901
|
Khosa S, Lagedroste M, Smits SHJ. Protein Defense Systems against the Lantibiotic Nisin: Function of the Immunity Protein NisI and the Resistance Protein NSR. Front Microbiol 2016; 7:504. [PMID: 27148193 PMCID: PMC4828448 DOI: 10.3389/fmicb.2016.00504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/29/2016] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are potential alternatives to antibiotics because of their broad-range killing spectrum. The producer strain is immune against its own synthesized lantibiotic via the expression of two proteins LanI and LanFEG. Recently, gene operons are found in mainly human pathogenic strains, which confer resistance against lantibiotics. Of all the lantibiotics discovered till date, nisin produced by some Lactococcus lactis strains is the most prominent member. Nisin has multiple mode of actions of which binding to the cell wall precursor lipid II and subsequent insertion into the bacterial membrane to form pores are the most effective. The nisin producing strains express the lipoprotein NisI to prevent a suicidal effect. NisI binds nisin, inducing a reversible cell clustering to prevent nisin from reaching the membrane. Importantly NisI does not modify nisin and releases it as soon as the concentration in the media drops below a certain level. The human pathogen Streptococcus agalactiae is naturally resistant against nisin by expressing a resistance protein called SaNSR, which is a nisin degrading enzyme. By cleaving off the last six amino acids of nisin, its effectiveness is 100-fold reduced. This cleavage reaction appears to be specific for nisin since SaNSR recognizes the C-terminal located lanthionine rings. Recently, the structures of both NisI and SaNSR were determined by NMR and X-ray crystallography, respectively. Furthermore, for both proteins the binding site for nisin was determined. Within this review, the structures of both proteins and their different defense mechanisms are described.
Collapse
Affiliation(s)
- Sakshi Khosa
- Lantibiotic Immunity and Resistance, Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Germany
| | - Marcel Lagedroste
- Lantibiotic Immunity and Resistance, Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Germany
| | - Sander H J Smits
- Lantibiotic Immunity and Resistance, Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|
902
|
Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? Front Microbiol 2016; 7:461. [PMID: 27092121 PMCID: PMC4824776 DOI: 10.3389/fmicb.2016.00461] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 02/01/2023] Open
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.
Collapse
Affiliation(s)
- Kevin Egan
- School of Microbiology, University College Cork Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - R Paul Ross
- APC Microbiome InstituteUniversity College Cork, Ireland; College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| |
Collapse
|
903
|
Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic. Appl Environ Microbiol 2016; 82:2555-2562. [PMID: 26896142 DOI: 10.1128/aem.03988-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 11/20/2022] Open
Abstract
Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.
Collapse
|
904
|
Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SHJ. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. PLoS One 2016; 11:e0149903. [PMID: 26930060 PMCID: PMC4773095 DOI: 10.1371/journal.pone.0149903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
905
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
906
|
Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II. Sci Rep 2016; 6:21185. [PMID: 26888784 PMCID: PMC4758073 DOI: 10.1038/srep21185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022] Open
Abstract
Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin-lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. An Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wild-type. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N-terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this as the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation.
Collapse
|
907
|
Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol 2016; 120:1449-65. [PMID: 26678028 DOI: 10.1111/jam.13033] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.
Collapse
Affiliation(s)
- J M Shin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - J W Gwak
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - P Kamarajan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J C Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - A H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Y L Kapila
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
908
|
Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016; 100:2939-51. [PMID: 26860942 PMCID: PMC4786598 DOI: 10.1007/s00253-016-7343-9] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/24/2022]
Abstract
Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.
Collapse
|
909
|
Kyriakou PK, Ekblad B, Kristiansen PE, Kaznessis YN. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:824-35. [PMID: 26774214 DOI: 10.1016/j.bbamem.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The emergence of antibiotic resistant microorganisms poses an alarming threat to global health. Antimicrobial peptides (AMPs) are considered a possible effective alternative to conventional antibiotic therapies. An understanding of the mechanism of action of AMPs is needed in order to better control and optimize their bactericidal activity. Plantaricin EF is a heterodimeric AMP, consisting of two peptides Plantaricin E (PlnE) and Plantaricin F (PlnF). We studied the behavior of these peptides on the surface of a model lipid bilayer. We identified the residues that facilitate peptide-peptide interactions. We also identified residues that mediate interactions of the dimer with the membrane. PlnE interacts with the membrane through amino acids at both its termini, while only the N terminus of PlnF approaches the membrane. By comparing the activity of single-site mutants of the two-peptide bacteriocin and the simulations of the bacteriocin on the surface of a model lipid bilayer, structure activity relationships are proposed. These studies allow us to generate hypotheses that relate biophysical interactions observed in simulations with the experimentally measured activity. We find that single-site amino acid substitutions result in markedly stronger antimicrobial activity when they strengthen the interactions between the two peptides, while, concomitantly, they weaken peptide-membrane association. This effect is more pronounced in the case of the PlnE mutant (G20A), which interacts the strongest with PlnF and the weakest with the membrane while displaying the highest activity.
Collapse
Affiliation(s)
- Panagiota K Kyriakou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bie Ekblad
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Per Eugen Kristiansen
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
910
|
Piet J, Kieran J, Dara L, Avelino AOONE. Listeria monocytogenes in food: Control by monitoring the food processing environment. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
911
|
Linares DM, Ross P, Stanton C. Beneficial Microbes: The pharmacy in the gut. Bioengineered 2016; 7:11-20. [PMID: 26709457 PMCID: PMC4878258 DOI: 10.1080/21655979.2015.1126015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022] Open
Abstract
The scientific evidence supporting the gut microbiome in relation to health maintenance and links with various disease states afflicting humans, from metabolic to mental health, has grown dramatically in the last few years. Strategies addressing the positive modulation of microbiome functionality associated with these disorders offer huge potential to the food and pharmaceutical industries to innovate and provide therapeutic solutions to many of the health issues affecting modern society. Such strategies may involve the use of probiotics and prebiotics as nutritional adjunct therapies. Probiotics are generally recognized to be a good form of therapy to keep harmful, intestinal microorganisms in check, aid digestion and nutrient absorption, and contribute to immune function. Probiotics are reported to improve microbial balance in the intestinal tract and promote the return to a baseline microbial community following a perturbing event (dysbiosis) such as antibiotic therapy. Prebiotics are selectively fermented ingredients that allow specific changes, both in the composition and/or activity in the gastrointestinal microflora, which confers benefits upon host well-being and health.
Collapse
Affiliation(s)
- Daniel M Linares
- a Food Biosciences Department , Teagasc Food Research Center , Moorepark, Fermoy , Cork , Ireland
- b APC, Microbiome Institute, University College Cork , Cork , Ireland
| | - Paul Ross
- b APC, Microbiome Institute, University College Cork , Cork , Ireland
- c Biosciences Institute, University College Cork , Cork , Ireland
| | - Catherine Stanton
- a Food Biosciences Department , Teagasc Food Research Center , Moorepark, Fermoy , Cork , Ireland
- b APC, Microbiome Institute, University College Cork , Cork , Ireland
| |
Collapse
|
912
|
Vaillancourt K, LeBel G, Frenette M, Fittipaldi N, Gottschalk M, Grenier D. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis. PLoS One 2015; 10:e0145854. [PMID: 26709705 PMCID: PMC4692507 DOI: 10.1371/journal.pone.0145854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90–1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89–1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA’) of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84.6%), and Lactococcus lactis subsp. lactis (lacticin 481; 74.1%). Further studies will evaluate the ability of suicin 65 or the producing strain to prevent experimental S. suis infections in pigs.
Collapse
Affiliation(s)
- Katy Vaillancourt
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Geneviève LeBel
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FQRNT), Saint-Hyacinthe, Quebec, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Gottschalk
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FQRNT), Saint-Hyacinthe, Quebec, Canada
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FQRNT), Saint-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
913
|
Wu H, Tremaroli V, Bäckhed F. Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends Endocrinol Metab 2015; 26:758-770. [PMID: 26555600 DOI: 10.1016/j.tem.2015.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction.
Collapse
Affiliation(s)
- Hao Wu
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
914
|
OGAKI MB, FURLANETO MC, MAIA LF. Revisão: Aspectos gerais das bacteriocinas. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2015. [DOI: 10.1590/1981-6723.2215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo Bacteriocinas são peptídeos antimicrobianos sintetizados nos ribossomos, tendo sido descrita uma grande diversidade de bacteriocinas, as quais diferem entre si quanto a composição de aminoácidos, biossíntese, transporte e modo de ação. Nos alimentos, as bacteriocinas podem ser encontradas naturalmente como produtos da microbiota normal ou introduzida (cultura starter ou probióticos). Devido às suas aplicabilidades frente a organismos patogênicos contaminantes em alimentos, vários estudos têm sido publicados, tornando o uso destes peptídeos uma alternativa aos conservantes químicos tradicionais. Considerando-se as propriedades das bacteriocinas e sua potencial aplicação como bioconservadores de alimentos e alternativa aos antibióticos, o presente estudo busca acercar-se de uma visão geral das bacteriocinas quanto aos aspectos históricos, sistemas de classificação, biossíntese e transporte, modo de ação, abordando também algumas de suas aplicações na indústria de alimentos.
Collapse
|
915
|
Qiu XQ, Roy SM, Riley MA. Pheromonicins: an ecologically sound family of bacteriocin-based antibiotics for use in the age of the microbiome. Future Microbiol 2015; 10:1969-79. [PMID: 26610020 DOI: 10.2217/fmb.15.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The time is ripe to usher in a new paradigm in infection control and to move beyond our sole reliance on broad-spectrum antibiotics whose use results in extensive collateral damage to our microbiome and, in so doing, exerts significant selective pressures for resistance to emerge. We propose to supplement the existing pharmacy of conventional antibiotics, with a new drug family, the pheromonicins. These bacteriocin-based antimicrobials are stable, nontoxic proteins that possess potent antibacterial activities, and which can be easily and rapidly retargeted against any bacteria desired. Here we discuss colicin Ia, a pore forming bacteriocin, as the base of a novel drug development platform, the pheromonicins. Recent work suggests this versatile drug development platform can be used to generate pheromonicins active against enveloped viruses, fungi and human cancer cells. Pheromonicins provide a less toxic, more ecologically sound alternative to conventional antibiotics, and their use will help limit our sole reliance on broad-spectrum drugs.
Collapse
Affiliation(s)
- Xiao-Qing Qiu
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Sandra M Roy
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Margaret A Riley
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
916
|
Mukherjee S, Ramesh A. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J Med Microbiol 2015; 64:1514-1526. [DOI: 10.1099/jmm.0.000181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
917
|
Caly DL, D'Inca R, Auclair E, Drider D. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective. Front Microbiol 2015; 6:1336. [PMID: 26648920 PMCID: PMC4664614 DOI: 10.3389/fmicb.2015.01336] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control.
Collapse
Affiliation(s)
- Delphine L. Caly
- Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale, Institut Charles ViolletteLille, France
| | - Romain D'Inca
- Société Industrielle Lesaffre, Phileo Lesaffre Animal CareMarcq-en-Baroeul, France
| | - Eric Auclair
- Société Industrielle Lesaffre, Phileo Lesaffre Animal CareMarcq-en-Baroeul, France
| | - Djamel Drider
- Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale, Institut Charles ViolletteLille, France
| |
Collapse
|
918
|
Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Göbl C, Berninger L, Düsterhus S, Hellmich UA, Madl T, Kötter P, Entian KD, Wöhnert J. The Solution Structure of the Lantibiotic Immunity Protein NisI and Its Interactions with Nisin. J Biol Chem 2015; 290:28869-86. [PMID: 26459561 PMCID: PMC4661402 DOI: 10.1074/jbc.m115.679969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
Many Gram-positive bacteria produce lantibiotics, genetically encoded and posttranslationally modified peptide antibiotics, which inhibit the growth of other Gram-positive bacteria. To protect themselves against their own lantibiotics these bacteria express a variety of immunity proteins including the LanI lipoproteins. The structural and mechanistic basis for LanI-mediated lantibiotic immunity is not yet understood. Lactococcus lactis produces the lantibiotic nisin, which is widely used as a food preservative. Its LanI protein NisI provides immunity against nisin but not against structurally very similar lantibiotics from other species such as subtilin from Bacillus subtilis. To understand the structural basis for LanI-mediated immunity and their specificity we investigated the structure of NisI. We found that NisI is a two-domain protein. Surprisingly, each of the two NisI domains has the same structure as the LanI protein from B. subtilis, SpaI, despite the lack of significant sequence homology. The two NisI domains and SpaI differ strongly in their surface properties and function. Additionally, SpaI-mediated lantibiotic immunity depends on the presence of a basic unstructured N-terminal region that tethers SpaI to the membrane. Such a region is absent from NisI. Instead, the N-terminal domain of NisI interacts with membranes but not with nisin. In contrast, the C-terminal domain specifically binds nisin and modulates the membrane affinity of the N-terminal domain. Thus, our results reveal an unexpected structural relationship between NisI and SpaI and shed light on the structural basis for LanI mediated lantibiotic immunity.
Collapse
Affiliation(s)
- Carolin Hacker
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Nina A Christ
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Sophie Korn
- From the Institute for Molecular Biosciences and
| | - Christoph Göbl
- the Department of Chemistry, Center for Integrated Protein Science Munich, Technical University München, Lichtenbergstraße 4, 85748 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | - Ute A Hellmich
- the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany, the Institute of Pharmacy and Biochemistry, Gutenberg University, 55128 Mainz, Germany
| | - Tobias Madl
- the Department of Chemistry, Center for Integrated Protein Science Munich, Technical University München, Lichtenbergstraße 4, 85748 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany, the Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria, and the Omics Center Graz, BioTechMed Graz, 8010 Graz, Austria
| | - Peter Kötter
- From the Institute for Molecular Biosciences and
| | | | - Jens Wöhnert
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany,
| |
Collapse
|
919
|
Field D, Cotter PD, Hill C, Ross RP. Bioengineering Lantibiotics for Therapeutic Success. Front Microbiol 2015; 6:1363. [PMID: 26640466 PMCID: PMC4662063 DOI: 10.3389/fmicb.2015.01363] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Several examples of highly modified antimicrobial peptides have been described. While many such peptides are non-ribosomally synthesized, ribosomally synthesized equivalents are being discovered with increased frequency. Of the latter group, the lantibiotics continue to attract most attention. In the present review, we discuss the implementation of in vivo and in vitro engineering systems to alter, and even enhance, the antimicrobial activity, antibacterial spectrum and physico-chemical properties, including heat stability, solubility, diffusion and protease resistance, of these compounds. Additionally, we discuss the potential applications of these lantibiotics for use as therapeutics.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork , Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre , Fermoy, Ireland ; APC Microbiome Institute, University College Cork , Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork , Cork, Ireland ; APC Microbiome Institute, University College Cork , Cork, Ireland
| | - R P Ross
- Teagasc Food Research Centre , Fermoy, Ireland ; APC Microbiome Institute, University College Cork , Cork, Ireland
| |
Collapse
|
920
|
Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. JOURNAL OF NATURAL PRODUCTS 2015; 78:2850-2866. [PMID: 26448102 DOI: 10.1021/np500424y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing number of multidrug-resistant pathogens, along with the small number of new antimicrobials under development, leads to an increased need for novel alternatives. Class I and class II lanthipeptides (also known as lantibiotics) have been considered promising alternatives to classical antibiotics. In addition to their relevant medical applications, they are used as probiotics, prophylactics, preservatives, and additives in cosmetics and personal-care products. The genus Bacillus is a prolific source of bioactive compounds including ribosomally and nonribosomally synthesized antibacterial peptides. Accordingly, there is significant interest in the biotechnological potential of members of the genus Bacillus as producers of antimicrobial lanthipeptides. The present review focuses on aspects of the biosynthesis, gene cluster organization, structure, antibacterial spectrum, and bioengineering approaches of lanthipeptides produced by Bacillus strains. Their efficacy and potency against some clinically relevant strains, including MRSA and VRE, are also discussed. Although no lanthipeptides are currently in clinical use, the information herein highlights the potential of these compounds.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
921
|
Martins J, Vasconcelos V. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge. Mar Drugs 2015; 13:6910-46. [PMID: 26580631 PMCID: PMC4663559 DOI: 10.3390/md13116910] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential.
Collapse
Affiliation(s)
- Joana Martins
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| |
Collapse
|
922
|
Ruiz-González R, Agut M, Reddi E, Nonell S. A Comparative Study on Two Cationic Porphycenes: Photophysical and Antimicrobial Photoinactivation Evaluation. Int J Mol Sci 2015; 16:27072-86. [PMID: 26569238 PMCID: PMC4661857 DOI: 10.3390/ijms161125999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/19/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
Over the last decades, the number of pathogenic multi-resistant microorganisms has grown dramatically, which has stimulated the search for novel strategies to combat antimicrobial resistance. Antimicrobial photodynamic therapy (aPDT) is one of the promising alternatives to conventional treatments based on antibiotics. Here, we present a comparative study of two aryl tricationic porphycenes where photoinactivation efficiency against model pathogenic microorganisms is correlated to the photophysical behavior of the porphycene derivatives. Moreover, the extent of photosensitizer cell binding to bacteria has been assessed by flow cytometry in experiments with, or without, removing the unbound porphycene from the incubation medium. Results show that the peripheral substituent change do not significantly affect the overall behavior for both tricationic compounds neither in terms of photokilling efficiency, nor in terms of binding.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull, via Augusta 390, E-08017 Barcelona, Spain.
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, via Augusta 390, E-08017 Barcelona, Spain.
| | - Elena Reddi
- Department of Biology, University of Padova, via U. Bassi 58/B, E-35121 Padova, Italy.
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, via Augusta 390, E-08017 Barcelona, Spain.
| |
Collapse
|
923
|
Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M, Pirnay JP, De Vos D, Buckling A. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 2015; 29:188-98. [PMID: 26476097 DOI: 10.1111/jeb.12774] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
Recent years have seen renewed interest in phage therapy--the use of viruses to specifically kill disease-causing bacteria--because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains and then compared the efficacy of pre-adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre-adaptation, and as a result, phage therapies might need to be individually adjusted for different patients.
Collapse
Affiliation(s)
- V-P Friman
- Biosciences, University of Exeter, Penryn, UK.,Department of Biology, University of York, York, UK
| | | | - P Sierocinski
- Biosciences, University of Exeter, Penryn, UK.,European Centre for Environment and Human Health in Cornwall, University of Exeter, Penryn, UK
| | - S Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - H K Johansen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.,Department of Clinical Microbiology 9301, Rigshospitalet, København Ø, Denmark
| | - M Merabishvili
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium.,Research and Development Department, George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.,Laboratory for Bacteriology Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - J-P Pirnay
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium
| | - D De Vos
- Burn Wound Center, Queen Astrid Military Hospital, Brussel, Belgium
| | - A Buckling
- Biosciences, University of Exeter, Penryn, UK
| |
Collapse
|
924
|
Dubourg G, Elsawi Z, Raoult D. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. Int J Antimicrob Agents 2015; 46:590-3. [DOI: 10.1016/j.ijantimicag.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
925
|
Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiol Res 2015; 182:116-24. [PMID: 26686620 DOI: 10.1016/j.micres.2015.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 12/24/2022]
Abstract
Aneurinibacillus migulanus strains Nagano and NCTC 7096 show potential in biocontrol against fungal and fungus-like plant pathogens, including a wide range of Ascomycota, Basidiomycota, and Oomycetes. Differences in terms of the range of pathogens that each strain inhibits, however, suggested that production of a single antibiotic cyclic peptide, gramicidin S (GS), by the two strains, is not the sole mechanism of inhibition. The availability of four sequenced genomes of Aneurinibacillus prompted us to apply genome mining techniques to identify the bioactive potential of A. migulanus and to provide insights into the secondary metabolite arsenal of the genus Aneurinibacillus. Up to eleven secondary metabolite biosynthetic gene clusters were present in the three Aneurinibacillus species. Biosynthetic gene clusters specifying bacteriocins, microcins, non-ribosomal peptides, polyketides, terpenes, phosphonates, lasso peptides and linaridins were identified. Chitinolytic potential and iron metabolism regulation were also investigated. With increasing numbers of biocontrol bacterial genomes being sequenced and mined, the use of approaches similar to those described in this paper will lead to an increase in the numbers of environmentally friendly natural products available to use against plant diseases.
Collapse
|
926
|
Jiménez JJ, Diep DB, Borrero J, Gútiez L, Arbulu S, Nes IF, Herranz C, Cintas LM, Hernández PE. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb Cell Fact 2015; 14:166. [PMID: 26471395 PMCID: PMC4608264 DOI: 10.1186/s12934-015-0346-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Bacteriocins produced by lactic acid bacteria (LAB) attract considerable interest as natural and nontoxic food preservatives and as therapeutics whereas the bacteriocin-producing LAB are considered potential probiotics for food, human and veterinary applications, and in the animal production field. Within LAB the lactobacilli are increasingly used as starter cultures for food preservation and as probiotics. The lactobacilli are also natural inhabitants of the gastrointestinal (GI) tract and attractive vectors for delivery of therapeutic peptides and proteins, and for production of bioactive peptides. Research efforts for production of bacteriocins in heterologous hosts should be performed if the use of bacteriocins and the LAB bacteriocin-producers is ever to meet the high expectations deposited in these antimicrobial peptides. The recombinant production and functional expression of bacteriocins by lactobacilli would have an additive effect on their probiotic functionality. Results The heterologous production of the bacteriocin enterocin A (EntA) was evaluated in different Lactobacillus spp. after fusion of the versatile Sec-dependent signal peptide (SPusp45) to mature EntA plus the EntA immunity gene (entA + entiA) (fragment UAI), and their cloning into plasmid vectors that permitted their inducible (pSIP409 and pSIP411) or constitutive (pMG36c) production. The amount, antimicrobial activity (AA) and specific antimicrobial activity (SAA) of the EntA produced by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475 transformed with the recombinant plasmids pSIP409UAI, pSIP411UAI and pMGUAI varied depending of the expression vector and the host strain. The Lb. casei CECT475 recombinant strains produced the largest amounts of EntA, with the highest AA and SAA. Supernatants from Lb. casei CECT (pSIP411UAI) showed a 4.9-fold higher production of EntA with a 22.8-fold higher AA and 4.7-fold higher SAA than those from Enterococcus faecium T136, the natural producer of EntA. Moreover, supernatants from Lb. casei CECT475 (pSIP411UAI) showed a 15.7- to 59.2-fold higher AA against Listeria spp. than those from E. faecium T136. Conclusion Lb. casei CECT457 (pSIP411UAI) may be considered a promising recombinant host and cell factory for the production and functional expression of the antilisterial bacteriocin EntA.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Loreto Gútiez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Sara Arbulu
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Ingolf F Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Carmen Herranz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Luis M Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| |
Collapse
|
927
|
Arakawa K, Yoshida S, Aikawa H, Hano C, Bolormaa T, Burenjargal S, Miyamoto T. Production of a bacteriocin-like inhibitory substance byLeuconostoc mesenteroidessubsp.dextranicum213M0 isolated from Mongolian fermented mare milk, airag. Anim Sci J 2015; 87:449-56. [DOI: 10.1111/asj.12445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/20/2015] [Accepted: 03/16/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Kensuke Arakawa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Saki Yoshida
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Hiroki Aikawa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Chihiro Hano
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Tsognemekh Bolormaa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Sedkhuu Burenjargal
- School of Veterinary Science and Biotechnology; Mongolian State University of Agriculture; Ulaanbaatar Mongolia
| | - Taku Miyamoto
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
- Faculty of Food Culture; Kurashiki Sakuyo University; Kurashiki Okayama Japan
| |
Collapse
|
928
|
Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiol 2015; 15:183. [PMID: 26377179 PMCID: PMC4573289 DOI: 10.1186/s12866-015-0515-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
Background The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project’s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated. Results We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides. Conclusions Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0515-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Calum J Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Paul W O'Toole
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
929
|
Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages. Pharmaceuticals (Basel) 2015; 8:525-58. [PMID: 26371010 PMCID: PMC4588182 DOI: 10.3390/ph8030525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not.
Collapse
|
930
|
Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Appl Environ Microbiol 2015; 81:7851-9. [PMID: 26341205 DOI: 10.1128/aem.02339-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/30/2015] [Indexed: 12/27/2022] Open
Abstract
Bacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials.
Collapse
|
931
|
Burgos MJG, Aguayo MCL, Pulido RP, Gálvez A, López RL. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials. J Food Sci 2015; 80:M2030-4. [PMID: 26256434 DOI: 10.1111/1750-3841.12983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022]
Abstract
The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci.
Collapse
Affiliation(s)
- María José Grande Burgos
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - M Carmen López Aguayo
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rubén Pérez Pulido
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Antonio Gálvez
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rosario Lucas López
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| |
Collapse
|
932
|
Masoumikia R, Ganbarov K. Antagonistic activity of probiotic lactobacilli against human enteropathogenic bacteria in homemade tvorog curd cheese from Azerbaijan. ACTA ACUST UNITED AC 2015; 5:151-4. [PMID: 26457253 PMCID: PMC4597163 DOI: 10.15171/bi.2015.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 05/08/2015] [Accepted: 07/11/2015] [Indexed: 01/24/2023]
Abstract
![]()
Introduction: Human health is deemed to be maintained by the crosstalk among the body and probiotic bacteria. Disruptions in this composition are associated with the pathogenesis of numerous diseases. Through modernization, traditional foods consumption has been abandoned and native food starters have been substituted with industrial products. Hence, we aimed to isolate and evaluate probiotic bacteria from traditional fermented foods which can be used as probiotics as well as starter cultures in food industry and in medicine against antibiotic resistant pathogenes. To this end, an intact village was recognized in the Republic of Azerbaijan with traditional dairy products, yielding a variety of potential probiotics.
Methods: In this study, tvorog as a traditional dairy product from Dashkasan, Ismailli and khachmaz regions in Azerbaijan was characterized for the isolation of Lactobacilli with probiotic potentiality. The bacteria were tested for the resistance to the acid, bile, and the antagonistic effect of human pathogenic bacteria. The isolates were identified by 16s rDNA sequencing with a blast to the databank.
Results: Three species with higher homology to the L. planetarium, L. rhamnosus, and L. casei with high probiotic potentiality and antibacterial effects were isolated.
Conclusion: Homemade tvorog curd cheese in Azerbaijan harbor a variety of probiotics with industrial applications as well as potentiality to be preserved in a biobank for the future medicinal applications especially against antibiotic resistant pathogenes.
Collapse
Affiliation(s)
- Reza Masoumikia
- Department of Microbiology, Faculty of Biology, Baku State University, Azerbaijan
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Azerbaijan
| |
Collapse
|
933
|
Cavera VL, Arthur TD, Kashtanov D, Chikindas ML. Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 2015; 46:494-501. [PMID: 26341839 DOI: 10.1016/j.ijantimicag.2015.07.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.
Collapse
Affiliation(s)
- Veronica L Cavera
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Timothy D Arthur
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Dimitri Kashtanov
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
934
|
Bashey F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301. [PMID: 26150667 PMCID: PMC4528499 DOI: 10.1098/rstb.2014.0301] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.
Collapse
Affiliation(s)
- Farrah Bashey
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
935
|
Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, Schroeter A, Schuster S. Evolutionary game theory: cells as players. MOLECULAR BIOSYSTEMS 2015; 10:3044-65. [PMID: 25270362 DOI: 10.1039/c3mb70602h] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
Collapse
Affiliation(s)
- Sabine Hummert
- Fachhochschule Schmalkalden, Faculty of Electrical Engineering, Blechhammer, 98574 Schmalkalden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
936
|
A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Appl Environ Microbiol 2015; 81:7233-43. [PMID: 26253671 DOI: 10.1128/aem.02116-15] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli.
Collapse
|
937
|
Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes. Appl Environ Microbiol 2015; 81:7290-304. [PMID: 26253660 DOI: 10.1128/aem.01223-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/02/2015] [Indexed: 11/20/2022] Open
Abstract
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.
Collapse
|
938
|
Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML, Lee HS, Chan LY, Henriques ST, Fujita K, Ishibashi N, Zendo T, Wilaipun P, Nakayama J, Leelawatcharamas V, Jikuya H, Craik DJ, Sonomoto K. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry 2015; 54:4863-76. [PMID: 26174911 DOI: 10.1021/acs.biochem.5b00196] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.
Collapse
Affiliation(s)
- Kohei Himeno
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Tomoko Inoue
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rodney H Perez
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | - Koji Fujita
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Naoki Ishibashi
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Zendo
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Pongtep Wilaipun
- ⊥Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Jiro Nakayama
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Vichien Leelawatcharamas
- @Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Hiroyuki Jikuya
- #Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Kenji Sonomoto
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.,#Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
939
|
Three Novel Lantibiotics, Ticins A1, A3, and A4, Have Extremely Stable Properties and Are Promising Food Biopreservatives. Appl Environ Microbiol 2015; 81:6964-72. [PMID: 26231642 DOI: 10.1128/aem.01851-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023] Open
Abstract
Lantibiotics are antimicrobial peptides with potential applications as the next generation of antimicrobials in the food industry and/or the pharmaceutical industry. Nisin has successfully been used as a food preservative for over 40 years, but its major drawback is its limited stability under neutral and alkaline pH conditions. To identify alternatives with better biochemical properties, we screened more than 100 strains of the Bacillus cereus group. Three novel lantibiotics, ticins A1 (4,062.98 Da), A3 (4,048.96 Da), and A4 (4,063.02 Da), which were highly thermostable (121°C for 30 min) and extremely pH tolerant (pH 2.0 to 9.0), were identified in Bacillus thuringiensis BMB3201. They all showed potent antimicrobial activities against all tested Gram-positive bacteria and greater activities than those of nisin A against Bacillus cereus and Listeria monocytogenes, two important foodborne pathogens. These three novel lantibiotics, with their extremely stable properties and potent antimicrobial activities, have the potential for use as biopreservatives.
Collapse
|
940
|
A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol 2015; 11:564-70. [PMID: 26167873 PMCID: PMC4509860 DOI: 10.1038/nchembio.1856] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/29/2015] [Indexed: 11/08/2022]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a rapidly growing natural product class. RiPP precursor peptides can undergo extensive enzymatic tailoring, yielding structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP modifying enzymes contain structurally similar precursor peptide-binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes; thus, we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies, we verify the role of the RRE for three distinct RiPP classes: linear azole-containing peptides, thiopeptides, and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities.
Collapse
|
941
|
Reck M, Tomasch J, Wagner-Döbler I. The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans. PLoS Genet 2015; 11:e1005353. [PMID: 26158727 PMCID: PMC4497675 DOI: 10.1371/journal.pgen.1005353] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/10/2015] [Indexed: 01/13/2023] Open
Abstract
Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat. Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
Collapse
Affiliation(s)
- Michael Reck
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
- * E-mail:
| | - Jürgen Tomasch
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| |
Collapse
|
942
|
Marcelletti S, Scortichini M. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits. PLoS One 2015; 10:e0131112. [PMID: 26147218 PMCID: PMC4492584 DOI: 10.1371/journal.pone.0131112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches.
Collapse
Affiliation(s)
- Simone Marcelletti
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
| | - Marco Scortichini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Unità di Ricerca per la Frutticoltura, Via Torrino 3, I-81100, Caserta, Italy
| |
Collapse
|
943
|
Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, Aymes A, Rogniaux H, Pavlović M, van Heel AJ, Kuipers OP, Revol-Junelles AM, Cailliez-Grimal C. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol 2015; 9:466-77. [PMID: 26147827 PMCID: PMC4919988 DOI: 10.1111/1751-7915.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA‐1. On the other hand, the putative thiol‐disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme‐linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N‐terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.
Collapse
Affiliation(s)
- Alexandre Back
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Hélène Rogniaux
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Marija Pavlović
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Auke J van Heel
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anne-Marie Revol-Junelles
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Catherine Cailliez-Grimal
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| |
Collapse
|
944
|
Abdhul K, Ganesh M, Shanmughapriya S, Vanithamani S, Kanagavel M, Anbarasu K, Natarajaseenivasan K. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int J Biol Macromol 2015; 79:800-6. [PMID: 26054664 DOI: 10.1016/j.ijbiomac.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/24/2022]
Abstract
Bacteriocin producing strain BDU3 was isolated from a traditional fermented fish of Manipur Ngari. The strain BDU3 was identified as Bacillus coagulans by phenotypic and genotypic characterization. The BDU3 produced novel bacteriocin, which showed an antimicrobial spectrum toward a wide spectrum of food borne, and closely related pathogens with a MIC that ranged between 0.5 and 2.5 μg/mL. The isolate was able to tolerate pH as low as 2.0 and up to 0.2% bile salt concentration. Three step purification was employed to increase the specific activity of the antimicrobial compound. The fractions were further chromatographed by Rp-HPLC C-18 column and the purified bacteriocin had a specific activity of ∼8500 AU/mg. However, the potency of bacteriocin was susceptible to digestion with Proteinase K, Pepsin, SDS, EDTA and Urea. Molecular mass of purified bacteriocin was found to be 1.4 kDa using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). The functional group was revealed by FTIR analysis. The cytotoxicity assay (MTT) using purified bacteriocin showed 2 times lower EC50 values compared to SDS. This is the smaller bacteriocin ever reported before from B. coagulans with greater antimicrobial potency with lower cytotoxicity. This bacteriocin raises the possibilities to be used as a biopreservative in food industries.
Collapse
Affiliation(s)
- Kaja Abdhul
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India; Department of Biotechnology, Nandha Arts and Science College, Bharathiar University, Erode 638009, India
| | - Mohan Ganesh
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Santhanam Shanmughapriya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Shanmugam Vanithamani
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Murugesan Kanagavel
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Kumarasamy Anbarasu
- Microbial Technology Laboratory, Department of Marine Biotechnology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
945
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
946
|
Gutiérrez-Chávez AJ, Martínez-Ortega EA, Valencia-Posadas M, León-Galván MF, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats. Folia Microbiol (Praha) 2015; 61:11-9. [DOI: 10.1007/s12223-015-0404-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/19/2015] [Indexed: 11/29/2022]
|
947
|
Hoover SE, Perez AJ, Tsui HCT, Sinha D, Smiley DL, DiMarchi RD, Winkler ME, Lazazzera BA. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Mol Microbiol 2015; 97:229-43. [PMID: 25869931 DOI: 10.1111/mmi.13029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/20/2022]
Abstract
The Phr peptides of the Bacillus species mediate quorum sensing, but their identification and function in other species of bacteria have not been determined. We have identified a Phr peptide quorum-sensing system (TprA/PhrA) that controls the expression of a lantibiotic gene cluster in the Gram-positive human pathogen, Streptococcus pneumoniae. Lantibiotics are highly modified peptides that are part of the bacteriocin family of antimicrobial peptides. We have characterized the basic mechanism for a Phr-peptide signaling system in S. pneumoniae and found that it induces the expression of the lantibiotic genes when pneumococcal cells are at high density in the presence of galactose, a main sugar of the human nasopharynx, a highly competitive microbial environment. Activity of the Phr peptide system is not seen when pneumococcal cells are grown with glucose, the preferred carbon source and the most prevalent sugar encountered by S. pneumoniae during invasive disease. Thus, the lantibiotic genes are expressed under the control of both cell density signals via the Phr peptide system and nutritional signals from the carbon source present, suggesting that quorum sensing and the lantibiotic machinery may help pneumococcal cells compete for space and resources during colonization of the nasopharynx.
Collapse
Affiliation(s)
- Sharon E Hoover
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| | - Amilcar J Perez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - David L Smiley
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana, 47405, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana, 47405, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| |
Collapse
|
948
|
Goh HF, Philip K. Isolation and mode of action of bacteriocin BacC1 produced by nonpathogenic Enterococcus faecium C1. J Dairy Sci 2015; 98:5080-90. [PMID: 26004828 DOI: 10.3168/jds.2014-9240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria are present in fermented food products and help to improve shelf life and enhance the flavor of the food. They also produce metabolites such as bacteriocins to prevent the growth of undesirable or pathogenic bacteria. In this study, Enterococcus faecium C1 isolated from fermented cow milk was able to produce bacteriocin BacC1 and inhibit the growth of selected food-spoilage bacteria. The bacteriocin was purified through 4 steps: ammonium sulfate precipitation, hydrophobic interaction column, a series of centrifugal steps, and finally reversed-phase HPLC. A membrane permeability test using SYTOX green dye (Invitrogen, Grand Island, NY) showed that the bacteriocin caused significant disruptions to the test bacterial membrane, as shown by transmission electron microscopy. The molecular weight of the BacC1 obtained from SDS-PAGE was around 10kDa, and N-terminal sequencing revealed a partial amino acid sequence of BacC1: GPXGPXGP. The bacterial strain was nonhemolytic and not antibiotic resistant. Therefore, it has high potential for application in the food industry as an antimicrobial agent to extend the shelf life of food products.
Collapse
Affiliation(s)
- H F Goh
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603Kuala Lumpur, Malaysia
| | - K Philip
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603Kuala Lumpur, Malaysia.
| |
Collapse
|
949
|
Tejero R, López D, López-Fabal F, Gómez-Garcés JL, Fernández-García M. High Efficiency Antimicrobial Thiazolium and Triazolium Side-Chain Polymethacrylates Obtained by Controlled Alkylation of the Corresponding Azole Derivatives. Biomacromolecules 2015; 16:1844-54. [DOI: 10.1021/acs.biomac.5b00427] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rubén Tejero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Fátima López-Fabal
- Hospital Universitario de Móstoles, Río Júcar, s/n, 28935 Móstoles, Madrid, Spain
| | - José L. Gómez-Garcés
- Hospital Universitario de Móstoles, Río Júcar, s/n, 28935 Móstoles, Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
950
|
Reen FJ, Gutiérrez-Barranquero JA, Dobson ADW, Adams C, O’Gara F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 2015; 13:2924-54. [PMID: 25984990 PMCID: PMC4446613 DOI: 10.3390/md13052924] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Collapse
Affiliation(s)
- F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - José A. Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mail:
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork—National University of Ireland, Cork, Ireland; E-Mails: (F.J.R.); (J.A.G.-B.); (C.A.)
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia
| |
Collapse
|