901
|
Chen PR, Groff D, Guo J, Ou W, Cellitti S, Geierstanger BH, Schultz PG. A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem Int Ed Engl 2009; 48:4052-5. [PMID: 19378306 PMCID: PMC2873846 DOI: 10.1002/anie.200900683] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A shuttle system has been developed to genetically encode unnatural amino acids in mammalian cells using aminoacyl-tRNA synthetases (aaRSs) evolved in E. coli. A pyrrolysyl-tRNA synthetase (PylRS) mutant was evolved in E. coli that selectively aminoacylates a cognate nonsense suppressor tRNA with a photocaged lysine derivative. Transfer of this orthogonal tRNA-aaRS pair into mammalian cells made possible the selective incorporation of this unnatural amino acid into proteins.
Collapse
Affiliation(s)
- Peng R. Chen
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 Torry Pines Road, La Jolla, CA 92037 (USA)
| | - Dan Groff
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 Torry Pines Road, La Jolla, CA 92037 (USA)
| | - Jiantao Guo
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 Torry Pines Road, La Jolla, CA 92037 (USA)
| | - Weijia Ou
- Genomics Institute of the Novartis Research Foundation 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Susan Cellitti
- Genomics Institute of the Novartis Research Foundation 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Bernhard H. Geierstanger
- Genomics Institute of the Novartis Research Foundation 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Peter G. Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute 10550 Torry Pines Road, La Jolla, CA 92037 (USA)
- Genomics Institute of the Novartis Research Foundation 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| |
Collapse
|
902
|
|
903
|
Fowler LS, Ellis D, Sutherland A. Synthesis of fluorescent enone derived α-amino acids. Org Biomol Chem 2009; 7:4309-16. [DOI: 10.1039/b912782h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
904
|
Takimoto JK, Adams KL, Xiang Z, Wang L. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. MOLECULAR BIOSYSTEMS 2009; 5:931-4. [DOI: 10.1039/b904228h] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
905
|
Stokes AL, Miyake-Stoner SJ, Peeler JC, Nguyen DP, Hammer RP, Mehl RA. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. MOLECULAR BIOSYSTEMS 2009; 5:1032-8. [DOI: 10.1039/b904032c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
906
|
Ludwig C, Schwarzer D, Zettler J, Garbe D, Janning P, Czeslik C, Mootz HD. Semisynthesis of proteins using split inteins. Methods Enzymol 2009; 462:77-96. [PMID: 19632470 DOI: 10.1016/s0076-6879(09)62004-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein splicing is an autocatalytic reaction in which an internal protein domain, the intein, excises itself out of a precursor protein and concomitantly links the two flanking sequences, the exteins, with a native peptide bond. In split inteins, the intein domain is divided into two parts that undergo fragment association followed by protein splicing in trans. Thus, the extein sequences joined in the process originate from two separate molecules. The specificity and sequence promiscuity of split inteins make this approach a generally useful tool for the preparation of semisynthetic proteins. To this end, the recombinant part of the protein of interest is expressed as a fusion protein with one split intein fragment. The synthetic part is extended by the other, complementary fragment of the split intein. A recently introduced split intein, in which the N-terminal fragment consists of only 11 native amino acids, has greatly facilitated preparation of the synthetic part by solid-phase peptide synthesis. This intein enables the chemoenzymatic synthesis of N-terminally modified semisynthetic proteins. The reaction can be performed under native conditions and at protein and peptide concentrations in the low micromolar range. In contrast to chemical ligation procedures like native chemical ligation and expressed protein ligation, the incorporation of a thioester group and an aminoterminal cysteine into the two polypeptides to be linked is not necessary. We discuss properties of useful inteins, design rules for split inteins and intein insertion sites and we describe selected examples in detail.
Collapse
Affiliation(s)
- Christina Ludwig
- Fakultät Chemie - Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
907
|
Szewczuk LM, Tarrant MK, Cole PA. Protein phosphorylation by semisynthesis: from paper to practice. Methods Enzymol 2009; 462:1-24. [PMID: 19632467 DOI: 10.1016/s0076-6879(09)62001-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deconvolution of specific phosphorylation events can be complicated by the reversibility of modification. Protein semisynthesis with phosphonate analogues offers an attractive approach to functional analysis of signaling pathways. In this technique, N- and C-terminal synthetic peptides containing nonhydrolyzable phosphonates at target residues can be ligated to recombinant proteins of interest. The resultant semisynthetic proteins contain site specific, stoichiometric phosphonate modifications and are completely resistant to phosphatases. Control of stoichiometry, specificity, and reversibility allows for complex signaling systems to be broken down into individual events and discretely examined. This chapter outlines the general methods and considerations for designing and carrying out phosphoprotein semisynthetic projects.
Collapse
Affiliation(s)
- Lawrence M Szewczuk
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
908
|
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. J Mol Biol 2008; 385:1352-60. [PMID: 19100747 DOI: 10.1016/j.jmb.2008.11.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/26/2008] [Indexed: 11/23/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, L-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNA(Pyl)). The PylRS-tRNA(Pyl) pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N(epsilon)-(tert-butoxycarbonyl)-L-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the alpha-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain alpha-groups: alpha-hydroxyacid, non-alpha-amino-carboxylic acid, N(alpha)-methyl-amino acid, and D-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNA(Pyl) in E. coli in the presence of the alpha-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNA(Pyl) pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.
Collapse
|
909
|
Abstract
Nature uses a limited set of metabolites to perform all of the biochemical reactions. To increase the metabolic capabilities of biological systems, we have expanded the natural metabolic network, using a nonnatural metabolic engineering approach. The branched-chain amino acid pathways are extended to produce abiotic longer chain keto acids and alcohols by engineering the chain elongation activity of 2-isopropylmalate synthase and altering the substrate specificity of downstream enzymes through rational protein design. When introduced into Escherichia coli, this nonnatural biosynthetic pathway produces various long-chain alcohols with carbon number ranging from 5 to 8. In particular, we demonstrate the feasibility of this approach by optimizing the biosynthesis of the 6-carbon alcohol, (S)-3-methyl-1-pentanol. This work demonstrates an approach to build artificial metabolism beyond the natural metabolic network. Nonnatural metabolites such as long chain alcohols are now included in the metabolite family of living systems.
Collapse
|
910
|
Brustad E, Bushey ML, Lee JW, Groff D, Liu W, Schultz PG. A genetically encoded boronate-containing amino acid. Angew Chem Int Ed Engl 2008; 47:8220-3. [PMID: 18816552 DOI: 10.1002/anie.200803240] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eric Brustad
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
911
|
Wiltschi B, Wenger W, Nehring S, Budisa N. Expanding the genetic code ofSaccharomyces cerevisiaewith methionine analogues. Yeast 2008; 25:775-86. [DOI: 10.1002/yea.1632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
912
|
Brustad E, Bushey ML, Brock A, Chittuluru J, Schultz PG. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins. Bioorg Med Chem Lett 2008; 18:6004-6. [DOI: 10.1016/j.bmcl.2008.09.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 11/28/2022]
|
913
|
Brustad E, Bushey M, Lee J, Groff D, Liu W, Schultz P. A Genetically Encoded Boronate-Containing Amino Acid. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803240] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
914
|
Dong S, Merkel L, Moroder L, Budisa N. Convenient syntheses of homopropargylglycine. J Pept Sci 2008; 14:1148-50. [DOI: 10.1002/psc.1065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
915
|
Hassan AQ. Site-specific incorporation of chemical probes into proteins for NMR. ACS Chem Biol 2008; 3:524-6. [PMID: 18803368 DOI: 10.1021/cb800215d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to incorporate chemical probes into peptides is of great importance because it can render novel functionality to proteins and greatly expand our capacity to investigate complex biological systems. A methodology developed by the Schultz laboratory provides a unique strategy to incorporate chemical probes as unnatural amino acids into proteins by "expanding the genetic code" of the host cell. A recent application of this methodology that allows the site-specific incorporation of three NMR-active probes into proteins demonstrates the potential for researchers to explore avenues that are not easily achievable with existing methods.
Collapse
Affiliation(s)
- A Quamrul Hassan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
916
|
Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog. Proc Natl Acad Sci U S A 2008; 105:13298-303. [PMID: 18765802 DOI: 10.1073/pnas.0803531105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To guarantee specific tRNA and amino acid pairing, several aminoacyl-tRNA synthetases correct aminoacylation errors by deacylating or "editing" misaminoacylated tRNA. A previously developed variant of Escherichia coli tyrosyl-tRNA synthetase (iodoTyrRS) esterifies or "charges" tRNA(Tyr) with a nonnatural amino acid, 3-iodo-l-tyrosine, and with l-tyrosine less efficiently. In the present study, the editing domain of phenylalanyl-tRNA synthetase (PheRS) was transplanted into iodoTyrRS to edit tyrosyl-tRNA(Tyr) and thereby improve the overall specificity for 3-iodo-l-tyrosine. The beta-subunit fragments of the PheRSs from Pyrococcus horikoshii and two bacteria were tested for editing activity. The isolated B3/4 editing domain of the archaeal PheRS, which was exogenously added to the tyrosylation reaction with iodoTyrRS, efficiently reduced the production of tyrosyl-tRNA(Tyr). In addition, the transplantation of this domain into iodoTyrRS at the N terminus prevented tyrosyl-tRNA(Tyr) production most strongly among the tested fragments. We next transplanted this archaeal B3/4 editing domain into iodoTyrRS at several internal positions. Transplantation into the connective polypeptide in the Rossmann-fold domain generated a variant that efficiently charges tRNA(Tyr) with 3-iodo-l-tyrosine, but hardly produces tyrosyl-tRNA(Tyr). This variant, iodoTyrRS-ed, was used, together with an amber suppressor derived from tRNA(Tyr), in a wheat germ cell-free translation system and incorporated 3-iodo-l-tyrosine, but not l-tyrosine, in response to the amber codon. Thus, the editing-domain transplantation achieved unambiguous pairing between the tRNA and the nonnatural amino acid in an expanded genetic code.
Collapse
|
917
|
Chaput JC, Woodbury NW, Stearns LA, Williams BAR. Creating protein biocatalysts as tools for future industrial applications. Expert Opin Biol Ther 2008; 8:1087-98. [PMID: 18613761 DOI: 10.1517/14712598.8.8.1087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biocatalysts provide an economical and energy-efficient alternative to traditional chemical manufacturing processes. For processes where biocatalysts currently do not exist or existing protein catalysts function poorly, there is a tremendous need to discover new protein catalysts that function in industrial settings. The protein engineering community has traditionally relied on cell-based techniques in 96-well format to evolve new catalysts or improve existing enzymes. OBJECTIVE This review examines recent progress made in many display technologies, providing powerful alternatives for generating novel enzymes with altered specificity or altogether new types of function. METHODS Library creation methods and display technologies that are commonly used in conjunction with enzyme evolution are discussed. CONCLUSION We conclude with an expert opinion on future trans-disciplinary approaches that combine directed evolution with computational design as novel platforms for rapidly discovering new types of catalytic function.
Collapse
Affiliation(s)
- John C Chaput
- Center for BioOptical Nanotechnology, The Biodesign Institute, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-5201, USA.
| | | | | | | |
Collapse
|
918
|
Grünewald J, Tsao ML, Perera R, Dong L, Niessen F, Wen BG, Kubitz DM, Smider VV, Ruf W, Nasoff M, Lerner RA, Schultz PG. Immunochemical termination of self-tolerance. Proc Natl Acad Sci U S A 2008; 105:11276-80. [PMID: 18685087 PMCID: PMC2516224 DOI: 10.1073/pnas.0804157105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Indexed: 11/18/2022] Open
Abstract
The ability to selectively induce a strong immune response against self-proteins, or increase the immunogenicity of specific epitopes in foreign antigens, would have a significant impact on the production of vaccines for cancer, protein-misfolding diseases, and infectious diseases. Here, we show that site-specific incorporation of an immunogenic unnatural amino acid into a protein of interest produces high-titer antibodies that cross-react with WT protein. Specifically, mutation of a single tyrosine residue (Tyr(86)) of murine tumor necrosis factor-alpha (mTNF-alpha) to p-nitrophenylalanine (pNO(2)Phe) induced a high-titer antibody response in mice, whereas no significant antibody response was observed for a Tyr(86) --> Phe mutant. The antibodies generated against the pNO(2)Phe are highly cross-reactive with native mTNF-alpha and protect mice against lipopolysaccharide (LPS)-induced death. This approach may provide a general method for inducing an antibody response to specific epitopes of self- and foreign antigens that lead to a neutralizing immune response.
Collapse
Affiliation(s)
| | | | | | - Liqun Dong
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
| | | | - Ben G. Wen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
| | | | - Vaughn V. Smider
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | | | - Marc Nasoff
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
| | | | - Peter G. Schultz
- Departments of *Chemistry
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
| |
Collapse
|
919
|
Cellitti SE, Jones DH, Lagpacan L, Hao X, Zhang Q, Hu H, Brittain SM, Brinker A, Caldwell J, Bursulaya B, Spraggon G, Brock A, Ryu Y, Uno T, Schultz PG, Geierstanger BH. In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 2008; 130:9268-81. [PMID: 18576636 DOI: 10.1021/ja801602q] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo incorporation of isotopically labeled unnatural amino acids into large proteins drastically reduces the complexity of nuclear magnetic resonance (NMR) spectra. Incorporation is accomplished by coexpressing an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid added to the media and the protein of interest with a TAG amber codon at the desired incorporation site. To demonstrate the utility of this approach for NMR studies, 2-amino-3-(4-(trifluoromethoxy)phenyl)propanoic acid (OCF 3Phe), (13)C/(15)N-labeled p-methoxyphenylalanine (OMePhe), and (15)N-labeled o-nitrobenzyl-tyrosine (oNBTyr) were incorporated individually into 11 positions around the active site of the 33 kDa thioesterase domain of human fatty acid synthase (FAS-TE). In the process, a novel tRNA synthetase was evolved for OCF 3Phe. Incorporation efficiencies and FAS-TE yields were improved by including an inducible copy of the respective aminoacyl-tRNA synthetase gene on each incorporation plasmid. Using only between 8 and 25 mg of unnatural amino acid, typically 2 mg of FAS-TE, sufficient for one 0.1 mM NMR sample, were produced from 50 mL of Escherichia coli culture grown in rich media. Singly labeled protein samples were then used to study the binding of a tool compound. Chemical shift changes in (1)H-(15)N HSQC, (1)H-(13)C HSQC, and (19)F NMR spectra of the different single site mutants consistently identified the binding site and the effect of ligand binding on conformational exchange of some of the residues. OMePhe or OCF 3Phe mutants of an active site tyrosine inhibited binding; incorporating (15)N-Tyr at this site through UV-cleavage of the nitrobenzyl-photocage from oNBTyr re-established binding. These data suggest not only robust methods for using unnatural amino acids to study large proteins by NMR but also establish a new avenue for the site-specific labeling of proteins at individual residues without altering the protein sequence, a feat that can currently not be accomplished with any other method.
Collapse
Affiliation(s)
- Susan E Cellitti
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121-1125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
920
|
Lin MZ, Wang L. Selective Labeling of Proteins with Chemical Probes in Living Cells. Physiology (Bethesda) 2008; 23:131-41. [DOI: 10.1152/physiol.00007.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Selective labeling of proteins with small molecules introduces novel chemical and physical properties into proteins, enabling the target protein to be investigated or manipulated with various techniques. Different methods for labeling proteins in living cells have been developed by using protein domains, small peptides, or single amino acids. Their application in cells and in vivo has yielded novel insights into diverse biological processes.
Collapse
Affiliation(s)
- Michael Z. Lin
- Department of Pharmacology, University of California at San Diego, La Jolla; and
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
921
|
Sheoran A, Sharma G, First EA. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine. J Biol Chem 2008; 283:12960-70. [PMID: 18319247 PMCID: PMC2442314 DOI: 10.1074/jbc.m801649200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 11/06/2022] Open
Abstract
Tyrosyl-tRNA synthetase (TyrRS) is able to catalyze the transfer of both l- and d-tyrosine to the 3' end of tRNA(Tyr). Activation of either stereoisomer by ATP results in formation of an enzyme-bound tyrosyl-adenylate intermediate and is accompanied by a blue shift in the intrinsic fluorescence of the protein. Single turnover kinetics for the aminoacylation of tRNA(Tyr) by D-tyrosine were monitored using stopped-flow fluorescence spectroscopy. Bacillus stearothermophilus tyrosyl-tRNA synthetase binds d-tyrosine with an 8.5-fold lower affinity than that of l-tyrosine (K (D-Tyr)(d) = 102 microm) and exhibits a 3-fold decrease in the forward rate constant for the activation reaction (k (D-Tyr)(3) = 13 s(-1)). Furthermore, as is the case for l-tyrosine, tyrosyl-tRNA synthetase exhibits "half-of-the-sites" reactivity with respect to the binding and activation of D-tyrosine. Surprisingly, pyrophosphate binds to the TyrRS.d-Tyr-AMP intermediate with a 14-fold higher affinity than it binds to the TyrRS.l-Tyr-AMP intermediate (K (PPi)(d) = 0.043 for TyrRS.d-Tyr-AMP.PP(i)). tRNA(Tyr) binds with a slightly (2.3-fold) lower affinity to the TyrRS.d-Tyr-AMP intermediate than it does to the TyrRS.l-Tyr-AMP intermediate. The observation that the K (Tyr)(d) and k(3) values are similar for l- and d-tyrosine suggests that their side chains bind to tyrosyl-tRNA synthetase in similar orientations and that at least one of the carboxylate oxygen atoms in d-tyrosine is properly positioned for attack on the alpha-phosphate of ATP.
Collapse
Affiliation(s)
- Anita Sheoran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
922
|
Wang Q, Wang L. New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 2008; 130:6066-7. [PMID: 18426210 DOI: 10.1021/ja800894n] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New chemical and physical properties can be selectively introduced into proteins directly in live cells by genetically incorporating unnatural amino acids. The incorporation efficiency determines how effective such properties can be exploited and was very low in yeast. We developed a new method for efficient expression of orthogonal bacterial tRNA in yeast using polymerase III promoters that are cleaved from primary transcripts. In addition, a yeast strain deficient in nonsense-mediated mRNA decay was generated to prevent rapid degradation of target mRNA containing premature stop codons, which are the most frequently used to encode unnatural amino acids. These new strategies enabled a significant increase in yield of unnatural amino acid containing proteins from tens of micrograms to tens of milligrams per liter in yeast.
Collapse
Affiliation(s)
- Qian Wang
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
923
|
Lorello GR, Legault MC, Rakić B, Bisgaard K, Pezacki JP. Synthesis and bioorthogonal coupling chemistry of a novel cyclopentenone-containing unnatural tyrosine analogue. Bioorg Chem 2008; 36:105-11. [DOI: 10.1016/j.bioorg.2007.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/13/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
924
|
Strable E, Prasuhn DE, Udit AK, Brown S, Link AJ, Ngo JT, Lander G, Quispe J, Potter CS, Carragher B, Tirrell DA, Finn MG. Unnatural amino acid incorporation into virus-like particles. Bioconjug Chem 2008; 19:866-75. [PMID: 18318461 PMCID: PMC2713011 DOI: 10.1021/bc700390r] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Virus-like particles composed of hepatitis B virus (HBV) or bacteriophage Qbeta capsid proteins have been labeled with azide- or alkyne-containing unnatural amino acids by expression in a methionine auxotrophic strain of E. coli. The substitution does not affect the ability of the particles to self-assemble into icosahedral structures indistinguishable from native forms. The azide and alkyne groups were addressed by Cu(I)-catalyzed [3 + 2] cycloaddition: HBV particles were decomposed by the formation of more than 120 triazole linkages per capsid in a location-dependent manner, whereas Qbeta suffered no such instability. The marriage of these well-known techniques of sense-codon reassignment and bioorthogonal chemical coupling provides the capability to construct polyvalent particles displaying a wide variety of functional groups with near-perfect control of spacing.
Collapse
|
925
|
Song W, Wang Y, Qu J, Madden M, Lin Q. A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins. Angew Chem Int Ed Engl 2008; 47:2832-5. [DOI: 10.1002/anie.200705805] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
926
|
Song W, Wang Y, Qu J, Madden M, Lin Q. A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705805] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
927
|
Wang A, Winblade Nairn N, Johnson RS, Tirrell DA, Grabstein K. Processing of N-terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli. Chembiochem 2008; 9:324-30. [PMID: 18098265 DOI: 10.1002/cbic.200700379] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Incorporation of unnatural amino acids into recombinant proteins represents a powerful tool for protein engineering and protein therapeutic development. While the processing of the N-terminal methionine (Met) residues in proteins is well studied, the processing of unnatural amino acids used for replacing the N-terminal Met remains largely unknown. Here we report the effects of the penultimate residue (the residue after the initiator Met) on the processing of two unnatural amino acids, L-azidohomoalanine (AHA) and L-homopropargylglycine (HPG), at the N terminus of recombinant human interferon-beta in E. coli. We have identified specific amino acids at the penultimate position that can be used to efficiently retain or remove N-terminal AHA or HPG. Retention of N-terminal AHA or HPG can be achieved by choosing amino acids with large side chains (such as Gln, Glu, and His) at the penultimate position, while Ala can be selected for the removal of N-terminal AHA or HPG. Incomplete processing of N-terminal AHA and HPG (in terms of both deformylation and cleavage) was observed with Gly or Ser at the penultimate position.
Collapse
Affiliation(s)
- Aijun Wang
- Allozyne Inc., 1616 Eastlake Ave E., Seattle, WA 98102, USA.
| | | | | | | | | |
Collapse
|
928
|
Ohta A, Yamagishi Y, Suga H. Synthesis of biopolymers using genetic code reprogramming. Curr Opin Chem Biol 2008; 12:159-67. [PMID: 18249198 DOI: 10.1016/j.cbpa.2007.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/27/2007] [Indexed: 11/25/2022]
Abstract
Genetic code reprogramming is a new emerging methodology that enables us to synthesize non-standard peptides containing multiple non-proteinogenic amino acids using translation machinery. This review describes the historical background of this methodology and what distinguishes it from the classical 'nonsense suppression' methodology, followed by a discussion of recent developments in combining this methodology with other compatible technologies. Specifically, we discuss in detail the combination of genetic code reprogramming with flexizymes, de novo tRNA acylation ribozymes that facilitate the charging process of a variety of non-proteinogenic amino acids onto tRNAs bearing designated anticodons, and summarize some of the recent demonstrations of the synthesis of non-standard peptides with cyclic structure or/and altered backbones employing this technology.
Collapse
Affiliation(s)
- Atsushi Ohta
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 113-8656 Tokyo, Japan
| | | | | |
Collapse
|
929
|
Abstract
Directed evolution has been successfully used to engineer proteins for basic and applied biological research. However, engineering of novel protein functions by directed evolution remains an overwhelming challenge. This challenge may come from the fact that multiple simultaneously or synergistic mutations are required for the creation of a novel protein function. Here we review the key developments in engineering of novel protein functions by using either directed evolution or a combined directed evolution and rational or computational design approach. Specific attention will be paid to a molecular evolution model for generation of novel proteins. The engineered novel proteins should not only broaden the range of applications of proteins but also provide new insights into protein structure-function relationship and protein evolution.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
930
|
Lefurgy ST, de Jong RM, Cornish VW. Saturation mutagenesis of Asn152 reveals a substrate selectivity switch in P99 cephalosporinase. Protein Sci 2008; 16:2636-46. [PMID: 18029418 DOI: 10.1110/ps.073092407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In class C beta-lactamases, the strictly conserved Asn152 forms part of an extended active-site hydrogen-bonding network. To probe its role in catalysis, all 19 mutants of Enterobacter cloacae P99 cephalosporinase Asn152 were simultaneously constructed and screened in Escherichia coli for their in vivo activity. The screen identified the previously uncharacterized mutants Asn152Ser, Asn152Thr, and Asn152Gly, which possess significant activity and altered substrate selectivity. In vitro measurement of Michaelis-Menten kinetic constants revealed that the Asn152Ser mutation causes a selectivity switch for penicillin G versus cefoxitin. Asn152Thr showed a 63-fold increase in k (cat) for oxacillin, a slow substrate for wild-type cephalosporinase. The results contribute to a growing body of data showing that mutation of highly conserved residues in the active site can result in substrate selectivity changes. The library screening method presented here would be applicable to substrate selectivity determination in other readily screenable enzymes.
Collapse
Affiliation(s)
- Scott T Lefurgy
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
931
|
Tippmann EM, Liu W, Summerer D, Mack AV, Schultz PG. A genetically encoded diazirine photocrosslinker in Escherichia coli. Chembiochem 2008; 8:2210-4. [PMID: 18000916 DOI: 10.1002/cbic.200700460] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eric M Tippmann
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
932
|
Xie J, Liu W, Schultz PG. A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed Engl 2008; 46:9239-42. [PMID: 17893898 DOI: 10.1002/anie.200703397] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianming Xie
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
933
|
Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z. Dynamics of Recognition between tRNA and elongation factor Tu. J Mol Biol 2008; 377:1382-405. [PMID: 18336835 DOI: 10.1016/j.jmb.2008.01.073] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu.guanosine 5'-triphosphate.aa-tRNA(Cys) complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein.RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu.Cys-tRNA(Cys) interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3' CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu.Cys-tRNA(Cys) binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNA(Cys) with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein.tRNA interface and is the basis for the entropy calculations.
Collapse
Affiliation(s)
- John Eargle
- Center for Biophysics and Computational Biology, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
934
|
Köhrer C, RajBhandary UL. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 2008; 44:129-38. [PMID: 18241794 PMCID: PMC2277081 DOI: 10.1016/j.ymeth.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/analysis
- Animals
- Archaea/metabolism
- Blotting, Northern/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Humans
- Hydrogen-Ion Concentration
- Lysine/analogs & derivatives
- Lysine/biosynthesis
- Protein Engineering/methods
- Pyrimidine Nucleosides/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Transfer/analysis
- RNA, Transfer/isolation & purification
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Met/metabolism
- Urea
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
935
|
Hammill JT, Miyake-Stoner S, Hazen JL, Jackson JC, Mehl RA. Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat Protoc 2008; 2:2601-7. [PMID: 17948003 DOI: 10.1038/nprot.2007.379] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A straightforward protocol for the site-specific incorporation of a 19F label into any protein in vivo is described. This is done using a plasmid containing an orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) that incorporates L-4-trifluoromethylphenylalanine in response to the amber codon UAG. This method improves on other in vivo methods because the 19F label is incorporated into only one location on the protein of interest and that protein can easily be produced in large quantities at low cost. The protocol for producing 19F-labeled protein is similar to expressing protein in Escherichia coli and takes 4 d to obtain pure protein starting from the appropriate vectors.
Collapse
Affiliation(s)
- Jared T Hammill
- Chemistry Department, Franklin and Marshall College, PO Box 3003, Lancaster, Pennsylvania 17604, USA
| | | | | | | | | |
Collapse
|
936
|
Abstract
One of the key aims of synthetic biology is to engineer artificial processes inside living cells. This requires components that interact in a predictable manner, both with each other and with existing cellular systems. However, the activity of many components is constrained by their interactions with other cellular molecules and often their roles in maintaining cell health. To escape this limitation, researchers are pursuing an "orthogonal" approach, building a parallel metabolism within the cell. Components of this parallel metabolism can be sourced from evolutionarily distant species or reengineered from existing cellular molecules by using rational design and directed evolution. These approaches allow the study of basic principles in cell biology and the engineering of cells that can function as environmental sensors, simple computers, and drug factories.
Collapse
Affiliation(s)
- Aleksandra Filipovska
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
| |
Collapse
|
937
|
Sun Z, Anderl F, Fröhlich K, Zhao L, Hanke S, Brügger B, Wieland F, Béthune J. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP. Traffic 2008; 8:582-93. [PMID: 17451557 DOI: 10.1111/j.1600-0854.2007.00554.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The small GTPase ADP-ribosylation factor-1 (Arf1) plays a key role in the formation of coat protein I (COP I)-coated vesicles. Upon recruitment to the donor Golgi membrane by interaction with dimeric p24 proteins, Arf1's GDP is exchanged for GTP. Arf1-GTP then dissociates from p24, and together with other Golgi membrane proteins, it recruits coatomer, the heptameric coat protein complex of COP I vesicles, from the cytosol. In this process, Arf1 was shown to specifically interact with the coatomer beta and gamma-COP subunits through its switch I region, and with epsilon-COP. Here, we mapped the interaction of the Arf1-GTP switch I region to the trunk domains of beta and gamma-COP. Site-directed photolabeling at position 167 in the C-terminal helix of Arf1 revealed a novel interaction with coatomer via a putative longin domain of delta-COP. Thus, coatomer is linked to the Golgi through multiple interfaces with membrane-bound Arf1-GTP. These interactions are located within the core, adaptor-like domain of coatomer, indicating an organizational similarity between the COP I coat and clathrin adaptor complexes.
Collapse
Affiliation(s)
- Zhe Sun
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
938
|
Ye S, Köhrer C, Huber T, Kazmi M, Sachdev P, Yan EC, Bhagat A, RajBhandary UL, Sakmar TP. Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis. J Biol Chem 2008; 283:1525-1533. [DOI: 10.1074/jbc.m707355200] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
939
|
Affiliation(s)
- Philip Ball
- Nature, 4-6 Crinan Street, London N1 9XW, U.K
| |
Collapse
|
940
|
Xie J, Liu W, Schultz P. A Genetically Encoded Bidentate, Metal-Binding Amino Acid. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200703397] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
941
|
Seyedsayamdost MR, Xie J, Chan CTY, Schultz PG, Stubbe J. Site-Specific Insertion of 3-Aminotyrosine into Subunit α2 of E. coli Ribonucleotide Reductase: Direct Evidence for Involvement of Y730 and Y731 in Radical Propagation. J Am Chem Soc 2007; 129:15060-71. [DOI: 10.1021/ja076043y] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad R. Seyedsayamdost
- Contribution from the Department of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Jianming Xie
- Contribution from the Department of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Clement T. Y. Chan
- Contribution from the Department of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Peter G. Schultz
- Contribution from the Department of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
942
|
Hino N, Hayashi A, Sakamoto K, Yokoyama S. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code. Nat Protoc 2007; 1:2957-62. [PMID: 17406555 DOI: 10.1038/nprot.2006.424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a detailed protocol for incorporating non-natural amino acids, 3-iodo-L-tyrosine (IY) and p-benzoyl-L-phenylalanine (pBpa), into proteins in response to the amber codon (the UAG stop codon) in mammalian cells. These amino acids, IY and pBpa, are applicable for structure determination and the analysis of a network of protein-protein interactions, respectively. This method involves (i) the mutagenesis of the gene encoding the protein of interest to create an amber codon at the desired site, (ii) the expression in mammalian cells of the bacterial pair of an amber suppressor tRNA and an aminoacyl-tRNA synthetase specific to IY or pBpa and (iii) the supplementation of the growth medium with these amino acids. The amber mutant gene, together with these bacterial tRNA and synthetase genes, is introduced into mammalian cells. Culturing these cells for 16-40 h allows the expression of the full-length product from the mutant gene, which contains the non-natural amino acid at the introduced amber position. This method is implemented using the conventional tools for molecular biology and treating cultured mammalian cells. This protocol takes 5-6 d for plasmid construction and 3-4 d for incorporating the non-natural amino acids into proteins.
Collapse
Affiliation(s)
- Nobumasa Hino
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
943
|
Sugase K, Landes MA, Wright PE, Martinez-Yamout M. Overexpression of post-translationally modified peptides in Escherichia coli by co-expression with modifying enzymes. Protein Expr Purif 2007; 57:108-15. [PMID: 18054500 DOI: 10.1016/j.pep.2007.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022]
Abstract
Post-translational modification plays crucial roles in signal transduction in eukaryotic cells. To elucidate the biological function of a protein with a specific post-translational modification, it is necessary to isolate the modified protein. However, it is difficult to incorporate a modified amino acid into a specific position of a protein, in particular, in a large-scale preparation. In order to prepare post-translationally modified proteins in Escherichia coli (E. coli), we have constructed co-expression vectors that contain protein and corresponding enzyme genes. The protein and enzyme are co-expressed in the same E. coli cells and the protein is post-translationally modified in vivo. By using this system, the transcriptional activator cyclic-AMP-response-element-binding protein (CREB) was phosphorylated at Ser-133 and the hypoxia-inducible factor-1alpha (HIF-1alpha) was hydroxylated at Asn-803 in E. coli. Although the constructs of the proteins we used are very flexible and susceptible to degradation by proteases in E. coli when they are expressed alone, the B1 domain of streptococcal protein G (GB1) fused to the N-terminus of the proteins increased the yields dramatically. Site-specific phosphorylation of CREB and hydroxylation of HIF-1alpha were confirmed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and NMR. Our GB1-fusion co-expression system can be used in the same way as conventional protein expression in E. coli, making it a flexible and economical method to produce a large amount of a post-translationally modified protein.
Collapse
Affiliation(s)
- Kenji Sugase
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
944
|
Dupradeau FY, Cézard C, Lelong R, Stanislawiak E, Pêcher J, Delepine JC, Cieplak P. R.E.DD.B.: a database for RESP and ESP atomic charges, and force field libraries. Nucleic Acids Res 2007; 36:D360-7. [PMID: 17962302 PMCID: PMC2238896 DOI: 10.1093/nar/gkm887] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The web-based RESP ESP charge DataBase (R.E.DD.B., http://q4md-forcefieldtools.org/REDDB) is a free and new source of RESP and ESP atomic charge values and force field libraries for model systems and/or small molecules. R.E.DD.B. stores highly effective and reproducible charge values and molecular structures in the Tripos mol2 file format, information about the charge derivation procedure, scripts to integrate the charges and molecular topology in the most common molecular dynamics packages. Moreover, R.E.DD.B. allows users to freely store and distribute RESP or ESP charges and force field libraries to the scientific community, via a web interface. The first version of R.E.DD.B., released in January 2006, contains force field libraries for molecules as well as molecular fragments for standard residues and their analogs (amino acids, monosaccharides, nucleotides and ligands), hence covering a vast area of relevant biological applications.
Collapse
Affiliation(s)
- François-Yves Dupradeau
- Université de Picardie Jules Verne - Faculté de Pharmacie & UMR CNRS 6219, Université de Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | |
Collapse
|
945
|
Identification of functional paralog shift mutations: conversion of Escherichia coli malate dehydrogenase to a lactate dehydrogenase. Proc Natl Acad Sci U S A 2007; 104:17353-7. [PMID: 17947381 DOI: 10.1073/pnas.0708265104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five positions in the Escherichia coli malate dehydrogenase (eMDH) sequence, which distinguish MDH from lactate dehydrogenase (LDH) activity, were identified through a combination of Venn diagrams constructed from whole genomic data and from unbiased representative sequences from terminal clades. Incorporation of the five changes in eMDH sufficed to convert the enzyme from one with (k(cat)/K(m)(pyruvate))/(k(cat)/K(m)(oxaloacetate)) = 6.1 x 10(-9) to one with that ratio = 28. The substrate specificity was thus changed by a factor of 4.6 x 10(9). The k(cat)/K(m)(pyruvate) value for the pentamutant (eMDH I12V/R81Q/M85E/G210A/V214I) is 3,500 M(-1).s(-1), which is approximately equal 1/1,000 of the values found for typical wild-type LDHs. The procedure isolates an intersection of "strong forcing sets" that should prove to be of general use in switching paralog function.
Collapse
|
946
|
Gorostiza P, Isacoff E. Optical switches and triggers for the manipulation of ion channels and pores. MOLECULAR BIOSYSTEMS 2007; 3:686-704. [PMID: 17882331 DOI: 10.1039/b710287a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like fluorescence sensing techniques, methods to manipulate proteins with light have produced great advances in recent years. Ion channels have been one of the principal protein targets of photoswitched manipulation. In combination with fluorescence detection of cell signaling, this has enabled non-invasive, all-optical experiments on cell and tissue function, both in vitro and in vivo. Optical manipulation of channels has also provided insights into the mechanism of channel function. Optical control elements can be classified according to their molecular reversibility as non-reversible phototriggers where light breaks a chemical bond (e.g. caged ligands) and as photoswitches that reversibly photoisomerize. Synthetic photoswitches constitute nanoscale actuators that can alter channel function using three different strategies. These include (1) nanotoggles, which are tethered photoswitchable ligands that either activate channels (agonists) or inhibit them (blockers or antagonists), (2) nanokeys, which are untethered (freely diffusing) photoswitchable ligands, and (3) nanotweezers, which are photoswitchable crosslinkers. The properties of such photoswitches are discussed here, with a focus on tethered photoswitchable ligands. The recent literature on optical manipulation of ion channels is reviewed for the different channel families, with special emphasis on the understanding of ligand binding and gating processes, applications in nanobiotechnology, and with attention to future prospects in the field.
Collapse
Affiliation(s)
- Pau Gorostiza
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
947
|
Marguet P, Balagadde F, Tan C, You L. Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 2007; 4:607-23. [PMID: 17251159 PMCID: PMC2373384 DOI: 10.1098/rsif.2006.0206] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biological research is experiencing an increasing focus on the application of knowledge rather than on its generation. Thanks to the increased understanding of cellular systems and technological advances, biologists are more frequently asking not only 'how can I understand the structure and behaviour of this biological system?', but also 'how can I apply that knowledge to generate novel functions in different biological systems or in other contexts?' Active pursuit of the latter has nurtured the emergence of synthetic biology. Here, we discuss the motivation behind, and foundational technologies enabling, the development of this nascent field. We examine some early successes and applications while highlighting the challenges involved. Finally, we consider future directions and mention non-scientific considerations that can influence the field's growth.
Collapse
Affiliation(s)
- Philippe Marguet
- Department of Biochemistry, Duke University Medical CenterDurham, NC 27710, USA
| | - Frederick Balagadde
- Department of Bioengineering, Stanford UniversityStanford, CA 94305-9505, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
- Institute for Genome Sciences and Policy, Duke University Medical CenterDurham, NC 27710, USA
- Author and address for correspondence: CIEMAS 2345, 101 Science Drive, Durham, NC 27708, USA ()
| |
Collapse
|
948
|
Hibbert EG, Senussi T, Costelloe SJ, Lei W, Smith MEB, Ward JM, Hailes HC, Dalby PA. Directed evolution of transketolase activity on non-phosphorylated substrates. J Biotechnol 2007; 131:425-32. [PMID: 17825449 DOI: 10.1016/j.jbiotec.2007.07.949] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/09/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
We have used active-site targeted directed evolution by saturation mutagenesis to improve the activity of E. coli transketolase towards non-phosphorylated substrates. Residues were selected for each set based on either structural proximity to substrate, or on phylogenetic variation. Each library was screened towards the reaction between hydroxypyruvate (HPA) and glycolaldehyde (GA) to form L-erythrulose, and the location of improved mutants related to the natural sequence entropy at each residue. A number of mutants from the phylogenetically defined library were found to outperform the wild-type with up to 3-fold specific activity under biocatalytically relevant conditions, though interestingly with substituted residues that differed from those found in nature. Conserved residues which interact with the phosphate group in natural substrates also yielded mutants with almost 5-fold improved specific activity on the non-phosphorylated substrates. These results suggest that phylogenetically variant active-site residues are useful for modulating activity on natural or structurally-homologous substrates, and that conserved residues which no longer interact with modified target substrates are useful sites to apply saturation mutagenesis for improvement of activity.
Collapse
Affiliation(s)
- Edward G Hibbert
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
949
|
Liu W, Alfonta L, Mack AV, Schultz PG. Structural Basis for the Recognition ofpara-Benzoyl-L-phenylalanine by Evolved Aminoacyl-tRNA Synthetases. Angew Chem Int Ed Engl 2007; 46:6073-5. [PMID: 17628477 DOI: 10.1002/anie.200701990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenshe Liu
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
950
|
Ellis TK, Ueki H, Yamada T, Ohfune Y, Soloshonok VA. Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained alpha-amino acids. J Org Chem 2007; 71:8572-8. [PMID: 17064036 DOI: 10.1021/jo0616198] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new generation of modular achiral glycine equivalents have been evaluated with respect to their synthetic utility for the production of tailor-made, sterically constrained alpha-amino acids, which proved to be the most efficient approach developed to date for the synthesis of symmetrical alpha,alpha-disubstituted-alpha-amino acids. Among the new series of achiral glycine equivalents, one was found to be a superior glycine derivative for the Michael additions with various (R)- or (S)-N-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones representing a general and practical synthesis of sterically constrained beta-substituted pyroglutamic acids. In particular, the application of these complexes allowed for the preparation of several beta-substituted pyroglutamic acids which include electron-releasing and sterically demanding substituents in the structure thus increasing the synthetic efficiency and expanding the generality of these Michael addition reactions.
Collapse
Affiliation(s)
- Trevor K Ellis
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|