: 10.1007/s10620-013-2993-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes and its complications appear to be multifactorial. Substances with antioxidant potential have been used to protect enteric neurons in experimental diabetes. AIM This study evaluated the effects of supplementation with L-glutamine and L-glutathione on enteric neurons in the jejunum in diabetic rats. METHODS Rats at 90 days of age were distributed into six groups: normoglycemic, normoglycemic supplemented with 2 % L-glutamine, normoglycemic supplemented with 1 % L-glutathione, diabetic (D), diabetic supplemented with 2 % L-glutamine (DG), and diabetic supplemented with 1 % L-glutathione (DGT). After 120 days, the jejunums were immunohistochemically stained for HuC/D+ neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Western blot was performed to evaluate nNOS and VIP. Submucosal and myenteric neurons were quantitatively and morphometrically analyzed. RESULTS Diabetic neuropathy was observed in myenteric HuC/D, nNOS, and VIP neurons (p < 0.05). In the submucosal plexus, diabetes did not change nitrergic innervation but increased VIPergic neuronal density and body size (p < 0.05). Supplementation with L-glutathione prevented changes in HuC/D neurons in the enteric plexus (p < 0.05), showing that supplementation with L-glutathione was more effective than with L-glutamine. Myenteric nNOS neurons in the DGT group exhibited a reduced density (34.5 %) and reduced area (p < 0.05). Submucosal neurons did not exhibit changes. The increase in VIP-expressing neurons was prevented in the submucosal plexus in the DG and DGT groups (p < 0.05). CONCLUSION Supplementation with L-glutathione exerted a better neuroprotective effect than L-glutamine and may prevent the development of enteric diabetic neuropathy.
Collapse
|
928
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
929
|
Kobara H, Mori H, Rafiq K, Fujihara S, Nishiyama N, Ayaki M, Yachida T, Matsunaga T, Tani J, Miyoshi H, Yoneyama H, Morishita A, Oryu M, Iwama H, Masaki T. Submucosal tunneling techniques: current perspectives. Clin Exp Gastroenterol 2014; 7:67-74. [PMID: 24741323 PMCID: PMC3982978 DOI: 10.2147/ceg.s43139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.
Collapse
Affiliation(s)
- Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Kazi Rafiq
- Department of Pharmacology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Maki Ayaki
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Tae Matsunaga
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Johji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Makoto Oryu
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan
| |
Collapse
|
930
|
Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 2014; 12:23. [PMID: 24670214 PMCID: PMC4101823 DOI: 10.1186/1741-7007-12-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne 3010 VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
931
|
Abstract
The etiology and pathogenesis of inflammatory bowel disease are currently unknown. It is generally believed that persistent intestinal infection, intestinal mucosal barrier defect, intestinal mucosal immune dysregulation and genetic and environmental factors together contribute to the pathogenesis of inflammatory bowel disease. Several studies have demonstrated that enteric glial cells play an important role in maintaining the integrity of intestinal mucosal barrier. Enteric glial cell deficiency in mice leads to the destruction of integrity of intestinal mucosal barrier, increases mucosal permeability, and results in intestinal inflammation, hemorrhage and necrosis. This article discusses the role of enteric glial cells in the occurrence and development of inflammatory bowel disease.
Collapse
|
932
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
933
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
934
|
Chowdhury S, Reeds DN, Crimmins DL, Patterson BW, Laciny E, Wang S, Tran HD, Griest TA, Rometo DA, Dunai J, Wallendorf MJ, Ladenson JH, Polonsky KS, Wice BM. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2014; 306:G301-9. [PMID: 24356886 PMCID: PMC3920124 DOI: 10.1152/ajpgi.00383.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.
Collapse
Affiliation(s)
- Sara Chowdhury
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dominic N. Reeds
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dan L. Crimmins
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Bruce W. Patterson
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Erin Laciny
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Songyan Wang
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Hung D. Tran
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Terry A. Griest
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - David A. Rometo
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Judit Dunai
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Michael J. Wallendorf
- 4Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Jack H. Ladenson
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Kenneth S. Polonsky
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; ,5Division of the Biological Sciences and Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Burton M. Wice
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
935
|
Cheeseman BL, Zhang D, Binder BJ, Newgreen DF, Landman KA. Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation. J R Soc Interface 2014; 11:20130815. [PMID: 24501272 PMCID: PMC3928926 DOI: 10.1098/rsif.2013.0815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS.
Collapse
Affiliation(s)
- Bevan L Cheeseman
- Department of Mathematics and Statistics, University of Melbourne, , Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
936
|
Gilmont RR, Raghavan S, Somara S, Bitar KN. Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs. Tissue Eng Part A 2014; 20:1603-11. [PMID: 24328537 DOI: 10.1089/ten.tea.2013.0422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Muscle replacement for patients suffering from extensive tissue loss or dysfunction is a major objective of regenerative medicine. To achieve functional status, bioengineered muscle replacement constructs require innervation. Here we describe a method to bioengineer functionally innervated gut smooth muscle constructs using neuronal progenitor cells and smooth muscle cells isolated and cultured from intestinal tissues of adult human donors. These constructs expressed markers for contractile smooth muscle, glial cells, and mature neuronal populations. The constructs responded appropriately to physiologically relevant neurotransmitters, and neural network integration was demonstrated by responses to electrical field stimulation. The ability of enteric neuroprogenitor cells to differentiate into neuronal populations provides enormous potential for functional innervation of a variety of bioengineered muscle constructs in addition to gut. Functionally innervated muscle constructs offer a regenerative medicine-based therapeutic approach for neuromuscular replacement after trauma or degenerative disorders.
Collapse
Affiliation(s)
- Robert R Gilmont
- 1 Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
937
|
|
938
|
Malafoglia V, Colasanti M, Raffaeli W, Balciunas D, Giordano A, Bellipanni G. Extreme thermal noxious stimuli induce pain responses in zebrafish larvae. J Cell Physiol 2014; 229:300-8. [PMID: 23929528 DOI: 10.1002/jcp.24447] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/06/2022]
Abstract
Exposing tissues to extreme high or low temperature leads to burns. Burned animals sustain several types of damage, from the disruption of the tissue to degeneration of axons projecting through muscle and skin. Such damage causes pain due to both inflammation and axonal degeneration (neuropathic-like pain). Thus, the approach to cure and alleviate the symptoms of burns must be twofold: rebuilding the tissue that has been destroyed and alleviating the pain derived from the burns. While tissue regeneration techniques have been developed, less is known on the treatment of the induced pain. Thus, appropriate animal models are necessary for the development of the best treatment for pain induced in burned tissues. We have developed a methodology in the zebrafish aimed to produce a new animal model for the study of pain induced by burns. Here, we show that two events linked to the onset of burn-induced inflammation and neuropathic-like pain in mammals, degeneration of axons innervating the affected tissues and over-expression of specific genes in sensory tissues, are conserved from zebrafish to mammals.
Collapse
Affiliation(s)
- Valentina Malafoglia
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania; ISAL-Foundation, Institute for Research on Pain, Torre Pedrera (RN), Italy
| | | | | | | | | | | |
Collapse
|
939
|
Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:3-24. [PMID: 24997027 DOI: 10.1007/978-1-4939-0897-4_1] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA,
| |
Collapse
|
940
|
Philpott HL, Nandurkar S, Lubel J, Gibson PR. Drug-induced gastrointestinal disorders. Frontline Gastroenterol 2014; 5:49-57. [PMID: 28839751 PMCID: PMC5369702 DOI: 10.1136/flgastro-2013-100316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023] Open
Abstract
Drug-induced gastrointestinal disorders can mimic conditions, such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and, hence, recognition can prevent unnecessary investigations and treatment. While the knowledge and awareness relating to the adverse gastrointestinal effects of some medications, such as non-steroidal anti-inflammatory drugs are well established, other commonly prescribed drugs, such as antipsychotics, antidepressants and metformin are less well understood and warrant further study. This review attempts to integrate recent information regarding adverse drug reactions and place this in a useful clinical context.
Collapse
Affiliation(s)
- H L Philpott
- Department of Gastroenterology, Monash University, Eastern Health, Melbourne, Victoria, Australia,Box Hill Hospital, Melbourne, Australia,The Alfred Hospital, Melbourne, Australia
| | - S Nandurkar
- Department of Gastroenterology, Monash University, Eastern Health, Melbourne, Victoria, Australia,Box Hill Hospital, Melbourne, Australia
| | - J Lubel
- Department of Gastroenterology, Monash University, Eastern Health, Melbourne, Victoria, Australia,Box Hill Hospital, Melbourne, Australia
| | - P R Gibson
- Department of Gastroenterology, Monash University, Eastern Health, Melbourne, Victoria, Australia,Box Hill Hospital, Melbourne, Australia,The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
941
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
942
|
Zaccone G, Lauriano ER, Silvestri G, Kenaley C, Icardo JM, Pergolizzi S, Alesci A, Sengar M, Kuciel M, Gopesh A. Comparative neurochemical features of the innervation patterns of the gut of the basal actinopterygian,Lepisosteus oculatus, and the euteleost,Clarias batrachus. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giacomo Zaccone
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Eugenia Rita Lauriano
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Giuseppa Silvestri
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | | | - José M. Icardo
- Department of Anatomy and Cell Biology; University of Cantabria; 39011 Santander Spain
| | - Simona Pergolizzi
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Alessio Alesci
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 Messina I-98166 Italy
| | - Manvendra Sengar
- Department of Zoology; Institute of Basic Sciences; Bundelkhand University; Jhansi 284128 India
| | - Michal Kuciel
- Department of Comparative Anatomy; Jagiellonian University; Krakow 30-387 Poland
| | - Anita Gopesh
- Department of Zoology; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
943
|
Palombit K, Mendes CE, Tavares-de-Lima W, Silveira MP, Castelucci P. Effects of ischemia and reperfusion on subpopulations of rat enteric neurons expressing the P2X7 receptor. Dig Dis Sci 2013; 58:3429-39. [PMID: 23990036 DOI: 10.1007/s10620-013-2847-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal ischemia followed by reperfusion (I/R) may occur following intestinal obstruction. In rats, I/R in the small intestine leads to structural changes accompanied by neuronal death. AIM To analyze the impact of I/R injury on different neuronal populations in the myenteric plexus of rat ileum. METHODS The ileal artery was occluded for 35 min and animals were euthanized 6, 24, and 72 h, and 1 week later. Immunohistochemistry was performed with antibodies against the P2X7 receptor as well as nitric oxide synthase (NOS), calbindin, calretinin, choline acetyltransferase (ChAT), or the pan-neuronal marker anti-HuC/D. RESULTS Double immunolabeling demonstrated that 100% of NOS-, calbindin-, calretinin-, and ChAT-immunoreactive neurons in all groups expressed the P2X7 receptor. Following I/R, neuronal density decreased by 22.6% in P2X7 receptor-immunoreactive neurons, and decreased by 46.7, 38, 39.8, 21.7, and 20% in NOS-, calbindin-, calretinin-, ChAT-, and HuC/D-immunoreactive neurons, respectively, at 6, 24, and 72 h and 1 week following injury compared to the control and sham groups. We also observed a 14% increase in the neuronal cell body profile area of the NOS-immunoreactive neurons at 6 and 24 h post-I/R and a 14% increase in ChAT-immunoreactive neurons at 1 week following I/R. However, the average size of the calretinin-immunoreactive neurons was reduced by 12% at 6 h post-I/R and increased by 8% at 24 h post-I/R. CONCLUSIONS This work demonstrates that I/R is associated with a significant loss of different subpopulations of neurons in the myenteric plexus accompanied by morphological changes, all of which may underlie conditions related to intestinal motility disorder.
Collapse
Affiliation(s)
- Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | | | | |
Collapse
|
944
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
945
|
Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ. Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 2013; 385:220-9. [PMID: 24262984 PMCID: PMC3928993 DOI: 10.1016/j.ydbio.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa(120/120) or Tie2-Cre;Nrp1(fl/-) mice or using an in vitro Wnt1-Cre;Rosa26(Yfp/+) mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet(51) mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.
Collapse
Affiliation(s)
- Jean-Marie Delalande
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Dipa Natarajan
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Bertrand Vernay
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Malcolm Finlay
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Nikhil Thapar
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Alan J Burns
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Department of Clinical Genetics, The Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
946
|
Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 2013; 9:e1003726. [PMID: 24244158 PMCID: PMC3828163 DOI: 10.1371/journal.ppat.1003726] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, United States of America
- * E-mail:
| |
Collapse
|
947
|
Moynes DM, Lucas GH, Beyak MJ, Lomax AE. Effects of inflammation on the innervation of the colon. Toxicol Pathol 2013; 42:111-7. [PMID: 24159054 DOI: 10.1177/0192623313505929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease lead to altered gastrointestinal (GI) function as a consequence of the effects of inflammation on the tissues that comprise the GI tract. Among these tissues are several types of neurons that detect the state of the GI tract, transmit pain, and regulate functions such as motility, secretion, and blood flow. This review article describes the structure and function of the enteric nervous system, which is embedded within the gut wall, the sympathetic motor innervation of the colon and the extrinsic afferent innervation of the colon, and considers the evidence that colitis alters these important sensory and motor systems. These alterations may contribute to the pain and altered bowel habits that accompany IBD.
Collapse
Affiliation(s)
- Derek M Moynes
- 1Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
948
|
Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 2013; 4:1630. [PMID: 23535651 DOI: 10.1038/ncomms2626] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/27/2022] Open
Abstract
The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.
Collapse
|
949
|
Madsen JL. Scintigraphic assessment of gastrointestinal motility: a brief review of techniques and data interpretation. Clin Physiol Funct Imaging 2013; 34:243-53. [DOI: 10.1111/cpf.12089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Jan L. Madsen
- Department of Clinical Physiology and Nuclear Medicine; Centre of Functional Imaging and Research; Hvidovre Hospital; Hvidovre Denmark
| |
Collapse
|
950
|
Newgreen DF, Dufour S, Howard MJ, Landman KA. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 2013; 382:305-19. [PMID: 23838398 PMCID: PMC4694584 DOI: 10.1016/j.ydbio.2013.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.
Collapse
Affiliation(s)
- Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|