901
|
Venter JC, Levy S, Stockwell T, Remington K, Halpern A. Massive parallelism, randomness and genomic advances. Nat Genet 2003; 33 Suppl:219-27. [PMID: 12610531 DOI: 10.1038/ng1114] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In reviewing the past decade, it is clear that genomics was, and still is, driven by innovative technologies, perhaps more so than any other scientific area in recent memory. From the outset, computing, mathematics and new automated laboratory techniques have been key components in allowing the field to move forward rapidly. We highlight some key innovations that have come together to nurture the explosive growth that makes a new era of genomics a reality. We also document how these new approaches have fueled further innovations and discoveries.
Collapse
Affiliation(s)
- J Craig Venter
- The Center for the Advancement of Genomics, 1901 Research Blvd., Rockville, Maryland 20850, USA.
| | | | | | | | | |
Collapse
|
902
|
Lankenau S, Barnickel T, Marhold J, Lyko F, Mechler BM, Lankenau DH. Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products. Genetics 2003; 163:611-23. [PMID: 12618400 PMCID: PMC1462439 DOI: 10.1093/genetics/163.2.611] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted recombination products were viable. To gain insight into the underlying molecular processes we examined conversion tracts in the recombination products. In nearly all cases the I-SceI endonuclease site of the donor vector was replaced by the wild-type Nap1 sequence. This indicated exonuclease processing at the site of the double-strand break (DSB), followed by replicative repair at donor-target junctions. The targeting products are best interpreted either by the classical DSB repair model or by the break-induced recombination (BIR) model. Synthesis-dependent strand annealing (SDSA), which is another important recombinational repair pathway in the germline, does not explain ends-in targeting products. We conclude that this example of gene targeting at the Nap1 locus provides added support for the efficiency of this method and its usefulness in targeting any arbitrary locus in the Drosophila genome.
Collapse
Affiliation(s)
- Susanne Lankenau
- Department of Zoology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
903
|
Abstract
Centromeres are the site for kinetochore formation and spindle attachment and are embedded in heterochromatin in most eukaryotes. The repeat-rich nature of heterochromatin has hindered obtaining a detailed understanding of the composition and organization of heterochromatic and centromeric DNA sequences. Here, we report the results of extensive sequence analysis of a fully functional centromere present in the Drosophila Dp1187 minichromosome. Approximately 8.4% (31 kb) of the highly repeated satellite DNA (AATAT and TTCTC) was sequenced, representing the largest data set of Drosophila satellite DNA sequence to date. Sequence analysis revealed that the orientation of the arrays is uniform and that individual repeats within the arrays mostly differ by rare, single-base polymorphisms. The entire complex DNA component of this centromere (69.7 kb) was sequenced and assembled. The 39-kb "complex island" Maupiti contains long stretches of a complex A+T rich repeat interspersed with transposon fragments, and most of these elements are organized as direct repeats. Surprisingly, five single, intact transposons are directly inserted at different locations in the AATAT satellite arrays. We find no evidence for centromere-specific sequences within this centromere, providing further evidence for sequence-independent, epigenetic determination of centromere identity and function in higher eukaryotes. Our results also demonstrate that the sequence composition and organization of large regions of centric heterochromatin can be determined, despite the presence of repeated DNA.
Collapse
Affiliation(s)
- Xiaoping Sun
- Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
904
|
Abstract
The need to turn raw data into knowledge has led the bioinformatics field to focus increasingly on the manipulation of information. By drawing parallels with both cryptography and artificial intelligence, we can develop an understanding of the changes that are occurring in bioinformatics, and how these changes are likely to influence the bioinformatics job market.
Collapse
Affiliation(s)
- Crispin J Miller
- Paterson Institute for Cancer Research, Christie Hospital, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | |
Collapse
|
905
|
Zabarovska V, Kutsenko AS, Petrenko L, Kilosanidze G, Ljungqvist O, Norin E, Midtvedt T, Winberg G, Möllby R, Kashuba VI, Ernberg I, Zabarovsky ER. NotI passporting to identify species composition of complex microbial systems. Nucleic Acids Res 2003; 31:E5-5. [PMID: 12527794 PMCID: PMC140530 DOI: 10.1093/nar/gng005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We describe here a new method for large-scale scanning of microbial genomes on a quantitative and qualitative basis. To achieve this aim we propose to create NotI passports: databases containing NotI tags. We demonstrated that these tags comprising 19 bp of sequence information could be successfully generated using DNA isolated from intestinal or fecal samples. Such NotI passports allow the discrimination between closely related bacterial species and even strains. This procedure for generating restriction site tagged sequences (RSTS) is called passporting and can be adapted to any other rare cutting restriction enzyme. A comparison of 1312 tags from available sequenced Escherichia coli genomes, generated with the NotI, PmeI and SbfI restriction enzymes, revealed only 219 tags that were not unique. None of these tags matched human or rodent sequences. Therefore the approach allows analysis of complex microbial mixtures such as in human gut and identification with high accuracy of a particular bacterial strain on a quantitative and qualitative basis.
Collapse
Affiliation(s)
- Veronika Zabarovska
- Microbiology and Tumor Biology Center, Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
906
|
Montalta-He H, Reichert H. Impressive expressions: developing a systematic database of gene-expression patterns in Drosophila embryogenesis. Genome Biol 2003; 4:205. [PMID: 12620112 PMCID: PMC151295 DOI: 10.1186/gb-2003-4-2-205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of a database of gene-expression patterns derived from systematic high-throughput in situ hybridization studies on whole-mount Drosophila embryos, together with new information on the reannotated Drosophila genome and several recent microarray-based genomic analyses of Drosophila development, vastly increase the breadth and depth that can be reached by developmental genetics.
Collapse
Affiliation(s)
- Haiqiong Montalta-He
- Institute of Zoology, Biocenter/Pharmacenter, Klingelbergstrasse 50, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
907
|
Abstract
The Phusion assembler has assembled the mouse genome from the whole-genome shotgun (WGS) dataset collected by the Mouse Genome Sequencing Consortium, at ~7.5x sequence coverage, producing a high-quality draft assembly 2.6 gigabases in size, of which 90% of these bases are in 479 scaffolds. For the mouse genome, which is a large and repeat-rich genome, the input dataset was designed to include a high proportion of paired end sequences of various size selected inserts, from 2-200 kbp lengths, into various host vector templates. Phusion uses sequence data, called reads, and information about reads that share common templates, called read pairs, to drive the assembly of this large genome to highly accurate results. The preassembly stage, which clusters the reads into sensible groups, is a key element of the entire assembler, because it permits a simple approach to parallelization of the assembly stage, as each cluster can be treated independent of the others. In addition to the application of Phusion to the mouse genome, we will also present results from the WGS assembly of Caenorhabditis briggsae sequenced to about 11x coverage. The C. briggsae assembly was accessioned through EMBL, http://www.ebi.ac.uk/services/index.html, using the series CAAC01000001-CAAC01000578, however, the Phusion mouse assembly described here was not accessioned. The mouse data was generated by the Mouse Genome Sequencing Consortium. The C. briggsae sequence was generated at The Wellcome Trust Sanger Institute and the Genome Sequencing Center, Washington University School of Medicine.
Collapse
Affiliation(s)
- James C Mullikin
- Informatics Department, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | |
Collapse
|
908
|
Affiliation(s)
- Andrew P Boright
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
909
|
Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody MC, Lander ES. Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 2003; 13:91-6. [PMID: 12529310 PMCID: PMC430950 DOI: 10.1101/gr.828403] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 10/30/2002] [Indexed: 10/27/2022]
Abstract
We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rejoined using several criteria, yielding a 64-fold increase in length (N50), and apparent elimination of all global misjoins; (2) gaps between contigs in supercontigs were filled (partially or completely) by insertion of reads, as suggested by pairing within the supercontig, increasing the N50 contig length by 50%; (3) memory usage was reduced fourfold. The outcome of this mouse assembly and its analysis are described in (Mouse Genome Sequencing Consortium 2002).
Collapse
Affiliation(s)
- David B Jaffe
- Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts 02141, USA.
| | | | | | | | | | | | | | | |
Collapse
|
910
|
Tammi MT, Arner E, Andersson B. TRAP: Tandem Repeat Assembly Program produces improved shotgun assemblies of repetitive sequences. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2003; 70:47-59. [PMID: 12468126 DOI: 10.1016/s0169-2607(01)00194-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The software commonly used for assembly of shotgun sequence data has several limitations. One such limitation becomes obvious when repetitive sequences are encountered. Shotgun assembly is a difficult task, even for non-repetitive regions, but the use of quality assessments of the data and efficient matching algorithms have made it possible to assemble most sequences efficiently. In the case of highly repetitive sequences, however, these algorithms fail to distinguish between sequencing errors and single base differences in regions containing nearly identical repeats. None of the currently available fragment assembly programs are able to correctly assemble highly similar repetitive data, and we, therefore, present a novel shotgun assembly program, Tandem Repeat Assembly Program (TRAP). The main feature of this program is the ability to separate long repetitive regions from each other by distinguishing single base substitutions as well as insertions/deletions from sequencing errors. This is accomplished by using a novel multiple-alignment based analysis method. Since repeats are a common complication in most sequencing projects, this software should be of use for the whole sequencing community.
Collapse
Affiliation(s)
- Martti T Tammi
- Department of Genetics and Pathology, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | | | | |
Collapse
|
911
|
Blumenstiel JP, Hartl DL, Lozovsky ER. Patterns of insertion and deletion in contrasting chromatin domains. Mol Biol Evol 2002; 19:2211-25. [PMID: 12446812 DOI: 10.1093/oxfordjournals.molbev.a004045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transposable elements (TEs) play a fundamental role in the evolution of genomes. In Drosophila they are disproportionately represented in regions of low recombination, such as in heterochromatin. This pattern has been attributed to selection against repeated elements in regions of normal recombination, owing to either (1) the slightly deleterious position effects of TE insertions near or into genes, or (2) strong selection against chromosomal abnormalities arising from ectopic exchange between TE repeats. We have used defective non-long-terminal repeat (LTR) TEs that are "dead-on-arrival" (DOA) and unable to transpose in order to estimate spontaneous deletion rates in different constituents of chromatin. These elements have previously provided evidence for an extremely high rate of spontaneous deletion in Drosophila as compared with mammals, potentially explaining at least part of the differences in the genome sizes in these organisms. However, rates of deletion could be overestimated due to positive selection for a smaller likelihood of ectopic exchange. In this article, we show that rates of spontaneous deletion in DOA repeats are as high in heterochromatin and regions of euchromatin with low recombination as they are in regions of euchromatin with normal recombination. We have also examined the age distribution of five non-LTR families throughout the genome. We show that there is substantial variation in the historical pattern of transposition of these TEs. The overrepresentation of TEs in the heterochromatin is primarily due to their longer retention time in heterochromatin, as evidenced by the average time since insertion. Fragments inserted recently are much more evenly distributed in the genome. This contrast demonstrates that the accumulation of TEs in heterochromatin and in euchromatic regions of low recombination is not due to biased transposition but by greater probabilities of fixation in these regions relative to regions of normal recombination.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
912
|
Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O, Weissenbach J, Roest Crollius H. Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci U S A 2002; 99:13636-41. [PMID: 12368471 PMCID: PMC129727 DOI: 10.1073/pnas.202284199] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Indexed: 11/18/2022] Open
Abstract
Tetraodon nigroviridis is among the smallest known vertebrate genomes and as such represents an interesting model for studying genome architecture and evolution. Previous studies have shown that Tetraodon contains several types of tandem and dispersed repeats, but that their overall contribution is >10% of the genome. Using genomic library hybridization, fluorescent in situ hybridization, and whole genome shotgun and directed sequencing, we have investigated the global and local organization of repeat sequences in Tetraodon. We show that both tandem and dispersed repeat elements are compartmentalized in specific regions that correspond to the short arms of small subtelocentric chromosomes. The concentration of repeats in these heterochromatic regions is in sharp contrast to their paucity in euchromatin. In addition, we have identified a number of pseudogenes that have arisen through either duplication of genes or the retro-transcription of mRNAs. These pseudogenes are amplified to high numbers, some with more than 200 copies, and remain almost exclusively located in the same heterochromatic regions as transposable elements. The sequencing of one such heterochromatic region reveals a complex pattern of duplications and inversions, reminiscent of active and frequent rearrangements that can result in the truncation and hence inactivation of transposable elements. This tight compartmentalization of repeats and pseudogenes is absent in large vertebrate genomes such as mammals and is reminiscent of genomes that remain compact during evolution such as Drosophila and Arabidopsis.
Collapse
Affiliation(s)
- Corinne Dasilva
- Genoscope and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8030, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | | | | | | | | | | |
Collapse
|
913
|
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, et alHolt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002; 298:129-49. [PMID: 12364791 DOI: 10.1126/science.1076181] [Show More Authors] [Citation(s) in RCA: 1427] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
Collapse
Affiliation(s)
- Robert A Holt
- Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
914
|
Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 2002; 419:512-9. [PMID: 12368865 DOI: 10.1038/nature01099] [Citation(s) in RCA: 539] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 08/30/2002] [Indexed: 12/18/2022]
Abstract
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.
Collapse
Affiliation(s)
- Jane M Carlton
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
915
|
Knudson DL, Brown SE, Severson DW. Culicine genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1193-1197. [PMID: 12225910 DOI: 10.1016/s0965-1748(02)00082-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Dennis L Knudson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
916
|
Mathé C, Sagot MF, Schiex T, Rouzé P. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 2002; 30:4103-17. [PMID: 12364589 PMCID: PMC140543 DOI: 10.1093/nar/gkf543] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Revised: 08/07/2002] [Accepted: 08/07/2002] [Indexed: 11/14/2022] Open
Abstract
While the genomes of many organisms have been sequenced over the last few years, transforming such raw sequence data into knowledge remains a hard task. A great number of prediction programs have been developed that try to address one part of this problem, which consists of locating the genes along a genome. This paper reviews the existing approaches to predicting genes in eukaryotic genomes and underlines their intrinsic advantages and limitations. The main mathematical models and computational algorithms adopted are also briefly described and the resulting software classified according to both the method and the type of evidence used. Finally, the several difficulties and pitfalls encountered by the programs are detailed, showing that improvements are needed and that new directions must be considered.
Collapse
Affiliation(s)
- Catherine Mathé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089, 205 route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
917
|
Abstract
Studies in cell-free systems and the lamprey giant synapse have implicated crucial roles for amphiphysin and endophilin in synaptic transmission. However, null mutants at the amphiphysin locus of Drosophila are viable and have no demonstrable synaptic vesicle-recycling defect. This has necessitated a re-examination of the role of Src homology 3 domain-containing proteins in synaptic vesicle recycling. In this report, we show that endophilin-deficient eye clones in Drosophila have an altered electroretinogram. A characteristic of this defect is its aggravation during heightened visual stimulation. It is shown that endophilin is primarily required in the nervous system. Decreased endophilin activity results in alterations in the neuromuscular junction structure and physiology. Immunofluorescence studies show colocalization of endophilin with dynamin consistent with a possible role in synaptic vesicle recycling.
Collapse
|
918
|
Miyoshi H, Dwyer DS, Keiper BD, Jankowska-Anyszka M, Darzynkiewicz E, Rhoads RE. Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO J 2002; 21:4680-90. [PMID: 12198170 PMCID: PMC126203 DOI: 10.1093/emboj/cdf473] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 07/16/2002] [Accepted: 07/17/2002] [Indexed: 01/12/2023] Open
Abstract
Primitive eukaryotes like Caenorhabditis elegans produce mRNAs capped with either m(7)GTP or m(3)(2,2,7)GTP. Caenorhabditis elegans also expresses five isoforms of the cap-binding protein eIF4E. Some isoforms (e.g. IFE-3) bind to m(7)GTP-Sepharose exclusively, whereas others (e.g. IFE-5) bind to both m(7)GTP- and m(3)(2,2,7)GTP-Sepharose. To examine specificity differences, we devised molecular models of the tertiary structures of IFE-3 and IFE-5, based on the known structure of mouse eIF4E-1. We then substituted amino acid sequences of IFE-5 with homologous sequences from IFE-3. As few as two changes (N64Y/V65L) converted the cap specificity of IFE-5 to essentially that of IFE-3. Molecular dynamics simulations suggested that the width and depth of the cap-binding cavity were larger in IFE-5 than in IFE-3 or the N64Y/V65L variant, supporting a model in which IFE-3 discriminates against m(3)(2,2,7)GTP by steric hindrance. Furthermore, the affinity of IFE-5 (but not IFE-3) for m(3)(2,2,7)GTP was reversibly increased when thiol reagents were removed. This was correlated with the formation of a disulfide bond between Cys-122 and Cys-126. Thus, translation of m(3)(2,2,7)GTP-capped mRNAs may be regulated by intracellular redox state.
Collapse
Affiliation(s)
- Hiroshi Miyoshi
- Departments of Biochemistry and Molecular Biology and
Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA and Departments of Chemistry and Biophysics, University of Warsaw, 02-093 Warsaw, Poland Present address: Genomics Research Institute, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan Corresponding author e-mail:
| | - Donard S. Dwyer
- Departments of Biochemistry and Molecular Biology and
Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA and Departments of Chemistry and Biophysics, University of Warsaw, 02-093 Warsaw, Poland Present address: Genomics Research Institute, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan Corresponding author e-mail:
| | | | - Marzena Jankowska-Anyszka
- Departments of Biochemistry and Molecular Biology and
Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA and Departments of Chemistry and Biophysics, University of Warsaw, 02-093 Warsaw, Poland Present address: Genomics Research Institute, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan Corresponding author e-mail:
| | - Edward Darzynkiewicz
- Departments of Biochemistry and Molecular Biology and
Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA and Departments of Chemistry and Biophysics, University of Warsaw, 02-093 Warsaw, Poland Present address: Genomics Research Institute, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan Corresponding author e-mail:
| | - Robert E. Rhoads
- Departments of Biochemistry and Molecular Biology and
Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA and Departments of Chemistry and Biophysics, University of Warsaw, 02-093 Warsaw, Poland Present address: Genomics Research Institute, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan Corresponding author e-mail:
| |
Collapse
|
919
|
Ronshaugen M, McGinnis N, Inglis D, Chou D, Zhao J, McGinnis W. Structure and expression patterns of Drosophila TULP and TUSP, members of the tubby-like gene family. Mech Dev 2002; 117:209-15. [PMID: 12204260 DOI: 10.1016/s0925-4773(02)00211-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tubby is a mouse gene that may provide a model for adult-onset obesity in humans. It is a member of a four gene family in mammals that collectively encode the Tubby-like proteins (TULPs), putative transcription factors which share similar 260 amino acid 'tubby domains' at their C-termini. The mammalian genome also encodes distant relatives of TULPs, which have been called TUSPs (tubby domain superfamily proteins). We have characterized the transcription unit of the single Drosophila TULP homolog, analyzed the expression pattern of the Drosophila TULP and TUSP genes, and determined the evolutionary relationships between the Drosophila proteins and members of the tubby domain superfamily in other organisms. Interestingly, like its mammalian homologs, Drosophila TULP is principally expressed in the embryonic central and peripheral nervous systems. This suggests that mammalian and Drosophila TULPs may possess some conserved functional properties in the nervous system. The Drosophila TUSP gene is also expressed in the central nervous system and olfactory organ but in few other peripheral sensory organs.
Collapse
Affiliation(s)
- Matthew Ronshaugen
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | |
Collapse
|
920
|
Liu H, Jang JK, Kato N, McKim KS. mei-P22Encodes a Chromosome-Associated Protein Required for the Initiation of Meiotic Recombination inDrosophila melanogaster. Genetics 2002; 162:245-58. [PMID: 12242237 PMCID: PMC1462256 DOI: 10.1093/genetics/162.1.245] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractDouble-strand breaks (DSB) initiate meiotic recombination in a variety of organisms. Here we present genetic evidence that the mei-P22 gene is required for the induction of DSBs during meiotic prophase in Drosophila females. Strong mei-P22 mutations eliminate meiotic crossing over and suppress the sterility of DSB repair-defective mutants. Interestingly, crossing over in mei-P22 mutants can be restored to almost 50% of wild-type by X irradiation. In addition, an antibody-based assay was used to demonstrate that DSBs are not formed in mei-P22 mutants. This array of phenotypes is identical to that of mei-W68 mutants; mei-W68 encodes the Drosophila Spo11 homolog that is proposed to be an enzyme required for DSB formation. Consistent with a direct role in DSB formation, mei-P22 encodes a basic 35.7-kD protein, which, when examined by immunofluorescence, localizes to foci on meiotic chromosomes. MEI-P22 foci appear transiently in early meiotic prophase, which is when meiotic recombination is believed to initiate. By using an antibody to C(3)G as a marker for synaptonemal complex (SC) formation, we observed that SC is present before MEI-P22 associates with the chromosomes, thus providing direct evidence that the development of SC precedes the initiation of meiotic recombination. Similarly, we found that MEI-P22 foci did not appear in a c(3)G mutant in which SC does not form, suggesting that DSB formation is dependent on SC formation in Drosophila. We propose that MEI-P22 interacts with meiosis-specific chromosome proteins to facilitate DSB creation by MEI-W68.
Collapse
Affiliation(s)
- Hao Liu
- Waksman Institute and Department of Genetics, Rutgers State University of New Jersey, Piscataway, New Jersey 08854-8020, USA
| | | | | | | |
Collapse
|
921
|
Giráldez AJ, Pérez L, Cohen SM. A naturally occurring alternative product of the mastermind locus that represses notch signalling. Mech Dev 2002; 115:101-5. [PMID: 12049771 DOI: 10.1016/s0925-4773(02)00124-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mastermind locus encodes a nuclear protein required in the Notch signalling pathway. In a screen for genes affecting wing pattern, we identified an EP element that directs expression of an alternatively spliced form of the mastermind transcript that we call mam[DN]. Unlike the conventional mam transcript, mam[DN] is spatially regulated in the developing embryonic nervous system and eye imaginal disc. mam[DN] corresponds to an endogenous transcript and encodes an alternate form of the Mam protein that dominantly interferes with activity of the conventional Mam protein. Mam[DN] blocks Notch signalling downstream from the activated form of Notch but cannot interfere with an activated form of Su(H), suggesting that Mam[DN] may interfere with the activity of a ternary complex involving Mam, Notch and Su(H).
Collapse
Affiliation(s)
- Antonio J Giráldez
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
922
|
Swan KA, Curtis DE, McKusick KB, Voinov AV, Mapa FA, Cancilla MR. High-throughput gene mapping in Caenorhabditis elegans. Genome Res 2002; 12:1100-5. [PMID: 12097347 PMCID: PMC186621 DOI: 10.1101/gr.208902] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.
Collapse
Affiliation(s)
- Kathryn A Swan
- Exelixis, Inc., South San Francisco, California 94083-0511, USA
| | | | | | | | | | | |
Collapse
|
923
|
Shevchenko Y, Bouffard GG, Butterfield YSN, Blakesley RW, Hartley JL, Young AC, Marra MA, Jones SJM, Touchman JW, Green ED. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res 2002; 30:2469-77. [PMID: 12034835 PMCID: PMC117195 DOI: 10.1093/nar/30.11.2469] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale 'shotgun-style' sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.
Collapse
Affiliation(s)
- Yuriy Shevchenko
- NIH Intramural Sequencing Center, National Institutes of Health, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
924
|
Bartolomé C, Maside X, Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 2002; 19:926-37. [PMID: 12032249 DOI: 10.1093/oxfordjournals.molbev.a004150] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The abundance and distribution of transposable elements (TEs) in a representative part of the euchromatic genome of Drosophila melanogaster were studied by analyzing the sizes and locations of TEs of all known families in the genomic sequences of chromosomes 2R, X, and 4. TEs contribute to up to 2% of the sequenced DNA, which corresponds roughly to the euchromatin of these chromosomes. This estimate is lower than that previously available from in situ data and suggests that TEs accumulate in the heterochromatin more intensively than was previously thought. We have also found that TEs are not distributed at random in the chromosomes and that their abundance is more strongly associated with local recombination rates, rather than with gene density. The results are compatible with the ectopic exchange model, which proposes that selection against deleterious effects of chromosomal rearrangements is a major force opposing element spread in the genome of this species. Selection against insertional mutations also influences the observed patterns, such as an absence of insertions in coding regions. The results of the analyses are discussed in the light of recent findings on the distribution of TEs in other species.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Ashworth Laboratories, Institute of Cell, Animal and Population Biology, University of Edinburgh
| | | | | |
Collapse
|
925
|
Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GLG, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J, Salzberg SL, Holt RA, Kodira CD, Lu F, Chen L, Deng Z, Evangelista CC, Gan W, Heiman TJ, Li J, Li Z, Merkulov GV, Milshina NV, Naik AK, Qi R, Shue BC, Wang A, Wang J, Wang X, Yan X, Ye J, Yooseph S, Zhao Q, Zheng L, Zhu SC, Biddick K, Bolanos R, Delcher AL, Dew IM, Fasulo D, Flanigan MJ, Huson DH, Kravitz SA, Miller JR, Mobarry CM, Reinert K, Remington KA, Zhang Q, Zheng XH, Nusskern DR, Lai Z, Lei Y, Zhong W, Yao A, Guan P, Ji RR, Gu Z, Wang ZY, Zhong F, Xiao C, Chiang CC, Yandell M, Wortman JR, Amanatides PG, Hladun SL, Pratts EC, Johnson JE, Dodson KL, Woodford KJ, Evans CA, Gropman B, Rusch DB, Venter E, Wang M, Smith TJ, Houck JT, Tompkins DE, Haynes C, Jacob D, Chin SH, Allen DR, Dahlke CE, Sanders R, Li K, Liu X, Levitsky AA, Majoros WH, Chen Q, Xia AC, Lopez JR, Donnelly MT, Newman MH, Glodek A, Kraft CL, Nodell M, Ali F, An HJ, Baldwin-Pitts D, Beeson KY, Cai S, et alMural RJ, Adams MD, Myers EW, Smith HO, Miklos GLG, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J, Salzberg SL, Holt RA, Kodira CD, Lu F, Chen L, Deng Z, Evangelista CC, Gan W, Heiman TJ, Li J, Li Z, Merkulov GV, Milshina NV, Naik AK, Qi R, Shue BC, Wang A, Wang J, Wang X, Yan X, Ye J, Yooseph S, Zhao Q, Zheng L, Zhu SC, Biddick K, Bolanos R, Delcher AL, Dew IM, Fasulo D, Flanigan MJ, Huson DH, Kravitz SA, Miller JR, Mobarry CM, Reinert K, Remington KA, Zhang Q, Zheng XH, Nusskern DR, Lai Z, Lei Y, Zhong W, Yao A, Guan P, Ji RR, Gu Z, Wang ZY, Zhong F, Xiao C, Chiang CC, Yandell M, Wortman JR, Amanatides PG, Hladun SL, Pratts EC, Johnson JE, Dodson KL, Woodford KJ, Evans CA, Gropman B, Rusch DB, Venter E, Wang M, Smith TJ, Houck JT, Tompkins DE, Haynes C, Jacob D, Chin SH, Allen DR, Dahlke CE, Sanders R, Li K, Liu X, Levitsky AA, Majoros WH, Chen Q, Xia AC, Lopez JR, Donnelly MT, Newman MH, Glodek A, Kraft CL, Nodell M, Ali F, An HJ, Baldwin-Pitts D, Beeson KY, Cai S, Carnes M, Carver A, Caulk PM, Center A, Chen YH, Cheng ML, Coyne MD, Crowder M, Danaher S, Davenport LB, Desilets R, Dietz SM, Doup L, Dullaghan P, Ferriera S, Fosler CR, Gire HC, Gluecksmann A, Gocayne JD, Gray J, Hart B, Haynes J, Hoover J, Howland T, Ibegwam C, Jalali M, Johns D, Kline L, Ma DS, MacCawley S, Magoon A, Mann F, May D, McIntosh TC, Mehta S, Moy L, Moy MC, Murphy BJ, Murphy SD, Nelson KA, Nuri Z, Parker KA, Prudhomme AC, Puri VN, Qureshi H, Raley JC, Reardon MS, Regier MA, Rogers YHC, Romblad DL, Schutz J, Scott JL, Scott R, Sitter CD, Smallwood M, Sprague AC, Stewart E, Strong RV, Suh E, Sylvester K, Thomas R, Tint NN, Tsonis C, Wang G, Wang G, Williams MS, Williams SM, Windsor SM, Wolfe K, Wu MM, Zaveri J, Chaturvedi K, Gabrielian AE, Ke Z, Sun J, Subramanian G, Venter JC, Pfannkoch CM, Barnstead M, Stephenson LD. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 2002; 296:1661-71. [PMID: 12040188 DOI: 10.1126/science.1069193] [Show More Authors] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
Collapse
Affiliation(s)
- Richard J Mural
- Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
926
|
Affiliation(s)
- Neal G Copeland
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, 21702, USA.
| | | | | |
Collapse
|
927
|
Wang J, Wong GKS, Ni P, Han Y, Huang X, Zhang J, Ye C, Zhang Y, Hu J, Zhang K, Xu X, Cong L, Lu H, Ren X, Ren X, He J, Tao L, Passey DA, Wang J, Yang H, Yu J, Li S. RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res 2002; 12:824-31. [PMID: 11997349 PMCID: PMC186573 DOI: 10.1101/gr.165102] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact 20mer repeats from the shotgun data and removes them prior to the assembly. The established software is used to compute meaningful error probabilities for each base. Clone-end-pairing information is used to construct scaffolds that order and orient the contigs. We show with real data for human and rice that reasonable assemblies are possible even at coverages of only 4x to 6x, despite having up to 42.2% in exact repeats.
Collapse
Affiliation(s)
- Jun Wang
- Hangzhou Genomics Institute, Institute of Bioinformatics of Zhejiang University, Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou 310007, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
928
|
Affiliation(s)
- Ardeshir Bayat
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester M13 9PT.
| |
Collapse
|
929
|
Ueda HR, Matsumoto A, Kawamura M, Iino M, Tanimura T, Hashimoto S. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 2002; 277:14048-52. [PMID: 11854264 DOI: 10.1074/jbc.c100765200] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circadian rhythms govern the behavior, physiology, and metabolism of living organisms. Recent studies have revealed the role of several genes in the clock mechanism both in Drosophila and in mammals. To study how gene expression is globally regulated by the clock mechanism, we used a high density oligonucleotide probe array (GeneChip) to profile gene expression patterns in Drosophila under light-dark and constant dark conditions. We found 712 genes showing a daily fluctuation in mRNA levels under light-dark conditions, and among these the expression of 115 genes was still cycling in constant darkness, i.e. under free-running conditions. Unexpectedly the expression of a large number of genes cycled exclusively under constant darkness. We found that cycling in most of these genes was lost in the arrhythmic Clock (Clk) mutant under light-dark conditions. Expression of periodically regulated genes is coordinated locally on chromosomes where small clusters of genes are regulated jointly. Our findings reveal that many genes involved in diverse functions are under circadian control and reveal the complexity of circadian gene expression in Drosophila.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
930
|
Myers EW, Sutton GG, Smith HO, Adams MD, Venter JC. On the sequencing and assembly of the human genome. Proc Natl Acad Sci U S A 2002; 99:4145-6. [PMID: 11904395 PMCID: PMC123615 DOI: 10.1073/pnas.092136699] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eugene W Myers
- Celera Genomics, 45 W. Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
931
|
Affiliation(s)
- Phil Green
- Howard Hughes Medical Institute and University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
932
|
Abstract
Drosophila melanogaster TDVDHVFLRFamide (DMS), SDNFMRFamide, and pEVRFRQCYFNPISCF (FLT) represent three structurally distinct peptide families. Each peptide decreases heart rate albeit with different magnitudes and time-dependent responses. DMS and FLT are expressed in the crop and decrease crop motility; however, SDNFMRFamide expression and effect on the crop has not been reported. These data suggest the peptides have different physiological roles. The peptides have non-overlapping expression patterns in neural tissue, which suggests different mechanisms regulate their synthesis and release. The structures, expression patterns, and activities of the myotropins suggest they have important but different roles in biology and different signaling pathways.
Collapse
Affiliation(s)
- J Merte
- Department of Biological Chemistry, University of Michigan, 830 N. University Avenue, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
933
|
Schug J, Diskin S, Mazzarelli J, Brunk BP, Stoeckert CJ. Predicting gene ontology functions from ProDom and CDD protein domains. Genome Res 2002; 12:648-55. [PMID: 11932249 PMCID: PMC187511 DOI: 10.1101/gr.222902] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A heuristic algorithm for associating Gene Ontology (GO) defined molecular functions to protein domains as listed in the ProDom and CDD databases is described. The algorithm generates rules for function-domain associations based on the intersection of functions assigned to gene products by the GO consortium that contain ProDom and/or CDD domains at varying levels of sequence similarity. The hierarchical nature of GO molecular functions is incorporated into rule generation. Manual review of a subset of the rules generated indicates an accuracy rate of 87% for ProDom rules and 84% for CDD rules. The utility of these associations is that novel sequences can be assigned a putative function if sufficient similarity exists to a ProDom or CDD domain for which one or more GO functions has been associated. Although functional assignments are increasingly being made for gene products from model organisms, it is likely that the needs of investigators will continue to outpace the efforts of curators, particularly for nonmodel organisms. A comparison with other methods in terms of coverage and agreement was performed, indicating the utility of the approach. The domain-function associations and function assignments are available from our website http://www.cbil.upenn.edu/GO.
Collapse
Affiliation(s)
- Jonathan Schug
- Center for Bioinformatics, Computational Biology and Informatics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
934
|
Abstract
An original tetrahedral representation of the Genetic Code (GC) that better describes its structure, degeneration and evolution trends is defined. The possibility to reduce the dimension of the representation by projecting the GC tetrahedron on an adequately oriented plane is also analyzed, leading to some equivalent complex representations of the GC. On these bases, optimal symbolic-to-digital mappings of the linear, nucleic acid strands into real or complex genomic signals are derived at nucleotide, codon and amino acid levels. By converting the sequences of nucleotides and polypeptides into digital genomic signals, this approach offers the possibility to use a large variety of signal processing methods for their handling and analysis. It is also shown that some essential features of the nucleotide sequences can be better extracted using this representation. Specifically, the paper reports for the first time the existence of a global helicoidal wrapping of the complex representations of the bases along DNA sequences, a large scale trend of genomic signals. New tools for genomic signal analysis, including the use of phase, aggregated phase, unwrapped phase, sequence path, stem representation of components' relative frequencies, as well as analysis of the transitions are introduced at the nucleotide, codon and amino acid levels, and in a multiresolution approach.
Collapse
Affiliation(s)
- P D Cristea
- Bio-Medical Engineering Center, Politehnica University of Bucharest, Romania.
| |
Collapse
|
935
|
Giunta KL, Jang JK, Manheim EA, Subramanian G, McKim KS. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics 2002; 160:1489-501. [PMID: 11973304 PMCID: PMC1462067 DOI: 10.1093/genetics/160.4.1489] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The female meiotic spindle lacks a centrosome or microtubule-organizing center in many organisms. During cell division, these spindles are organized by the chromosomes and microtubule-associated proteins. Previous studies in Drosophila melanogaster implicated at least one kinesin motor protein, NCD, in tapering the microtubules into a bipolar spindle. We have identified a second Drosophila kinesin-like protein, SUB, that is required for meiotic spindle function. At meiosis I in males and females, sub mutations affect only the segregation of homologous chromosomes. In female meiosis, sub mutations have a similar phenotype to ncd; even though chromosomes are joined by chiasmata they fail to segregate at meiosis I. Cytological analyses have revealed that sub is required for bipolar spindle formation. In sub mutations, we observed spindles that were unipolar, multipolar, or frayed with no defined poles. On the basis of these phenotypes and the observation that sub mutations genetically interact with ncd, we propose that SUB is one member of a group of microtubule-associated proteins required for bipolar spindle assembly in the absence of the centrosomes. sub is also required for the early embryonic divisions but is otherwise dispensable for most mitotic divisions.
Collapse
Affiliation(s)
- Kelly L Giunta
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
936
|
Abstract
The emergence of proteomics, the large-scale analysis of proteins, has been inspired by the realization that the final product of a gene is inherently more complex and closer to function than the gene itself. Shortfalls in the ability of bioinformatics to predict both the existence and function of genes have also illustrated the need for protein analysis. Moreover, only through the study of proteins can posttranslational modifications be determined, which can profoundly affect protein function. Proteomics has been enabled by the accumulation of both DNA and protein sequence databases, improvements in mass spectrometry, and the development of computer algorithms for database searching. In this review, we describe why proteomics is important, how it is conducted, and how it can be applied to complement other existing technologies. We conclude that currently, the most practical application of proteomics is the analysis of target proteins as opposed to entire proteomes. This type of proteomics, referred to as functional proteomics, is always driven by a specific biological question. In this way, protein identification and characterization has a meaningful outcome. We discuss some of the advantages of a functional proteomics approach and provide examples of how different methodologies can be utilized to address a wide variety of biological problems.
Collapse
Affiliation(s)
- Paul R Graves
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
937
|
Abstract
Genetic screens in Drosophila melanogaster have helped elucidate the process of axis formation during early embryogenesis. Axis formation in the D. melanogaster embryo involves the use of two fundamentally different mechanisms for generating morphogenetic activity: patterning the anteroposterior axis by diffusion of a transcription factor within the syncytial embryo and specification of the dorsoventral axis through a signal transduction cascade. Identification of Drosophila genes involved in axis formation provides a launch-pad for comparative studies that examine the evolution of axis specification in different insects. Additionally, there is similarity between axial patterning mechanisms elucidated genetically in Drosophila and those demonstrated for chordates such as Xenopus. In this review we examine the postfertilization mechanisms underlying axis specification in Drosophila. Comparative data are then used to ask whether aspects of axis formation might be derived or ancestral.
Collapse
Affiliation(s)
- S Lall
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
938
|
Zabarovska VI, Gizatullin RZ, Al-Amin AN, Podowski R, Protopopov AI, Löfdahl S, Wahlestedt C, Winberg G, Kashuba VI, Ernberg I, Zabarovsky ER. A new approach to genome mapping and sequencing: slalom libraries. Nucleic Acids Res 2002; 30:E6. [PMID: 11788732 PMCID: PMC99845 DOI: 10.1093/nar/30.2.e6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe here an efficient strategy for simultaneous genome mapping and sequencing. The approach is based on physically oriented, overlapping restriction fragment libraries called slalom libraries. Slalom libraries combine features of general genomic, jumping and linking libraries. Slalom libraries can be adapted to different applications and two main types of slalom libraries are described in detail. This approach was used to map and sequence (with approximately 46% coverage) two human P1-derived artificial chromosome (PAC) clones, each of approximately 100 kb. This model experiment demonstrates the feasibility of the approach and shows that the efficiency (cost-effectiveness and speed) of existing mapping/sequencing methods could be improved at least 5-10-fold. Furthermore, since the efficiency of contig assembly in the slalom approach is virtually independent of length of sequence reads, even short sequences produced by rapid, high throughput sequencing techniques would suffice to complete a physical map and a sequence scan of a small genome.
Collapse
MESH Headings
- Chromosomes, Artificial, Human/genetics
- Chromosomes, Artificial, Human/metabolism
- Cloning, Molecular
- Deoxyribonuclease BamHI/metabolism
- Deoxyribonuclease EcoRI/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Gene Library
- Genome
- Genome, Human
- Genomics/economics
- Genomics/methods
- Humans
- Physical Chromosome Mapping/economics
- Physical Chromosome Mapping/methods
- Repetitive Sequences, Nucleic Acid/genetics
- Restriction Mapping
- Sequence Analysis, DNA/economics
- Sequence Analysis, DNA/methods
- Time Factors
Collapse
Affiliation(s)
- Veronika I Zabarovska
- Microbiology and Tumor Biology Center, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
939
|
Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM. Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 2002; 3:RESEARCH0079. [PMID: 12537568 PMCID: PMC151181 DOI: 10.1186/gb-2002-3-12-research0079] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 11/25/2002] [Accepted: 11/27/2002] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.
Collapse
Affiliation(s)
- Susan E Celniker
- Berkeley Drosophila Genome Project, Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
940
|
Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 2002; 3:RESEARCH0084. [PMID: 12537573 PMCID: PMC151186 DOI: 10.1186/gb-2002-3-12-research0084] [Citation(s) in RCA: 400] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Revised: 11/11/2002] [Accepted: 11/25/2002] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species. RESULTS We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes. CONCLUSIONS This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.
Collapse
Affiliation(s)
- Joshua S Kaminker
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
941
|
Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A 2001; 98:15119-24. [PMID: 11742098 PMCID: PMC64993 DOI: 10.1073/pnas.261573998] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligonucleotide DNA microarrays were used for a genome-wide analysis of immune-challenged Drosophila infected with Gram-positive or Gram-negative bacteria, or with fungi. Aside from the expression of an established set of immune defense genes, a significant number of previously unseen immune-induced genes were found. Genes of particular interest include corin- and Stubble-like genes, both of which have a type II transmembrane domain; easter- and snake-like genes, which may fulfil the roles of easter and snake in the Toll pathway; and a masquerade-like gene, potentially involved in enzyme regulation. The microarray data has also helped to greatly reduce the number of target genes in large gene groups, such as the proteases, helping to direct the choices for future mutant studies. Many of the up-regulated genes fit into the current conceptual framework of host defense, whereas others, including the substantial number of genes with unknown functions, offer new avenues for research.
Collapse
Affiliation(s)
- P Irving
- Institut de Biologie Moléculaire et Cellulaire, Unité Propre de Recherche, 9022 du Centre National de la Recherche Scientifique, 15 Rue Descartes, F67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
942
|
Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. COMPUTERS & CHEMISTRY 2001; 26:51-6. [PMID: 11765852 DOI: 10.1016/s0097-8485(01)00099-7] [Citation(s) in RCA: 664] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computational methods for automated genome annotation are critical to understanding and interpreting the bewildering mass of genomic sequence data presently being generated and released. A neural network model of the structural and compositional properties of a eukaryotic core promoter region has been developed and its application for analysis of the Drosophila melanogaster genome is presented. The model uses a time-delay architecture, a special case of a feed-forward neural network. The structure of this model allows for variable spacing between functional binding sites, which is known to play a key role in the transcription initiation process. Application of this model to a test set of core promoters not only gave better discrimination of potential promoter sites than previous statistical or neural network models, but also revealed indirectly subtle properties of the transcription initiation signal. When tested in the Adh region of 2.9 Mbases of the Drosophila genome, the neural network for promoter prediction (NNPP) program that incorporates the time-delay neural network model gives a recognition rate of 75% (69/92) with a false positive rate of 1/547 bases. The present work can be regarded as one of the first intensive studies that applies novel gene regulation technologies to the identification of the complex gene regulation sites in the genome of Drosophila melanogaster.
Collapse
Affiliation(s)
- M G Reese
- Berkeley Drosophila Genome Project, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
943
|
Yu J, Hu S, Wang J, Li S, Wong KSG, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Li G, Gao H, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Huang G, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice (Oryza sativa ssp.indica) genome. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf02901901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
944
|
Ikekawa A, Ikekawa S. Fruits of human genome project and private venture, and their impact on life science. YAKUGAKU ZASSHI 2001; 121:845-73. [PMID: 11766401 DOI: 10.1248/yakushi.121.845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A small knowledge base was created by organizing the Human Genome Project (HGP) and its related issues in "Science" magazines between 1996 and 2000. This base revealed the stunning achievement of HGP and a private venture and its impact on today's biology and life science. In the mid-1990, they encouraged the development of advanced high throughput automated DNA sequencers and the technologies that can analyse all genes at once in a systematic fashion. Using these technologies, they completed the genome sequence of human and various other organisms. These fruits opened the door to comparative genomics, functional genomics, the interdisprinary field between computer and biology, and proteomics. They have caused a shift in biological investigation from studying single genes or proteins to studying all genes or proteins at once, and causing revolutional changes in traditional biology, drug discovery and therapy. They have expanded the range of potential drug targets and have facilitated a shift in drug discovery programs toward rational target-based strategies. They have spawned pharmacogenomics that could give rise to a new generation of highly effective drugs that treat causes, not just symptoms. They should also cause a migration from the traditional medications that are safe and effective for every members of the population to personalized medicine and personalized therapy.
Collapse
|
945
|
Watanabe Y, Murray JC, Bjork BC, Bird CP, Chiang PW, Gregory SG, Kurnit DM, Schutte BC. Matroshka and ectopic polymorphisms: Two new classes of DNA sequence variation identified at the Van der Woude syndrome locus on 1q32-q41. Hum Mutat 2001; 18:422-34. [PMID: 11668635 DOI: 10.1002/humu.1213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Van der Woude syndrome (VWS) is an orofacial clefting disorder with an autosomal dominant pattern of inheritance. In our efforts to clone the VWS gene, 900 kb of genomic sequence from the VWS candidate region at chromosome 1q32-q41 was analyzed for new DNA sequence variants. We observed that in clone CTA-321i20 a 7922 bp sequence is absent relative to the sequence present in PAC clone RP4-782d21 at positions 1669-9590, suggesting the presence of a deletion/insertion (del/ins) polymorphism. Embedded in this 7922 bp region was a TTCC short tandem repeat (STR). Genotype analysis showed that both the internal STR and the (del/ins) mutation were true polymorphisms. This is a novel example of intraallelic variation, a polymorphism within a polymorphism, and we suggest that it be termed a "Matroshka" polymorphism. Further genetic and DNA sequence analysis indicated that the ancestral state of the 1669-9590 del/ins polymorphism was the insertion allele and that the original deletion mutation probably occurred only once. A second class of novel DNA sequence variation was discovered on chromosome 5 that shared a 328 bp identical sequence with this region on chromosome 1. A single nucleotide polymorphism (SNP) was detected by SSCP using a pair of primers derived from the chromosome 1 sequence. Surprisingly, these primers also amplified the identical locus on chromosome 5, and the SNP was only located on chromosome 5. Since the probe unexpectedly detected alleles from another locus, we suggest that this type of sequence variant be termed an "ectopic" polymorphism. These two novel classes of DNA sequence polymorphisms have the potential to confound genetic and DNA sequence analysis and may also contribute to variation in disease phenotypes.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
946
|
Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 2001; 20:6071-83. [PMID: 11689447 PMCID: PMC125702 DOI: 10.1093/emboj/20.21.6071] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 09/09/2001] [Accepted: 09/09/2001] [Indexed: 11/13/2022] Open
Abstract
To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein-protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner.
Collapse
Affiliation(s)
| | - Kol A. Zarember
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, HSW1201, San Francisco, CA 94143-0450, USA
Present address: Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA Corresponding author e-mail:
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, HSW1201, San Francisco, CA 94143-0450, USA
Present address: Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA Corresponding author e-mail:
| |
Collapse
|
947
|
Shao H, Tu Z. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 2001; 159:1103-15. [PMID: 11729156 PMCID: PMC1461862 DOI: 10.1093/genetics/159.3.1103] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel transposon named ITmD37E was discovered in a wide range of mosquito species. Sequence analysis of multiple copies in three Aedes species showed similar terminal inverted repeats and common putative TA target site duplications. The ITmD37E transposases contain a conserved DD37E catalytic motif, which is unique among reported transposons of the IS630-Tc1-mariner superfamily. Sequence comparisons and phylogenetic analyses suggest that ITmD37E forms a novel family distinct from the widely distributed Tc1 (DD34E), mariner (DD34D), and pogo (DDxD) families in the IS630-Tc1-mariner superfamily. The inclusion in the phylogenetic analysis of recently reported transposons and transposons uncovered in our database survey provided revisions to previous classifications and identified two additional families, ITmD37D and ITmD39D, which contain DD37D and DD39D motifs, respectively. The above expansion and reorganization may open the doors to the discovery of related transposons in a broad range of organisms and help illustrate the evolution and structure-function relationships among these distinct transposases in the IS630-Tc1-mariner superfamily. The presence of intact open reading frames and highly similar copies in some of the newly characterized transposons suggests recent transposition. Studies of these novel families may add to the limited repertoire of transgenesis and mutagenesis tools for a wide range of organisms, including the medically important mosquitoes.
Collapse
Affiliation(s)
- H Shao
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
948
|
Cai WW, Chen R, Gibbs RA, Bradley A. A clone-array pooled shotgun strategy for sequencing large genomes. Genome Res 2001; 11:1619-23. [PMID: 11591638 DOI: 10.1101/gr.198101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A simplified strategy for sequencing large genomes is proposed. Clone-Array Pooled Shotgun Sequencing (CAPSS) is based on pooling rows and columns of arrayed genomic clones, for shotgun library construction. Random sequences are accumulated, and the data are processed by sequential comparison of rows and columns to assemble the sequence of clones at points of intersection. Compared with either a clone-by-clone approach or whole-genome shotgun sequencing, CAPSS requires relatively few library constructions and only minimal computational power for a complete genome assembly. The strategy is suitable for sequencing large genomes for which there are no sequence-ready maps, but for which relatively high resolution STS maps and highly redundant BAC libraries are available. It is immediately applicable to the sequencing of mouse, rat, zebrafish, and other important genomes, and can be managed in a cooperative fashion to take advantage of a distributed international DNA sequencing capacity.
Collapse
Affiliation(s)
- W W Cai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
949
|
EcoGenomics — a consilience for comparative immunology? Comp Biochem Physiol A Mol Integr Physiol 2001. [DOI: 10.1016/s1095-6433(01)00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
950
|
Bowen NJ, McDonald JF. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res 2001; 11:1527-40. [PMID: 11544196 PMCID: PMC311128 DOI: 10.1101/gr.164201] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent release of the complete euchromatic genome sequence of Drosophila melanogaster offers a unique opportunity to explore the evolutionary history of transposable elements (TEs) within the genome of a higher eukaryote. In this report, we describe the annotation and phylogenetic comparison of 178 full-length long terminal repeat (LTR) retrotransposons from the sequenced component of the D. melanogaster genome. We report the characterization of 17 LTR retrotransposon families described previously and five newly discovered element families. Phylogenetically, these families can be divided into three distinct lineages that consist of members from the canonical Copia and Gypsy groups as well as a newly discovered third group containing BEL, mazi, and roo elements. Each family consists of members with average pairwise identities > or =99% at the nucleotide level, indicating they may be the products of recent transposition events. Consistent with the recent transposition hypothesis, we found that 70% (125/178) of the elements (across all families) have identical intra-element LTRs. Using the synonymous substitution rate that has been calculated previously for Drosophila (.016 substitutions per site per million years) and the intra-element LTR divergence calculated here, the average age of the remaining 30% (53/178) of the elements was found to be 137,000 +/-89,000 yr. Collectively, these results indicate that many full-length LTR retrotransposons present in the D. melanogaster genome have transposed well after this species diverged from its closest relative Drosophila simulans, 2.3 +/-.3 million years ago.
Collapse
Affiliation(s)
- N J Bowen
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|