901
|
Ekong R, Jeremiah S, Judah D, Lehmann O, Mirzayans F, Hung YC, Walter MA, Bhattacharya S, Gant TW, Povey S, Wolfe J. Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-built genomic microarray. Hum Mutat 2004; 24:76-85. [PMID: 15221791 DOI: 10.1002/humu.20059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In many inherited diseases, the same phenotype can be produced both by single-base changes and by large deletions, or in some cases by duplications. Routine high-throughput sequencing can now detect small mutations relatively easily in a diagnostic setting, but deletions and duplications in the 50-500-kb region remain a more difficult problem. We have explored the application of array-CGH to the detection of such changes on a set of 20 samples consisting of patients with eye diseases associated with changes on chromosome 6p25 together with unaffected individuals, as well as two samples from tuberous sclerosis 2 (TSC2)-affected patients. We developed a microarray consisting of degenerate oligonucleotide primer (DOP)-PCR products from 260 human genomic clones, including BACs, PACs, and cosmids. In a masked study, chromosome changes in patients with iris hypoplasia (duplication) and Axenfeld-Rieger syndrome (deletion) were unequivocally distinguished from controls. Of the 20 6p25 samples analyzed, 19 were analyzed correctly (10 duplication cases, two deletions, and seven normals), while one individual failed to give a result because of poor hybridization. The extent of the duplication or deletion estimated was similar to that obtained by independent and much more time-consuming FISH experiments. On the other hand, deletions in the two TSC2-affected samples, previously mapped by DNA molecular combing, were not detected on the array, possibly due to the repeat content of that region. Excluding the 16p13 cosmids, consistent results were obtained from all other cosmid clones; the potential for producing affordable disease-specific diagnostic microarray as an adjunct to diagnosis is discussed.
Collapse
|
902
|
Youings S, Ellis K, Ennis S, Barber J, Jacobs P. A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities. ACTA ACUST UNITED AC 2004; 126A:46-60. [PMID: 15039973 DOI: 10.1002/ajmg.a.20553] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We analyzed 448 independently ascertained reciprocal translocations and 220 inversions referred to our diagnostic laboratory. Twenty-eight percent of the translocations and 8.5% of the inversions arose de novo, the proportion being influenced by the method of ascertainment. It was highest, 47%, among translocations ascertained through an abnormal phenotype. With the exception of the 3:1 unbalanced segregants, the remainders were equally likely to have been paternally or maternally inherited. The segregation from balanced translocation and inversion carriers showed an equal number of offspring with a normal chromosome constitution and with a balanced rearrangement. The number of unbalanced segregants among the translocations was 2.7% where the proband was balanced, and 19.2% where the proband was unbalanced. There was only a single unbalanced inversion. A search for recurring translocations showed only the well documented t(11;22) to occur with unusual frequency in our series and those of others, and we concluded that the few other translocations that were seen on more than one occasion were likely to be identical by descent (IBD). Similarly the majority of the recurring inversions, with the exception of "common variants," seemed likely to be IBD. However, eight inversions recurred in our data and in most other series and may well be genuine independent rearrangements. A search of the known olfactory receptor (OR) loci and duplicons suggested that such sequences did not form an important contribution to the breakpoints of recurring rearrangements detected by light microscopy.
Collapse
Affiliation(s)
- Sheila Youings
- Wessex Regional Genetics Laboratory, Salisbury Health Care NHS Trust, Salisbury District Hospital, Salisbury, Wiltshire, United Kingdom
| | | | | | | | | |
Collapse
|
903
|
Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Höglund M, Johansson B, Hagemeijer A, Park SS, Mitelman F, Lupski JR, Fioretos T. The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet 2004; 74:1-10. [PMID: 14666446 PMCID: PMC1181896 DOI: 10.1086/380648] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 10/07/2003] [Indexed: 11/03/2022] Open
Abstract
Although a great deal of information has accumulated regarding the mechanisms underlying constitutional DNA rearrangements associated with inherited disorders, virtually nothing is known about the molecular processes involved in acquired neoplasia-associated chromosomal rearrangements. Isochromosome 17q, or "i(17q)," is one of the most common structural abnormalities observed in human neoplasms. We previously identified a breakpoint cluster region for i(17q) formation in 17p11.2 and hypothesized that genome architectural features could be responsible for this clustering. To address this hypothesis, we precisely mapped the i(17q) breakpoints in 11 patients with different hematologic malignancies and determined the genomic structure of the involved region. Our results reveal a complex genomic architecture in the i(17q) breakpoint cluster region, characterized by large ( approximately 38-49-kb), palindromic, low-copy repeats, strongly suggesting that somatic rearrangements are not random events but rather reflect susceptibilities due to the genomic structure.
Collapse
MESH Headings
- Blast Crisis/genetics
- Chromosome Aberrations
- Chromosomes, Human, Pair 17/genetics
- Genome, Human
- Humans
- Isochromosomes/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Sequence Data
- Neoplasms/genetics
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Aikaterini Barbouti
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Pawel Stankiewicz
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Chad Nusbaum
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Christina Cuomo
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - April Cook
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Mattias Höglund
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Bertil Johansson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Anne Hagemeijer
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Sung-Sup Park
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Felix Mitelman
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - James R. Lupski
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Thoas Fioretos
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
904
|
Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 2003; 302:1960-3. [PMID: 14671302 DOI: 10.1126/science.1088821] [Citation(s) in RCA: 469] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.
Collapse
Affiliation(s)
- Andrew G Clark
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
905
|
Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4:865-75. [PMID: 14634634 DOI: 10.1038/nrg1204] [Citation(s) in RCA: 650] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
906
|
Abstract
Comparisons of the genome sequences of related species suggests varying patterns of chromosomal rearrangements in different evolutionary lineages. In this review, I focus on the quantitative characterization of rearrangement processes and discuss specific inventories that have been compiled to date. Of particular interest are the statistical distribution of the lengths of inverted or locally transposed chromosome fragments (notably very short ones), inhomogeneities in susceptibility to evolutionary breakpoints in chromosomal regions, the relative importance of genome doubling in the history of multicellular eukaryotes, and of lateral transfer versus gene gain and loss in prokaryotes. These developments provide challenges to computational biologists to refine, revise and scale up mathematical models and algorithms for analyzing genome rearrangements.
Collapse
Affiliation(s)
- David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
907
|
Abstract
Complete genome sequence data led rapidly to the conclusion that ancient genome duplications had shaped the genomes of the model organisms Saccharomyces cerevisiae and Arabidopsis thaliana. Recent contributions have gone on to refine date estimates for these duplications and, in the case of Arabidopsis, to infer additional, more ancient, rounds of duplication by reconstructing gene order before the most recent duplication event. It is becoming widely accepted that an ancient duplication occurred before the radiation of the ray-finned fish. However, despite methodological advances and the availability of complete genome sequence data the debate over whether very ancient genome duplications have occurred early in the vertebrate lineage has not yet been fully resolved.
Collapse
Affiliation(s)
- Cathal Seoighe
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| |
Collapse
|
908
|
Copley RR, Goodstadt L, Ponting C. Eukaryotic domain evolution inferred from genome comparisons. Curr Opin Genet Dev 2003; 13:623-8. [PMID: 14638325 DOI: 10.1016/j.gde.2003.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative analyses of eukaryotic genomes are providing insights into the mode and tempo of domain family evolution. Gene duplication, the source of family expansion, far exceeds the rate of emergence of domains from non-coding sequence, and the rate of recruitment of domains into novel architectures. Domain families that appear to be restricted to certain lineages are likely to be the result of gene duplication, coupled with rapid sequence diversification. If such families are evidence of past adaptation, then their functions must relate to the underlying mechanism of selection: competition among organisms.
Collapse
Affiliation(s)
- Richard R Copley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | |
Collapse
|
909
|
Jackson M. Duplicate, decouple, disperse: the evolutionary transience of human centromeric regions. Curr Opin Genet Dev 2003; 13:629-35. [PMID: 14638326 DOI: 10.1016/j.gde.2003.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human centromeric regions are enriched for segmental duplications, which elsewhere in the genome precipitate both genetic disease and gene formation. Molecular cytogenetic analyses of primate chromosomes have established that centromeres frequently move without altering the surrounding gene order. Recently, the positions of two ancestral centromeres have been mapped to regions of the human genome that are both rich in segmental duplications and are associated with duplication-based clinical phenotypes. This suggests a model for the evolution of euchromatic segmental duplication families involving the localised elevation of recombination rates within the duplication-rich heterochromatin of recently inactivated centromeres, and raises the possibility that the distribution of duplication/deletion syndromes within our genome has been heavily influenced by such events. The relaxation of the heterochromatin environment that must accompany centromere inactivation would also increase the transcriptional activity within previously pericentromeric DNA, increasing the likelihood of chimaeric gene creation through pericentromeric-directed duplication events.
Collapse
Affiliation(s)
- Michael Jackson
- The Institute Of Human Genetics, The International Centre For Life, University Of Newcastle Upon Tyne, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.
| |
Collapse
|
910
|
Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter NP. Replication timing of the human genome. Hum Mol Genet 2003; 13:191-202. [PMID: 14645202 DOI: 10.1093/hmg/ddh016] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a directly quantitative method utilizing genomic clone DNA microarrays to assess the replication timing of sequences during the S phase of the cell cycle. The genomic resolution of the replication timing measurements is limited only by the genomic clone size and density. We demonstrate the power of this approach by constructing a genome-wide map of replication timing in human lymphoblastoid cells using an array with clones spaced at 1 Mb intervals and a high-resolution replication timing map of 22q with an array utilizing overlapping sequencing tile path clones. We show a positive correlation, both genome-wide and at a high resolution, between replication timing and a range of genome parameters including GC content, gene density and transcriptional activity.
Collapse
Affiliation(s)
- Kathryn Woodfine
- The Welcome Trust Sanger Institute, Welcome Genome Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R, Hunt SE, Scott CE, Gilbert JGR, Clamp ME, Bethel G, Milne S, Ainscough R, Almeida JP, Ambrose KD, Andrews TD, Ashwell RIS, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beare DM, Beasley H, Beasley O, Bird CP, Blakey S, Bray-Allen S, Brook J, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Clark SY, Clark G, Clee CM, Clegg S, Cobley V, Collier RE, Collins JE, Colman LK, Corby NR, Coville GJ, Culley KM, Dhami P, Davies J, Dunn M, Earthrowl ME, Ellington AE, Evans KA, Faulkner L, Francis MD, Frankish A, Frankland J, French L, Garner P, Garnett J, Ghori MJR, Gilby LM, Gillson CJ, Glithero RJ, Grafham DV, Grant M, Gribble S, Griffiths C, Griffiths M, Hall R, Halls KS, Hammond S, Harley JL, Hart EA, Heath PD, Heathcott R, Holmes SJ, Howden PJ, Howe KL, Howell GR, Huckle E, Humphray SJ, Humphries MD, Hunt AR, Johnson CM, Joy AA, Kay M, Keenan SJ, Kimberley AM, King A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd CR, Lloyd DM, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, Maslen GL, Matthews L, McCann OT, McLaren SJ, McLay K, McMurray A, Moore MJF, Mullikin JC, Niblett D, Nickerson T, Novik KL, Oliver K, Overton-Larty EK, Parker A, Patel R, Pearce AV, Peck AI, Phillimore B, Phillips S, Plumb RW, Porter KM, Ramsey Y, Ranby SA, Rice CM, Ross MT, Searle SM, Sehra HK, Sheridan E, Skuce CD, Smith S, Smith M, Spraggon L, Squares SL, Steward CA, Sycamore N, Tamlyn-Hall G, Tester J, Theaker AJ, Thomas DW, Thorpe A, Tracey A, Tromans A, Tubby B, Wall M, Wallis JM, West AP, White SS, Whitehead SL, Whittaker H, Wild A, Willey DJ, Wilmer TE, Wood JM, Wray PW, Wyatt JC, Young L, Younger RM, Bentley DR, Coulson A, Durbin R, Hubbard T, Sulston JE, Dunham I, Rogers J, Beck S. The DNA sequence and analysis of human chromosome 6. Nature 2003; 425:805-11. [PMID: 14574404 DOI: 10.1038/nature02055] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2003] [Accepted: 09/11/2003] [Indexed: 01/17/2023]
Abstract
Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.
Collapse
Affiliation(s)
- A J Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
912
|
Abstract
Comparing the genomes of two different species allow the exploration of a host of intriguing evolutionary and genetic questions
Collapse
|
913
|
Abstract
We propose an assembly algorithm Barnacle for sequences generated by the clone-based approach. We illustrate our approach by assembling the human genome. Our novel method abandons the original physical-mapping-first framework. As we show, Barnacle more effectively resolves conflicts due to repeated sequences which is the main difficulty of the sequence assembly problem. In addition, we are able to detect inconsistencies in the underlying data. We present and compare our results on the December 2001 freeze of the public working draft of the human genome with NCBI's assembly (Build 28). The assembly of December 2001 freeze of the public working draft generated by Barnacle and the source code of Barnacle are available at (http://www.cs.rutgers.edu/~vchoi).
Collapse
Affiliation(s)
- Vicky Choi
- Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
914
|
Mishra B, Daruwala RS, Zhou Y, Ugel N, Policriti A, Antoniotti M, Paxia S, Rejali M, Rudra A, Cherepinsky V, Silver N, Casey W, Piazza C, Simeoni M, Barbano P, Spivak M, Feng J, Gill O, Venkatesh M, Cheng F, Sun B, Ioniata I, Anantharaman T, Hubbard EJA, Pnueli A, Harel D, Chandru V, Hariharan R, Wigler M, Park F, Lin SC, Lazebnik Y, Winkler F, Cantor CR, Carbone A, Gromov M. A sense of life: computational and experimental investigations with models of biochemical and evolutionary processes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2003; 7:253-68. [PMID: 14583115 DOI: 10.1089/153623103322452387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.
Collapse
Affiliation(s)
- Bud Mishra
- Department of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
915
|
Bailey JA, Liu G, Eichler EE. An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 2003; 73:823-34. [PMID: 14505274 PMCID: PMC1180605 DOI: 10.1086/378594] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/17/2003] [Indexed: 01/17/2023] Open
Abstract
Relative to genomes of other sequenced organisms, the human genome appears particularly enriched for large, highly homologous segmental duplications (> or =90% sequence identity and > or =10 kbp in length). The molecular basis for this enrichment is unknown. We sought to gain insight into the mechanism of origin, by systematically examining sequence features at the junctions of duplications. We analyzed 9,464 junctions within regions of high-quality finished sequence from a genomewide set of 2,366 duplication alignments. We observed a highly significant (P<.0001) enrichment of Alu short interspersed element (SINE) sequences near or within the junction. Twenty-seven percent of all segmental duplications terminated within an Alu repeat. The Alu junction enrichment was most pronounced for interspersed segmental duplications separated by > or =1 Mb of intervening sequence. Alu elements at the junctions showed higher levels of divergence, consistent with Alu-Alu-mediated recombination events. When we classified Alu elements into major subfamilies, younger elements (AluY and AluS) accounted for the enrichment, whereas the oldest primate family (AluJ) showed no enrichment. We propose that the primate-specific burst of Alu retroposition activity (which occurred 35-40 million years ago) sensitized the ancestral human genome for Alu-Alu-mediated recombination events, which, in turn, initiated the expansion of gene-rich segmental duplications and their subsequent role in nonallelic homologous recombination.
Collapse
Affiliation(s)
- Jeffrey A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
916
|
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 2003; 100:11484-9. [PMID: 14500911 PMCID: PMC208784 DOI: 10.1073/pnas.1932072100] [Citation(s) in RCA: 616] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Indexed: 11/18/2022] Open
Abstract
This study examines genomic duplications, deletions, and rearrangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Excluding transposon insertions, on average in each megabase of genomic alignment we observe two inversions, 17 duplications (five tandem or nearly tandem), seven transpositions, and 200 deletions of 100 bases or more. This includes 160 inversions and 75 duplications or transpositions of length >100 kb. The frequencies of these smaller events are not substantially higher in finished portions in the assembly. Many of the smaller transpositions are processed pseudogenes; we define a "syntenic" subset of the alignments that excludes these and other small-scale transpositions. These alignments provide evidence that approximately 2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse. There also appears to be slightly less nontransposon-induced genome duplication in the mouse than in the human lineage. Although some of the events we detect are possibly due to misassemblies or missing data in the current genome sequence or to the limitations of our methods, most are likely to represent genuine evolutionary events. To make these observations, we developed new alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments.
Collapse
Affiliation(s)
- W James Kent
- Center for Biomolecular Science and Engineering and Howard Hughes Medical Institute, Department of Computer Science, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | | | |
Collapse
|
917
|
Sankoff D, Nadeau JH. Chromosome rearrangements in evolution: From gene order to genome sequence and back. Proc Natl Acad Sci U S A 2003; 100:11188-9. [PMID: 14506293 PMCID: PMC208729 DOI: 10.1073/pnas.2035002100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON, Canada K1N 6N5
| | | |
Collapse
|
918
|
Okubo K, Ishii S, Ishida J, Mitani H, Naruse K, Kondo M, Shima A, Tanaka M, Asakawa S, Shimizu N, Aida K. A novel third gonadotropin-releasing hormone receptor in the medaka Oryzias latipes: evolutionary and functional implications. Gene 2003; 314:121-31. [PMID: 14527724 DOI: 10.1016/s0378-1119(03)00711-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays pivotal roles in the regulation of vertebrate reproduction through binding to its specific membrane receptor. Within the past few years, substantial evidence has accumulated that more than one GnRH receptor (GnRH-R) is expressed in individual vertebrate species. Two GnRH-Rs, termed GnRH-R1 and GnRH-R2, have been identified in a teleost, the medaka Oryzias latipes. Here we describe the identification and characterization of a novel third member of GnRH-R, designated GnRH-R3, in the medaka. GnRH-R3 share high sequence homology (77% amino acid identity in the transmembrane domain) with GnRH-R1. Phylogenetic analysis and genetic mapping demonstrated that both GnRH-R1 and GnRH-R3 were orthologous to the type 2 GnRH-R in primates and that these two medaka receptors were duplicates resulting from the genome-wide duplication within the teleost lineage. GnRH-R3, however, contained three introns, whereas GnRH-R1 had only two. Moreover, unlike GnRH-R1, GnRH-R3 exhibited an approximately equal selectivity for two of three native GnRH forms in the medaka, chicken-II-type GnRH (cGnRH-II) and salmon-type GnRH (sGnRH), and a less sensitivity for the other form, medaka-type GnRH. GnRH-R3 was found to be expressed throughout the brain, and thus appeared to mediate the neuromodulatory functions of both cGnRH-II and sGnRH. These data identify GnRH-R3 as a new member of GnRH-R that arose in a recent genome duplication but has distinctive genomic structure and functional characteristic.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Bunkyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
919
|
Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 2003; 13:2059-68. [PMID: 12915487 PMCID: PMC403685 DOI: 10.1101/gr.1155103] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The existence of latent centromeres has been proposed as a possible explanation for the ectopic emergence of neocentromeres in humans. This hypothesis predicts an association between the position of neocentromeres and the position of ancient centromeres inactivated during karyotypic evolution. Human chromosomal region 15q24-26 is one of several hotspots where multiple cases of neocentromere emergence have been reported, and it harbors a high density of chromosome-specific duplicons, rearrangements of which have been implicated as a susceptibility factor for panic and phobic disorders with joint laxity. We investigated the evolutionary history of this region in primates and found that it contains the site of an ancestral centromere which became inactivated about 25 million years ago, after great apes/Old World monkeys diverged. This inactivation has followed a noncentromeric chromosomal fission of an ancestral chromosome which gave rise to phylogenetic chromosomes XIV and XV in human and great apes. Detailed mapping of the ancient centromere and two neocentromeres in 15q24-26 has established that the neocentromere domains map approximately 8 Mb proximal and 1.5 Mb distal of the ancestral centromeric region, but that all three map within 500 kb of duplicons, copies of which flank the centromere in Old World Monkey species. This suggests that the association between neocentromere and ancestral centromere position on this chromosome may be due to the persistence of recombinogenic duplications accrued within the ancient pericentromere, rather than the retention of "centromere-competent" sequences per se. The high frequency of neocentromere emergence in the 15q24-26 region and the high density of clinically important duplicons are, therefore, understandable in the light of the evolutionary history of this region.
Collapse
Affiliation(s)
- Mario Ventura
- Sezione di Genetica-DAPEG, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
920
|
Knoll JHM, Rogan PK. Sequence-based, in situ detection of chromosomal abnormalities at high resolution. Am J Med Genet A 2003; 121A:245-57. [PMID: 12923866 DOI: 10.1002/ajmg.a.20123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed single copy probes from the draft genome sequence for fluorescence in situ hybridization (scFISH) which precisely delineate chromosome abnormalities at a resolution equivalent to genomic Southern analysis. This study illustrates how scFISH probes detect cryptic and subtle abnormalities and localize the sites of chromosome rearrangements. scFISH probes are substantially shorter than conventional recombinant DNA-derived probes, and C(o)t1 DNA is not required to suppress repetitive sequence hybridization. In this study, 74 single copy sequence probes (>1,500 bp) have been developed from >/=100 kb genomic intervals associated with either constitutional or acquired disorders. Applications of these probes include detection of congenital microdeletion syndromes on chromosomes 1, 4, 7, 15, 17, 22 and submicroscopic deletions involving the imprinting center on chromosome 15q11.2q13. We demonstrate how hybridization with multiple combinations of probes derived from the Smith-Magenis syndrome interval on chromosome 17 identified a patient with an atypical, proximal deletion breakpoint. A similar multi-probe hybridization strategy has also been used to delineate the translocation breakpoint region on chromosome 9 in chronic myelogenous leukemia. Probes have also been designed to hybridize to multiple cis paralogs, both enhancing the chromosomal target size and detecting chromosome rearrangements, for example, by splitting and separating a family of related sequences flanking an inversion breakpoint on chromosome 16 in acute myelogenous leukemia. These novel strategies for rapid and precise characterization of cytogenetic abnormalities are feasible because of the sequence-defined properties and dense euchromatic organization of single copy probes.
Collapse
MESH Headings
- Adult
- Blotting, Southern
- Child
- Chromosome Aberrations
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 17/genetics
- DNA Probes/analysis
- DNA Probes/chemical synthesis
- DNA Probes/isolation & purification
- Gene Deletion
- Gene Dosage
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Nucleic Acid Hybridization
- Prader-Willi Syndrome/genetics
- Sequence Analysis, DNA/methods
- Translocation, Genetic
Collapse
Affiliation(s)
- Joan H M Knoll
- Children's Mercy Hospital and Clinics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | | |
Collapse
|
921
|
Pielberg G, Day AE, Plastow GS, Andersson L. A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res 2003; 13:2171-7. [PMID: 12952884 PMCID: PMC403722 DOI: 10.1101/gr.1188203] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 06/17/2003] [Indexed: 11/24/2022]
Abstract
Gene duplications are common in the vertebrate genome, and duplicated loci often show a variation in copy number that may have important phenotypic effects. Here we describe a powerful method for quantification of duplicated copies based on pyrosequencing. A reliable quantification was obtained by amplification of the duplication break-point and a corresponding nonduplicated sequence in a competitive PCR assay. A comparison with an independent method for quantification based on the Invader technology revealed an excellent correlation between the two methods. The pyrosequencing-based method was evaluated by analyzing variation in copy number at the duplicated KIT/Dominant white locus in pigs. We were able to distinguish haplotypes at this locus by combining the duplication breakpoint test with a diagnostic test for a functionally important splice mutation in the duplicated gene. An extensive allelic variation, including the presence of a new allele carrying a single KIT copy expected to encode a truncated KIT receptor, was revealed when analyzing white pigs from commercial lines.
Collapse
Affiliation(s)
- Gerli Pielberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
922
|
Hollox EJ, Armour JAL, Barber JCK. Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 2003; 73:591-600. [PMID: 12916016 PMCID: PMC1180683 DOI: 10.1086/378157] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 07/02/2003] [Indexed: 12/08/2022] Open
Abstract
Using a combination of multiplex amplifiable probe hybridization and semiquantitative fluorescence in situ hybridization (SQ-FISH), we analyzed DNA copy number variation across chromosome band 8p23.1, a region that is frequently involved in chromosomal rearrangements. We show that a cluster of at least three antimicrobial beta-defensin genes (DEFB4, DEFB103, and DEFB104) at 8p23.1 are polymorphic in copy number, with a repeat unit >/=240 kb long. Individuals have 2-12 copies of this repeat per diploid genome. By segregation, microsatellite dosage, and SQ-FISH chromosomal signal intensity ratio analyses, we deduce that individual chromosomes can have one to eight copies of this repeat unit. Chromosomes with seven or eight copies of this repeat unit are identifiable by cytogenetic analysis as a previously described 8p23.1 euchromatic variant. Analysis of RNA from different individuals by semiquantitative reverse-transcriptase polymerase chain reaction shows a significant correlation between genomic copy number of DEFB4 and levels of its messenger RNA (mRNA) transcript. The peptides encoded by these genes are potent antimicrobial agents, especially effective against clinically important pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, and DEFB4 has been shown to act as a cytokine linking the innate and adaptive immune responses. Therefore, a copy number polymorphism involving these genes, which is reflected in mRNA expression levels, is likely to have important consequences for immune system function.
Collapse
Affiliation(s)
- E J Hollox
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | | | | |
Collapse
|
923
|
Ling V, Wu PW, Spaulding V, Kieleczawa J, Luxenberg D, Carreno BM, Collins M. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics 2003; 82:365-77. [PMID: 12906861 DOI: 10.1016/s0888-7543(03)00126-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B7-H3 is a novel protein structurally related to the B7 family of ligands by the presence of a single set of immunoglobulin-V-like and immunoglobulin-C-like (VC) domains. By multiplex PCR, the dominantly expressed form of human B7-H3 was found to be a splice variant containing tandemly duplicated VC domains (VCVC). In contrast, mouse B7-H3 cDNA contained only one single VC form due to an exon structure corresponding to V-(pseudoexon C)-(pseudoexon V)-C. Comparisons of human, monkey, mouse, and hamster genomic B7-H3 reveal that primates, but not rodents, exhibited a higher degree of intramolecular sequence similarity between VC duplications than between molecules. Both VC and VCVC forms of human B7-H3 inhibited CD4(+) T cell proliferation and downregulated cytokine production upon TCR activation. These results suggest independent, but convergent, paths of B7-H3 active domain duplication followed by divergent histories of exon degeneration in rodents and exon maintenance by humans.
Collapse
Affiliation(s)
- Vincent Ling
- Wyeth Research, 200 Cambridge Park Drive, 02140, Cambridge, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
924
|
Tsui C, Coleman LE, Griffith JL, Bennett EA, Goodson SG, Scott JD, Pittard WS, Devine SE. Single nucleotide polymorphisms (SNPs) that map to gaps in the human SNP map. Nucleic Acids Res 2003; 31:4910-6. [PMID: 12907734 PMCID: PMC169912 DOI: 10.1093/nar/gkg664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300,000 to 1 million 'tag' single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300,000 SNPs. In an effort to improve the human SNP map, we identified 140,696 additional SNP candidates using a new bioinformatics pipeline. Over 51,000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.
Collapse
Affiliation(s)
- Circe Tsui
- Department of Biochemistry, Center for Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
925
|
Abstract
Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and interspersed repeats suggest hotspots for eukaryotic chromosome evolution. This localized chromosomal instability may play a role in rapidly evolving lineage-specific gene families and in fostering large-scale changes in gene order. Computational algorithms that take into account these dynamic forces along with traditional models of chromosomal rearrangement show promise for reconstructing the natural history of eukaryotic chromosomes.
Collapse
Affiliation(s)
- Evan E Eichler
- Department of Genetics, Center for Human Genetics and Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | | |
Collapse
|
926
|
Abstract
Until recently, the Y chromosome seemed to fulfil the role of juvenile delinquent among human chromosomes--rich in junk, poor in useful attributes, reluctant to socialize with its neighbours and with an inescapable tendency to degenerate. The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution. Y-chromosome research is growing up.
Collapse
Affiliation(s)
- Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | |
Collapse
|
927
|
Affiliation(s)
- David B Searls
- Bioinformatics Division, Genetics Research, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406, USA.
| |
Collapse
|
928
|
Abstract
Within the past decade the molecular basis of single forms of monogenic obesity has been elucidated. With the exception of functionally relevant mutations in the melanocortin-4 receptor gene, which occur in approximately 2-4% of extremely obese individuals, all other currently known monogenic forms are rare and additionally associated with distinct endocrinological abnormalities. A large number of association studies have been performed in 'normal' obesity. Whereas many associations have been reported, it is largely unclear which of these represent true positive findings. Over 20 genome scans pertaining to obesity and related phenotypes have been performed; specific chromosomal peak regions have been identified in different scans. We review the current status and discuss relevant issues related to phenotyping, association and linkage studies. We recommend that the procedure via which a consensus is reached as to what constitutes a true positive association finding requires formalization.
Collapse
Affiliation(s)
- J Hebebrand
- Clinical Research Group, Department of Child and Adolescent Psychiatry, Philipps University of Marburg, Germany.
| | | | | | | | | |
Collapse
|
929
|
Murphy WJ, Frönicke L, O'Brien SJ, Stanyon R. The origin of human chromosome 1 and its homologs in placental mammals. Genome Res 2003; 13:1880-8. [PMID: 12869576 PMCID: PMC403779 DOI: 10.1101/gr.1022303] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 05/21/2003] [Indexed: 11/24/2022]
Abstract
Developing ordered gene maps from multiple mammalian species coupled with chromosome-painting data provide a powerful resource for resolving the evolutionary history of chromosomes and whole genomes. In this work, we recapitulate the evolutionary history of human chromosome 1 and its homologs in placental mammals, putatively the largest physical unit in the ancestral placental genome. Precise definition of translocation exchange breakpoints in human, carnivore, cetartiodactyl, and rodent-ordered gene maps demonstrate that chromosome breakpoints, previously considered as equivalent, actually represent distinct chromosome positions and exchange events. Multidirectional chromosome painting, using probes from homologs to chromosome 1 in seven mammal species from six orders of placental mammals, confirm the gene-mapping results and indicate that the multiple human chromosome 1 homologs in these species are derived from independent fissions of a single ancestral chromosome. Chromosome painting using human chromosome 1 probes identifies a single human chromosome 1 homolog in phylogenetically distant taxa, the two-toed sloth, cetaceans, and higher primates. The diverse phylogenetic occurrence of a single Hsa1 synteny among the major clades of placental mammals suggests that human chromosome 1 represents an intact ancestral chromosome, which was variously fissioned in the majority of placental species. We find that the number of human chromosome 1 fissions in a specific lineage reflects its general rate of genomic evolution. Further, historic chromosome exchange appears to have been disproportionately clustered in two breakpoint hotspots on the long arm.
Collapse
Affiliation(s)
- William J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
930
|
Wong GKS, Yang Z, Passey DA, Kibukawa M, Paddock M, Liu CR, Bolund L, Yu J. A population threshold for functional polymorphisms. Genome Res 2003; 13:1873-9. [PMID: 12902381 PMCID: PMC403778 DOI: 10.1101/gr.1324303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We sequenced 114 genes (for DNA repair, cell cycle arrest, apoptosis, and detoxification)in a mixed human population and observed a sudden increase in the number of functional polymorphisms below a minor allele frequency of approximately 6%. Functionality is assessed by considering the ratio in the number of nonsynonymous single nucletide polymorphisms (SNPs)to the number of synonymous or intron SNPs. This ratio is steady from below 1% in frequency-that regime traditionally associated with rare Mendelian diseases-all the way up to about 6% in frequency, after which it falls precipitously. We consider possible explanations for this threshold effect. There are four candidates as follows: (1). deleterious variants that have yet to be purified from the population, (2). balancing selection, in which a selective advantage accrues to the heterozygotes, (3). population-specific functional polymorphisms, and (4). adaptive variants that are accumulating in the population as a response to the dramatic environmental changes of the last 7000 approximately 17000 years.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- University of Washington Genome Center, Department of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
931
|
Innan H. A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc Natl Acad Sci U S A 2003; 100:8793-8. [PMID: 12857961 PMCID: PMC166392 DOI: 10.1073/pnas.1031592100] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A two-locus gene conversion model with selection is developed. Under the joint action of selection, mutation, gene conversion, recombination, and random genetic drift, approximate formulas for the expectations of the moments of allele frequencies and the expected amounts of variation within and between two loci are obtained by a diffusion method assuming relatively strong selection. It is shown that the pattern of allelic variation is mainly determined by the balance between gene conversion and selection, because these two mechanisms act in opposite directions. As an application of the theoretical results, the human RHCE and RHD genes are considered. The very high level of amino acid divergence between the two genes is observed only in a short region around exon 7. It is known that exon 7 encodes amino acids that characterize the difference between the RHCE and RHD antigens. The observed pattern of DNA variation in this region is consistent with the selection model developed in this article, suggesting that strong selection might be working to maintain the RHCE/RHD antigen variation in the two-locus system. The selection intensity is estimated on the basis of the theoretical result.
Collapse
Affiliation(s)
- Hideki Innan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
932
|
Golfier G, Chibon F, Aurias A, Chen XN, Korenberg J, Rossier J, Potier MC. The 200-kb segmental duplication on human chromosome 21 originates from a pericentromeric dissemination involving human chromosomes 2, 18 and 13. Gene 2003; 312:51-9. [PMID: 12909340 DOI: 10.1016/s0378-1119(03)00673-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regions close to human centromeres contain DNA fragments spanning hundreds of kilobases that exhibit a high degree of sequence identity (>95%). Here we report the genomic structure and evolution of a family of four paralogous regions related to a 220-kb genomic fragment present on the long arm of human chromosome 21 (21q22.1). Phylogenetic classification of the paralogous sequences obtained from the draft of the Human Genome Project are in agreement with results from comparative fluorescence in situ hybridization on metaphase chromosomes from human and great apes. The original copy present in 21q22.1 in human was duplicated in great apes after the divergence of the orang-utan and inserted in a pericentromeric region, most likely the ancestor of HSA2q, then disseminated by transposition of a larger fragment to other pericentromeric locations: HSA18p11, HSA13q11 and HSA21q11.1. The degree of dissemination varies among species.
Collapse
MESH Headings
- Animals
- Chromosome Aberrations
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- Gene Duplication
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence
- Pan paniscus/genetics
- Phylogeny
Collapse
Affiliation(s)
- Geoffroy Golfier
- Neurobiologie et Diversité Cellulaire, CNRS UMR7637, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
933
|
Zhang Z, Gerstein M. The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene 2003; 312:61-72. [PMID: 12909341 DOI: 10.1016/s0378-1119(03)00579-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using a computational approach, we have identified 49 cytochrome c (cyc) pseudogenes in the human genome. Analysis of these provides a detailed description of the molecular evolution of the cyc gene. Almost all of the pseudogenes are full-length, and we have concluded that they mostly originated from independent retrotransposition events (i.e. they are processed). Based on phylogenetic analysis and detailed sequence comparison, we have further divided these pseudogenes into two groups. The first, consisting of four young pseudogenes that were dated to be between 27 and 34 Myr old, originated from a gene almost identical to the modern human cyc gene. The second group of pseudogenes is much older and appears to have descended from ancient genes similar to modern rodent cyc genes. Thus, our results support the observation that accelerated evolution in cyc sequence had occurred in the primate lineage. The oldest pseudogene in the second group, dated to be over 80 Myr old, resembles the testis-specific cyc gene in modern rodents. It is likely that the mammalian ancestor had both the somatic and the testis-specific cyc genes. While the testis-specific gene is still functional in modern rodents, the human has lost it, retaining only a pseudogene in its place. Thus, our study may have identified a pseudogene that is a dead relic of a gene that has completely died off in the human lineage.
Collapse
Affiliation(s)
- Zhaolei Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
934
|
Brun ME, Ruault M, Ventura M, Roizès G, De Sario A. Juxtacentromeric region of human chromosome 21: a boundary between centromeric heterochromatin and euchromatic chromosome arms. Gene 2003; 312:41-50. [PMID: 12909339 DOI: 10.1016/s0378-1119(03)00530-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analysed the genomic structure and transcriptional activity of a 2.3-Mb genomic sequence in the juxtacentromeric region of human chromosome 21. Our work shows that this region comprises two different chromosome domains. The 1.5-Mb proximal domain: (i) is a patchwork of chromosome duplications; (ii) shares sequence similarity with several chromosomes; (iii) contains several gene fragments (truncated genes having an intron/exon structure) intermingled with retrotransposed pseudogenes; and (iv) harbours two genes (TPTE and BAGE2) that belong to gene families and have a cancer and/or testis expression profile. The TPTE gene family was generated before the branching of Old World monkeys from the great ape lineage, by intra- and interchromosome duplications of the ancestral TPTE gene mapping to phylogenetic chromosome XIII. By contrast, the 0.8-Mb distal domain: (i) is devoid of chromosome duplications; (ii) has a chromosome 21-specific sequence; (iii) contains no gene fragments and only one retrotransposed pseudogene; and (iv) harbours six genes including housekeeping genes. G-rich sequences commonly associated with duplication termini cluster at the boundary between the two chromosome domains. These structural and transcriptional features lead us to suggest that the proximal domain has heterochromatic properties, whereas the distal domain has euchromatic properties.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- Adaptor Proteins, Vesicular Transport/genetics
- Alternative Splicing
- Animals
- Antigens, Neoplasm/genetics
- Base Composition
- Blotting, Northern
- Cell Line
- Centromere/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 21/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Databases, Nucleic Acid
- Euchromatin/genetics
- Female
- Gene Duplication
- Gene Expression
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Membrane Proteins/genetics
- Molecular Sequence Data
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases
- Protein Tyrosine Phosphatases/genetics
- Pseudogenes/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Marie-Elisabeth Brun
- Institut de Génétique Humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | |
Collapse
|
935
|
Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH, Wilson RK. The DNA sequence of human chromosome 7. Nature 2003; 424:157-64. [PMID: 12853948 DOI: 10.1038/nature01782] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 04/23/2003] [Indexed: 11/09/2022]
Abstract
Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.
Collapse
Affiliation(s)
- Ladeana W Hillier
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
936
|
|
937
|
Caetano-Anollés G, Caetano-Anollés D. An evolutionarily structured universe of protein architecture. Genome Res 2003; 13:1563-71. [PMID: 12840035 PMCID: PMC403752 DOI: 10.1101/gr.1161903] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 04/17/2003] [Indexed: 11/25/2022]
Abstract
Protein structural diversity encompasses a finite set of architectural designs. Embedded in these topologies are evolutionary histories that we here uncover using cladistic principles and measurements of protein-fold usage and sharing. The reconstructed phylogenies are inherently rooted and depict histories of protein and proteome diversification. Proteome phylogenies showed two monophyletic sister-groups delimiting Bacteria and Archaea, and a topology rooted in Eucarya. This suggests three dramatic evolutionary events and a common ancestor with a eukaryotic-like, gene-rich, and relatively modern organization. Conversely, a general phylogeny of protein architectures showed that structural classes of globular proteins appeared early in evolution and in defined order, the alpha/beta class being the first. Although most ancestral folds shared a common architecture of barrels or interleaved beta-sheets and alpha-helices, many were clearly derived, such as polyhedral folds in the all-alpha class and beta-sandwiches, beta-propellers, and beta-prisms in all-beta proteins. We also describe transformation pathways of architectures that are prevalently used in nature. For example, beta-barrels with increased curl and stagger were favored evolutionary outcomes in the all-beta class. Interestingly, we found cases where structural change followed the alpha-to-beta tendency uncovered in the tree of architectures. Lastly, we traced the total number of enzymatic functions associated with folds in the trees and show that there is a general link between structure and enzymatic function.
Collapse
|
938
|
Avidan N, Tamary H, Dgany O, Cattan D, Pariente A, Thulliez M, Borot N, Moati L, Barthelme A, Shalmon L, Krasnov T, Ben-Asher E, Olender T, Khen M, Yaniv I, Zaizov R, Shalev H, Delaunay J, Fellous M, Lancet D, Beckmann JS. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet 2003; 11:497-502. [PMID: 12825070 DOI: 10.1038/sj.ejhg.5200991] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the course of positional cloning of the Congenital Dyserythropoietic Anemia type I (CDAI) [MIM 224120] gene on 15q15.1-15.3, we examined a family of French origin, in which the propositus suffered from asthenoteratozoospermia and nonsyndromic deafness in addition to CDAI. Two of his brothers had a similar phenotype. All three siblings were homozygous carriers of the CDA1 mutation as well as of a distally located approximately 70 kb deletion of the proximal copy of a 106 kb tandem repeat on chromosome 15q15. These repeats encode four genes whose distal copies may be considered pseudogenes. Lack of functional stereocilin and CATSPER2 (a voltage-gate cation channel expressed specifically in spermatozoa) may explain the observed deafness and male infertility phenotypes. To the best of our knowledge, the involvement of CATSPER2 in asthenoteratozoospermia is the first description of a human autosomal gene defect associated with nonsyndromic male infertility.
Collapse
Affiliation(s)
- Nili Avidan
- Department of Molecular Genetics, The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
939
|
Pennacchio LA. Insights from human/mouse genome comparisons. Mamm Genome 2003; 14:429-36. [PMID: 12925891 DOI: 10.1007/s00335-002-4001-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 02/20/2003] [Indexed: 10/27/2022]
Abstract
Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish ( Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.
Collapse
Affiliation(s)
- Len A Pennacchio
- Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California, USA.
| |
Collapse
|
940
|
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003; 423:825-37. [PMID: 12815422 DOI: 10.1038/nature01722] [Citation(s) in RCA: 1411] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 04/08/2003] [Indexed: 01/06/2023]
Abstract
The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.
Collapse
MESH Headings
- Chromosomes, Human, X/genetics
- Chromosomes, Human, Y/genetics
- Crossing Over, Genetic/genetics
- DNA Transposable Elements/genetics
- Euchromatin/genetics
- Evolution, Molecular
- Female
- Gene Amplification/genetics
- Gene Conversion/genetics
- Genes/genetics
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Models, Genetic
- Multigene Family/genetics
- Organ Specificity
- Pseudogenes/genetics
- Sequence Homology, Nucleic Acid
- Sex Characteristics
- Sex Determination Processes
- Species Specificity
- Testis/metabolism
- Transcription, Genetic/genetics
- Transducin
Collapse
Affiliation(s)
- Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
941
|
Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 2003; 423:873-6. [PMID: 12815433 DOI: 10.1038/nature01723] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 04/07/2003] [Indexed: 11/09/2022]
Abstract
Eight palindromes comprise one-quarter of the euchromatic DNA of the male-specific region of the human Y chromosome, the MSY. They contain many testis-specific genes and typically exhibit 99.97% intra-palindromic (arm-to-arm) sequence identity. This high degree of identity could be interpreted as evidence that the palindromes arose through duplication events that occurred about 100,000 years ago. Using comparative sequencing in great apes, we demonstrate here that at least six of these MSY palindromes predate the divergence of the human and chimpanzee lineages, which occurred about 5 million years ago. The arms of these palindromes must have subsequently engaged in gene conversion, driving the paired arms to evolve in concert. Indeed, analysis of MSY palindrome sequence variation in existing human populations provides evidence of recurrent arm-to-arm gene conversion in our species. We conclude that during recent evolution, an average of approximately 600 nucleotides per newborn male have undergone Y-Y gene conversion, which has had an important role in the evolution of multi-copy testis gene families in the MSY.
Collapse
Affiliation(s)
- Steve Rozen
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
942
|
|
943
|
Abstract
Much has been gained from genomic and evolutionary studies of species. Combining the perspectives of these different approaches suggests that an integrated phylogenomic approach will be beneficial.
Collapse
|
944
|
|
945
|
Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 2003; 13:1056-66. [PMID: 12799346 PMCID: PMC403660 DOI: 10.1101/gr.874803] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 2R hypothesis predicting two genome duplications at the origin of vertebrates is highly controversial. Studies published so far include limited sequence data from organisms close to the hypothesized genome duplications. Through the comparison of a gene catalog from amphioxus, the closest living invertebrate relative of vertebrates, to 3453 single-copy genes orthologous between Caenorhabditis elegans (C), Drosophila melanogaster (D), and Saccharomyces cerevisiae (Y), and to Ciona intestinalis ESTs, mouse, and human genes, we show with a large number of genes that the gene duplication activity is significantly higher after the separation of amphioxus and the vertebrate lineages, which we estimate at 650 million years (Myr). The majority of human orthologs of 195 CDY groups that could be dated by the molecular clock appear to be duplicated between 300 and 680 Myr with a mean at 488 million years ago (Mya). We detected 485 duplicated chromosomal segments in the human genome containing CDY orthologs, 331 of which are found duplicated in the mouse genome and within regions syntenic between human and mouse, indicating that these were generated earlier than the human-mouse split. Model based calculations of the codon substitution rate of the human genes included in these segments agree with the molecular clock duplication time-scale prediction. Our results favor at least one large duplication event at the origin of vertebrates, followed by smaller scale duplication closer to the bird-mammalian split.
Collapse
Affiliation(s)
- Georgia Panopoulou
- Evolution and Development Group, Department Professor H. Lehrach, Max-Planck Institut für Molekulare Genetik, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
946
|
Flint J, Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 2003; 13:310-6. [PMID: 12787795 DOI: 10.1016/s0959-437x(03)00049-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Idiopathic mental retardation is a common condition the origins of which are poorly understood. Following initial reports that small chromosomal rearrangements affecting telomeres could be an important aetiological contributor, several new methods for screening patients have been developed. Over the past few years, 22 studies have reported results from 2585 patients. The prevalence of abnormalities in the entire group is 5.1%; but the figure is higher (6.8%) in individuals with moderate to severe mental retardation. About half the cases are caused by a de novo deletion, and about half by a balanced translocation segregating in a patient's family. Despite the large sample size available, it is still not clear whether a combination of thorough clinical examination and assiduous cytogenetic investigation might not be as effective at detecting subtelomeric anomalies as molecular assays.
Collapse
Affiliation(s)
- Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
947
|
Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA, Carson AR, Parker-Katiraee L, Skaug J, Khaja R, Zhang J, Hudek AK, Li M, Haddad M, Duggan GE, Fernandez BA, Kanematsu E, Gentles S, Christopoulos CC, Choufani S, Kwasnicka D, Zheng XH, Lai Z, Nusskern D, Zhang Q, Gu Z, Lu F, Zeesman S, Nowaczyk MJ, Teshima I, Chitayat D, Shuman C, Weksberg R, Zackai EH, Grebe TA, Cox SR, Kirkpatrick SJ, Rahman N, Friedman JM, Heng HHQ, Pelicci PG, Lo-Coco F, Belloni E, Shaffer LG, Pober B, Morton CC, Gusella JF, Bruns GAP, Korf BR, Quade BJ, Ligon AH, Ferguson H, Higgins AW, Leach NT, Herrick SR, Lemyre E, Farra CG, Kim HG, Summers AM, Gripp KW, Roberts W, Szatmari P, Winsor EJT, Grzeschik KH, Teebi A, Minassian BA, Kere J, Armengol L, Pujana MA, Estivill X, Wilson MD, Koop BF, Tosi S, Moore GE, Boright AP, Zlotorynski E, Kerem B, Kroisel PM, Petek E, Oscier DG, Mould SJ, Döhner H, Döhner K, Rommens JM, Vincent JB, Venter JC, Li PW, Mural RJ, Adams MD, Tsui LC. Human chromosome 7: DNA sequence and biology. Science 2003; 300:767-72. [PMID: 12690205 PMCID: PMC2882961 DOI: 10.1126/science.1083423] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.
Collapse
Affiliation(s)
- Stephen W Scherer
- Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
948
|
Abstract
Large segmental duplications (SDs) constitute at least 3.6% of the human genome and have increased its size, complexity, and diversity. SDs can mediate ectopic sequence exchange resulting in gross chromosomal rearrangements that could contribute to speciation and disease. We have identified and evaluated a subset of human SDs that harbor an 88-member subfamily of olfactory receptor (OR)-like genes called the 7Es. At least 92% of these genes appear to be pseudogenes when compared to other OR genes. The 7E-containing SDs (7E SDs) have duplicated to at least 35 regions of the genome via intra- and interchromosomal duplication events. In contrast to many human SDs, the 7E SDs are not biased towards pericentromeric or subtelomeric regions. We find evidence for gene conversion among 7E genes and larger sequence exchange between 7E SDs, supporting the hypothesis that long, highly similar stretches of DNA facilitate ectopic interactions. The complex structure and history of the 7E SDs necessitates extension of the current model of large-scale DNA duplication. Despite their appearance as pseudogenes, some 7E genes exhibit a signature of purifying selection, and at least one 7E gene is expressed.
Collapse
Affiliation(s)
- Tera Newman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
949
|
Abstract
When the International Human Genome Sequencing Consortium (IHGSC) published its draft of the human genome in February 2001, several genes were identified as possible bacteria-to-vertebrate transfers (BVTs). These genes were identified by their highly significant sequence similarity to bacterial genes in BLAST searches, and by their lack of matches among non-vertebrate eukaryote genes. Many were later rejected as BVTs by several methods, including recovery of probable orthologs from the genomes of incompletely sequenced eukaryotes. Whereas the BVT issue has received considerable attention, there has been no compilation of all potential BVTs considered to date, nor any proposal of a single comprehensive method for rigorously establishing the veracity of a putative BVT. In reviewing the work to date, we list all of the proteins examined and propose systematic tests to investigate whether a vertebrate gene proposed as a BVT is indeed of bacterial origin. We use the proposed strategy to test--and reject--one of the BVTs from the original IHGSC list.
Collapse
Affiliation(s)
- Diane P Genereux
- Department of Biology, Graduate Program in Population Biology, Ecology and Evolution, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | | |
Collapse
|
950
|
Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL. Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome Res 2003; 13:369-81. [PMID: 12618367 PMCID: PMC430257 DOI: 10.1101/gr.490303] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent analyses of the structure of pericentromeric and subtelomeric regions have revealed that these particular regions of human chromosomes are often composed of blocks of duplicated genomic segments that have been associated with rapid evolutionary turnover among the genomes of closely related primates. In the present study, we show that euchromatic regions of human chromosome 5-5p14, 5p13, 5q13, 5q15-5q21-also display such an accumulation of segmental duplications. The structure, organization and evolution of those primate-specific sequences were studied in detail by combining in silico and comparative FISH analyses on human, chimpanzee, gorilla, orangutang, macaca, and capuchin chromosomes. Our results lend support to a two-step model of transposition duplication in the euchromatic regions, with a founder insertional event at the time of divergence between Platyrrhini and Catarrhini (25-35 million years ago) and an apparent burst of inter- and intrachromosomal duplications in the Hominidae lineage. Furthermore, phylogenetic analysis suggests that the chronology and, likely, molecular mechanisms, differ regarding the region of primary insertion-euchromatic versus pericentromeric regions. Lastly, we show that as their counterparts located near the heterochromatic region, the euchromatic segmental duplications have consistently reshaped their region of insertion during primate evolution, creating putative mosaic genes, and they are obvious candidates for causing ectopic rearrangements that have contributed to evolutionary/genomic instability.
Collapse
Affiliation(s)
- Anouk Courseaux
- Institut de Pharmacologie Moléculaire et Cellulaire Unité Mixte de Recherche-Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|