901
|
Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms. J Proteomics 2011; 75:44-55. [DOI: 10.1016/j.jprot.2011.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 01/05/2023]
|
902
|
Subach FV, Piatkevich KD, Verkhusha VV. Directed molecular evolution to design advanced red fluorescent proteins. Nat Methods 2011; 8:1019-26. [PMID: 22127219 PMCID: PMC4439098 DOI: 10.1038/nmeth.1776] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.
Collapse
Affiliation(s)
- Fedor V Subach
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
903
|
Svistunova DM, Musinova YR, Polyakov VY, Sheval EV. A simple method for the immunocytochemical detection of proteins inside nuclear structures that are inaccessible to specific antibodies. J Histochem Cytochem 2011; 60:152-8. [PMID: 22114257 DOI: 10.1369/0022155411429704] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated elsewhere that a high concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies. In this study, the authors found that a short proteinase treatment allowed for the detection of antigens in the nucleoli. The described approach is compatible with the simultaneous observation of proteins fused to fluorescent tags and with preembedding electron microscopy. It appears that the described method can be useful in situations when the proper recognition of antigens by specific antibodies is disturbed by a high density of cellular structures or a high concentration of antigens inside these structures.
Collapse
Affiliation(s)
- Darya M Svistunova
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
904
|
Li B, Shahid R, Peshkepija P, Zimmer M. Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP. Chem Phys 2011; 392:143-148. [PMID: 22582003 DOI: 10.1016/j.chemphys.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The chromophore of fluorescent proteins is formed by an internal cyclization of the tripeptide 65SYG67 fragment and a subsequent oxidation. The oxidation is slow - the kinetics of this step is presumably improved in fast maturing GFPs. Water molecules can aid in the chromophore formation. We have used 50ns molecular dynamics simulations of the mature and immature forms of avGFP and TurboGFP to examine the diffusion of water molecules in-and-out of the protein β-barrel. Most crystal structures of GFPs have well-structured waters within hydrogen-bonding distance of Glu222 and Arg96. It has been proposed that they have an important role in chromophore formation. Stable waters are found in similar positions in all simulations conducted. The simulations confirm the existence of a pore that leads to the chromophore in the rapidly maturing TurboGFP; decreased water diffusion upon chromophore formation; and increased water diffusion due to the pore formation.
Collapse
Affiliation(s)
- Binsen Li
- Chemistry Department, Connecticut College, New London, CT06320
| | | | | | | |
Collapse
|
905
|
Nordgren M, Wang B, Apanasets O, Brees C, Veldhoven PPV, Fransen M. Potential limitations in the use of KillerRed for fluorescence microscopy. J Microsc 2011; 245:229-35. [PMID: 22091555 DOI: 10.1111/j.1365-2818.2011.03564.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KillerRed, a bright red fluorescent protein, is a genetically encoded photosensitizer, which generates radicals and hydrogen peroxide upon green light illumination. The protein is a potentially powerful tool for selective light-induced protein inactivation and cell killing, and can also be used to study downstream effects of locally increased levels of reactive oxygen species. The initial aim of this study was to investigate whether or not KillerRed-mediated reactive oxygen species production inside peroxisomes could trigger the sequestration of these organelles into autophagosomes. Green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 was used as autophagosome marker. We observed that KillerRed also emits weak green fluorescence upon excitation at 480 nm, and this may lead to erroneous data interpretation in conditions where green fluorophores are used. We discuss this potential pitfall of KillerRed for biological imaging and formulate recommendations to avoid misinterpretation of the data.
Collapse
Affiliation(s)
- M Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
906
|
Datskevich PN, Mymrikov EV, Sluchanko NN, Shemetov AA, Sudnitsyna MV, Gusev NB. Expression, purification and some properties of fluorescent chimeras of human small heat shock proteins. Protein Expr Purif 2011; 82:45-54. [PMID: 22100527 DOI: 10.1016/j.pep.2011.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022]
Abstract
Small heat shock proteins (sHsp) are ubiquitously expressed in all human tissues and have an important housekeeping role in preventing the accumulation of aggregates of improperly folded or denatured proteins. They also participate in the regulation of the cytoskeleton, proliferation, apoptosis and many other vital processes. Fluorescent chimeras composed of sHsp and enhanced fluorescent proteins have been used to determine the intracellular locations of small heat shock proteins and to analyse the hetero-oligomeric complexes formed by different sHsp. However, the biochemical properties and chaperone-like activities of these chimeras have not been investigated. To determine the properties of these chimeras, we fused enhanced yellow and cyan fluorescent proteins (EYFP and ECFP) to the N-termini of four ubiquitously expressed human small heat shock proteins: HspB1, HspB5, HspB6, and HspB8. The eight fluorescent chimeras of small heat shock proteins and isolated fluorescent proteins were expressed in Escherichia coli. The chimeric proteins were isolated and purified via ammonium sulphate fractionation, ion exchange and size-exclusion chromatography. This method provided 20-100 mg of fluorescent chimeras from 1L of bacterial culture. The spectral properties of the chimeras were similar to those of the isolated fluorescent proteins. The fusion of fluorescent proteins to HspB6 and HspB8, which typically form dimers, did not affect their quaternary structures. Oligomers of the fluorescent chimeras of HspB1 and HspB5 were less stable and contained fewer subunits than oligomers formed by the wild-type proteins. Fusion with EYFP decreased the chaperone-like activity of HspB5 and HspB6 whereas fusion with ECFP increased chaperone-like activity. All fluorescent chimeras of HspB1 and HspB8 had higher chaperone-like activity than the wild-type proteins. Thus, although fluorescent chimeras are useful for many purposes, the fluorescent proteins used to form these chimeras may affect certain important properties of sHsp.
Collapse
Affiliation(s)
- Petr N Datskevich
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | | | | | | | | | | |
Collapse
|
907
|
Terbium to quantum dot FRET bioconjugates for clinical diagnostics: influence of human plasma on optical and assembly properties. SENSORS 2011; 11:9667-84. [PMID: 22163719 PMCID: PMC3231297 DOI: 10.3390/s111009667] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/20/2023]
Abstract
Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.
Collapse
|
908
|
How ClpX Unfolds GFP in Stages by Pulling. J Mol Biol 2011; 413:1-3. [DOI: 10.1016/j.jmb.2011.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
909
|
Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 2011; 12:656-68. [PMID: 21941275 DOI: 10.1038/nrm3199] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins are always on the move, and this may occur through diffusion or active transport. The realization that the regulation of signal transduction is highly dynamic in space and time has stimulated intense interest in the movement of proteins. Over the past decade, numerous new technologies using fluorescent proteins have been developed, allowing us to observe the spatiotemporal dynamics of proteins in living cells. These technologies have greatly advanced our understanding of protein dynamics, including protein movement and protein interactions.
Collapse
|
910
|
Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 2011; 21:612-9. [PMID: 21930372 DOI: 10.1016/j.gde.2011.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022]
Abstract
Drosophila oogenesis is a powerful model for the study of numerous questions in cell and developmental biology. In addition to its longstanding value as a genetically tractable model of organogenesis, recently it has emerged as an excellent system in which to combine genetics and live imaging. Rapidly improving ex vivo culture conditions, new fluorescent biosensors and photo-manipulation tools, and advances in microscopy have allowed direct observation in real time of processes such as stem cell self-renewal, collective cell migration, and polarized mRNA and protein transport. In addition, entirely new phenomena have been discovered, including revolution of the follicle within the basement membrane and oscillating assembly and disassembly of myosin on a polarized actin network, both of which contribute to elongating this tissue. This review focuses on recent advances in live-cell imaging techniques and the biological insights gleaned from live imaging of egg chamber development.
Collapse
|
911
|
Rapid screening method for compounds that affect the growth and germination of Candida albicans, using a real-time PCR thermocycler. Appl Environ Microbiol 2011; 77:8193-6. [PMID: 21926199 DOI: 10.1128/aem.06227-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We propose a screening method for compounds affecting growth and germination in Candida albicans using a real-time PCR thermocycler to quantify green fluorescent protein (GFP) fluorescence. Using P(ACT1)-GFP and P(HWP1)-GFP reporter strains, the effects of a wide range of compounds on growth and hyphal formation were quantitatively assessed within 3 h after inoculation.
Collapse
|
912
|
Crivat G, Taraska JW. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 2011; 30:8-16. [PMID: 21924508 DOI: 10.1016/j.tibtech.2011.08.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 11/30/2022]
Abstract
Watching biological molecules provides clues to their function and regulation. Some of the most powerful methods of labeling proteins for imaging use genetically encoded fluorescent fusion tags. There are four standard genetic methods of covalently tagging a protein with a fluorescent probe for cellular imaging. These use (i) autofluorescent proteins, (ii) self-labeling enzymes, (iii) enzymes that catalyze the attachment of a probe to a target sequence, and (iv) biarsenical dyes that target tetracysteine motifs. Each of these techniques has advantages and disadvantages. In this review, we cover new developments in these methods and discuss practical considerations for their use in imaging proteins inside living cells.
Collapse
Affiliation(s)
- Georgeta Crivat
- University of Maryland, College Park, Department of Entomology and Program in Cell and Molecular Biology, College Park, MD 20742, USA
| | | |
Collapse
|
913
|
Kenkel CD, Traylor MR, Wiedenmann J, Salih A, Matz MV. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proc Biol Sci 2011; 278:2691-7. [PMID: 21270034 PMCID: PMC3136821 DOI: 10.1098/rspb.2010.2344] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/06/2011] [Indexed: 11/13/2022] Open
Abstract
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.
Collapse
Affiliation(s)
- C. D. Kenkel
- Integrative Biology Section, University of Texas at Austin, Austin, TX, USA
| | - M. R. Traylor
- Integrative Biology Section, University of Texas at Austin, Austin, TX, USA
| | - J. Wiedenmann
- National Oceanography Centre, University of Southampton, Southampton, UK
| | - A. Salih
- School of Natural Sciences, University of Western Sydney, Penrith, New South Wales 1797, Australia
| | - M. V. Matz
- Integrative Biology Section, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
914
|
Wunderlich Z, DePace AH. Modeling transcriptional networks in Drosophila development at multiple scales. Curr Opin Genet Dev 2011; 21:711-8. [PMID: 21889888 DOI: 10.1016/j.gde.2011.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
Abstract
Quantitative models of developmental processes can provide insights at multiple scales. Ultimately, models may be particularly informative for key questions about network level behavior during development such as how does the system respond to environmental perturbation, or operate reliably in different genetic backgrounds? The transcriptional networks that pattern the Drosophila embryo have been the subject of numerous quantitative experimental studies coupled to modeling frameworks in recent years. In this review, we describe three studies that consider these networks at different levels of molecular detail and therefore result in different types of insights. We also discuss other developmental transcriptional networks operating in Drosophila, with the goal of highlighting what additional insights they may provide.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
915
|
Two-photon in vivo imaging of cells. Pediatr Nephrol 2011; 26:1483-9. [PMID: 21404099 DOI: 10.1007/s00467-011-1818-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 01/05/2023]
Abstract
In vivo imaging of cells gives a glimpse into the world of biology in a natural setting unparalleled by any other venue. Two-photon imaging of fluorescently labeled cells has become the standard to obtain high-resolution, dynamic images of living specimens with great specificity. This review focuses on providing the reader with a short history of, and impetus behind, two-photon imaging, its working mechanics, and emerging technologies related to biological multiphoton imaging.
Collapse
|
916
|
Abstract
Green fluorescent protein (GFP) and its derivatives have transformed the use and analysis of proteins for diverse applications. Like proteins, RNA has complex roles in cellular function and is increasingly used for various applications, but a comparable approach for fluorescently tagging RNA is lacking. Here, we describe the generation of RNA aptamers that bind fluorophores resembling the fluorophore in GFP. These RNA-fluorophore complexes create a palette that spans the visible spectrum. An RNA-fluorophore complex, termed Spinach, resembles enhanced GFP and emits a green fluorescence comparable in brightness with fluorescent proteins. Spinach is markedly resistant to photobleaching, and Spinach fusion RNAs can be imaged in living cells. These RNA mimics of GFP provide an approach for genetic encoding of fluorescent RNAs.
Collapse
Affiliation(s)
- Jeremy S Paige
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
917
|
Miyawaki A. Development of Probes for Cellular Functions Using Fluorescent Proteins and Fluorescence Resonance Energy Transfer. Annu Rev Biochem 2011; 80:357-73. [DOI: 10.1146/annurev-biochem-072909-094736] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Wako-city, Saitama 351-0198, Japan;
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
918
|
Bower DV, Sato Y, Lansford R. Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging. Genesis 2011; 49:619-43. [PMID: 21509927 DOI: 10.1002/dvg.20754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022]
Abstract
We describe the development of transgenic quail that express various fluorescent proteins in targeted manners and their use as a model system that integrates advanced imaging approaches with conventional and emerging molecular genetics technologies. We also review the progression and complications of past fate mapping techniques that led us to generate transgenic quail, which permit dynamic imaging of amniote embryogenesis with unprecedented subcellular resolution.
Collapse
Affiliation(s)
- Danielle V Bower
- Department of Biology and the Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
919
|
Uliczka F, Pisano F, Kochut A, Opitz W, Herbst K, Stolz T, Dersch P. Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors. PLoS One 2011; 6:e20425. [PMID: 21673990 PMCID: PMC3108616 DOI: 10.1371/journal.pone.0020425] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/25/2011] [Indexed: 01/29/2023] Open
Abstract
A family of versatile promoter-probe plasmids for gene expression analysis was developed based on a modular expression plasmid system (pZ). The vectors contain different replicons with exchangeable antibiotic cassettes to allow compatibility and expression analysis on a low-, midi- and high-copy number basis. Suicide vector variants also permit chromosomal integration of the reporter fusion and stable vector derivatives can be used for in vivo or in situ expression studies under non-selective conditions. Transcriptional and translational fusions to the reporter genes gfpmut3.1, amCyan, dsRed2, luxCDABE, phoA or lacZ can be constructed, and presence of identical multiple cloning sites in the vector system facilitates the interchange of promoters or reporter genes between the plasmids of the series. The promoter of the constitutively expressed gapA gene of Escherichia coli was included to obtain fluorescent and bioluminescent expression constructs. A combination of the plasmids allows simultaneous detection and gene expression analysis in individual bacteria, e.g. in bacterial communities or during mouse infections. To test our vector system, we analyzed and quantified expression of Yersinia pseudotuberculosis virulence genes under laboratory conditions, in association with cells and during the infection process.
Collapse
Affiliation(s)
- Frank Uliczka
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Department of Microbiology, Technical University Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Wiebke Opitz
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Katharina Herbst
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Tatjana Stolz
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Department of Microbiology, Technical University Braunschweig, Braunschweig, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
920
|
Aglyamova GV, Hunt ME, Modi CK, Matz MV. Multi-colored homologs of the green fluorescent protein from hydromedusa Obelia sp. Photochem Photobiol Sci 2011; 10:1303-9. [PMID: 21614405 DOI: 10.1039/c1pp05068k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of green fluorescent protein (GFP) within the bioluminescent system of Obelia (Cnidaria, Hydrozoa, Campanulariidae) was inferred shortly after the discovery of GFP in Aequorea. Despite the enormous success of Aequorea GFP as a genetically encoded fluorescent label, Obelia GFP thus far has been defeating attempts to clone it from the hydroid life cycle stage. Here, we report cloning of three GFP-like fluorescent proteins (FPs) from Obelia medusa, representing cyan, green, and yellow spectral types. Such color diversity has never been detected outside class Anthozoa, suggesting a more general function for multi-colored fluorescence in cnidarians than has been previously hypothesized. An unusual property of the new FPs is the formation of large soluble complexes of well-defined sizes and molecular weights, corresponding to up to 128 individual polypeptides. This aligns well with the earlier observation that luminescence in Obelia, unlike in Aequorea, is localized within subcellular granules, which prompts further inquiry into the self-assembly properties of the new FPs and their interactions with the photoprotein. The discovery of Obelia FPs fills the four-decade-old gap in the knowledge of cnidarian bioluminescence and provides experimental material to further investigate the details of its molecular mechanism.
Collapse
Affiliation(s)
- Galina V Aglyamova
- Integrative Biology Section, University of Texas at Austin, 1 University station C0930, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
921
|
Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein. Biochem J 2011; 435:65-71. [PMID: 21214518 DOI: 10.1042/bj20101217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.
Collapse
|
922
|
Pakhomov AA, Martynov VI. A method for the determination of the three-dimensional structure of fluorescent proteins based on homology modeling and mass spectrometry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:429-32. [DOI: 10.1134/s1068162011030137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
923
|
Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A. Two-photon absorption properties of fluorescent proteins. Nat Methods 2011; 8:393-9. [PMID: 21527931 DOI: 10.1038/nmeth.1596] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right fluorescent protein and excitation wavelength for two-photon applications.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Physics, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | |
Collapse
|
924
|
Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA. Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS NANO 2011; 5:2795-2805. [PMID: 21375335 DOI: 10.1021/nn103243c] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel surface architecture was developed to generate biocompatible and stable photoswitchable quantum dots (psQDs). Photochromic diheteroarylethenes, which undergo thermally stable photoconversions between two forms with different spectral properties in organic solvents, were covalently linked to an amphiphilic polymer that self-assembles with the lipophilic chains surrounding commercial hydrophobic core-shell CdSe/ZnS QDs. This strategy creates a small (∼7 nm diameter) nanoparticle (NP) that is soluble in aqueous medium. The NP retains and even enhances the desirable properties of the original QD (broad excitation, narrow emission, photostability), but the brightness of its emission can be tailored by light. The modulation of emission monitored by steady-state and time-resolved fluorescence was 35-40%. The psQDs exhibit unprecedented photostability and fatigue resistance over at least 16 cycles of photoconversion.
Collapse
Affiliation(s)
- Sebastián A Díaz
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
925
|
Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW. Fluorescent proteins at a glance. J Cell Sci 2011; 124:157-60. [PMID: 21187342 DOI: 10.1242/jcs.072744] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gert-Jan Kremers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
926
|
Abstract
Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.
Collapse
|
927
|
Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 2011; 12:2518-42. [PMID: 21731456 PMCID: PMC3127132 DOI: 10.3390/ijms12042518] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular machines are examples of “pre-established” nanotechnology, driving the basic biochemistry of living cells. They encompass an enormous range of function, including fuel generation for chemical processes, transport of molecular components within the cell, cellular mobility, signal transduction and the replication of the genetic code, amongst many others. Much of our understanding of such nanometer length scale machines has come from in vitro studies performed in isolated, artificial conditions. Researchers are now tackling the challenges of studying nanomachines in their native environments. In this review, we outline recent in vivo investigations on nanomachines in model bacterial systems using state-of-the-art genetics technology combined with cutting-edge single-molecule and super-resolution fluorescence microscopy. We conclude that single-molecule and super-resolution fluorescence imaging provide powerful tools for the biochemical, structural and functional characterization of biological nanomachines. The integrative spatial, temporal, and single-molecule data obtained simultaneously from fluorescence imaging open an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry.
Collapse
|
928
|
Broude NE. Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol 2011; 80:1137-47. [DOI: 10.1111/j.1365-2958.2011.07652.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
929
|
Abstract
Histochemistry-chemistry in the context of biological tissue-is an invaluable set of techniques used to visualize biological structures. This field lies at the interface of organic chemistry, biochemistry, and biology. Integration of these disciplines over the past century has permitted the imaging of cells and tissues using microscopy. Today, by exploiting the unique chemical environments within cells, heterologous expression techniques, and enzymatic activity, histochemical methods can be used to visualize structures in living matter. This review focuses on the labeling techniques and organic fluorophores used in live cells.
Collapse
Affiliation(s)
- Luke D Lavis
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| |
Collapse
|
930
|
Pakhomov AA, Martynov VI. Probing the structural determinants of yellow fluorescence of a protein from Phialidium sp. Biochem Biophys Res Commun 2011; 407:230-5. [PMID: 21382348 DOI: 10.1016/j.bbrc.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
Fluorescent proteins homologous to green fluorescent protein (avGFP) display pronounced spectral variability due to different chromophore structures and variable chromophore interactions with the surrounding amino acids. To gain insight into the structural basis for yellow emission, the 3D structure of phiYFP (λ(em)=537 nm), a protein from the sea medusa Phialidium sp., was built by a combined homology modeling - mass spectrometry approach. Mass spectrometry of the isolated chromophore-bearing peptide reveals that the chromophore of phiYFP is chemically identical to that of avGFP (λ(em)=508 nm). The experimentally acquired chromophore structure was combined with the homology-based model of phiYFP, and the proposed 3D structure was used as a starting point for identification of the structural features responsible for yellow fluorescence. Mutagenesis of residues in the local chromophore environment of phiYFP suggests that multiple factors cooperate to establish the longest-wavelength emission maximum among fluorescent proteins with an unmodified GFP-like chromophore.
Collapse
Affiliation(s)
- Alexey A Pakhomov
- Chromoproteins Chemistry Research Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
931
|
Ch'ng TH, Martin KC. Synapse-to-nucleus signaling. Curr Opin Neurobiol 2011; 21:345-52. [PMID: 21349698 DOI: 10.1016/j.conb.2011.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/21/2022]
Abstract
Signals generated in distal subcellular compartments of neurons must often travel long distances to the nucleus to trigger changes in gene expression. This retrograde signaling is critical to the development, function, and survival of neural circuits, and neurons have evolved multiple mechanisms to transmit signals over long distances. In this review, we briefly summarize the range of mechanisms whereby distally generated signals are transported to neuronal nuclei. We then focus on the transport of soluble signals from the synapse to the nucleus during neuronal plasticity.
Collapse
Affiliation(s)
- Toh Hean Ch'ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1737, United States
| | | |
Collapse
|
932
|
Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. J Struct Biol 2011; 174:385-90. [PMID: 21335090 DOI: 10.1016/j.jsb.2011.02.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/28/2011] [Accepted: 02/10/2011] [Indexed: 11/23/2022]
Abstract
Enhanced Green Fluorescent Protein (EGFP) is a variant of wild-type Green Fluorescent Protein from the jellyfish Aequorea victoria, whose mutations S65T and F64L increase brightness and folding efficiency. EGFP is extensively used in cell biology and biochemistry as a colocalization or expression reporter. Surprisingly, the structure of this very popular protein has not been determined yet. We report here its crystallographic structure at 1.5Å resolution which shows significant differences in the vicinity of residue 64 and of the chromophore. In particular, two conformations are observed for the key residue glutamic acid 222, in apparent contradiction with the single fluorescence lifetime of the protein. We then show that X-ray induced decarboxylation of Glu222 during diffraction data collection results in the disruption of a hydrogen-bond network near the chromophore. Using single-crystal microspectrophotometry, we demonstrate that this correlates with a significant loss of the fluorescence properties. We thus propose a mechanism of bleaching of the protein at low temperature. Taken together, these two sets of results highlight the stabilizing role of Glu222 to the chromophore cavity of EGFP.
Collapse
|
933
|
Schäfer KC, Szaniszló T, Günther S, Balog J, Dénes J, Keserű M, Dezső B, Tóth M, Spengler B, Takáts Z. In Situ, Real-Time Identification of Biological Tissues by Ultraviolet and Infrared Laser Desorption Ionization Mass Spectrometry. Anal Chem 2011; 83:1632-40. [DOI: 10.1021/ac102613m] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Karl-Christian Schäfer
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany
| | | | - Sabine Günther
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany
| | | | - Júlia Dénes
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany
| | | | | | | | - Bernhard Spengler
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany
| | - Zoltán Takáts
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany
- Medimass Ltd., Budapest, Hungary
| |
Collapse
|
934
|
Lobo LA, Smith CJ, Rocha ER. Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for gene expression in the anaerobe Bacteroides fragilis. FEMS Microbiol Lett 2011; 317:67-74. [PMID: 21223361 DOI: 10.1111/j.1574-6968.2011.02212.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, we show the expression of flavin mononucleotide-based fluorescent protein (FbFP) BS2 as a marker for gene expression in the opportunistic human anaerobic pathogen Bacteroides fragilis. Bacteroides fragilis 638R strain carrying osu∷bs2 constructs showed inducible fluorescence following addition of maltose anaerobically compared with nonfluorescent cells under glucose-repressed conditions. Bacteria carrying ahpC∷bs2 or dps∷bs2 constructs were fluorescent following induction by oxygen compared with nonfluorescent cells from the anaerobic control cultures. In addition, when these transcriptional fusion constructs were mobilized into B. fragilis IB263, a constitutive peroxide response strain, fluorescent BS2, was detected in both anaerobic and aerobic cultures, confirming the unique properties of the FbFP BS2 to yield fluorescent signal in B. fragilis in the presence and in the absence of oxygen. Moreover, intracellular expression of BS2 was also detected when cell culture monolayers of J774.1 macrophages were incubated with B. fragilis ahpC∷bs2 or dps∷bs2 strains within an anaerobic chamber. This suggests that ahpC and dps are induced following internalization by macrophages. Thus, we show that BS2 is a suitable tool for the detection of gene expression in obligate anaerobic bacteria in in vivo studies.
Collapse
Affiliation(s)
- Leandro A Lobo
- Instituto de Microbiologia Paulo de Gois, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
935
|
Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 2011; 23:310-7. [PMID: 21242078 DOI: 10.1016/j.ceb.2010.12.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 01/03/2023]
Abstract
Recent developments in reagent design can address problems in single cells that were not previously approachable. We have attempted to foresee what will become possible, and the sorts of biological problems that become tractable with these novel reagents. We have focused on the novel fluorescent proteins that allow convenient multiplexing, and provide for a time-dependent analysis of events in single cells. Methods for fluorescently labeling specific molecules, including endogenously expressed proteins and mRNA have progressed and are now commonly used in a variety of organisms. Finally, sensitive microscopic methods have become more routine practice. This article emphasizes that the time is right to coordinate these approaches for a new initiative on single cell imaging of biological molecules.
Collapse
|
936
|
Walther KA, Papke B, Sinn MB, Michel K, Kinkhabwala A. Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. MOLECULAR BIOSYSTEMS 2011; 7:322-36. [PMID: 21221430 DOI: 10.1039/c0mb00132e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise quantification of endogenous protein-protein interactions across live cells would be a major boon to biology. Such precise measurement is theoretically possible with fluorescence lifetime imaging microscopy (FLIM) but requires first properly addressing multiple biological, instrumental, statistical, and photophysical challenges. We present a detailed investigation of the last three FLIM-specific challenges. Using an efficient, highly accurate analysis code for time-domain FLIM data that accounts for all significant instrumental artifacts (in part, through use of a parametrized model for the instrument response function) and is rigorously based on both conventional statistics (full lifetime histogram fitting by χ(2) minimization) and novel statistics (single pixel fitting of lifetime populations using "maximum fidelity"), we address multiple photophysical challenges, including the proper side-by-side statistical comparison of fluorophore monoexponentiality, the precise assessment of fluorophore lifetimes and lifetime photostability, and the determination of acceptor dark state fractions. Finally, we demonstrate the feasibility of precise measurement of the interacting fraction of a protein across live cells with FLIM.
Collapse
Affiliation(s)
- Kirstin A Walther
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | | | |
Collapse
|
937
|
Fluorescent Genetically Encoded Calcium Indicators and Their In Vivo Application. FLUORESCENT PROTEINS II 2011. [DOI: 10.1007/4243_2011_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
938
|
Abstract
Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and biotechnologically developed into monomeric fluorescent probes for optical microscopy. Several new types of monomeric RFPs that change the emission wavelength either with time, called fluorescent timers, or after a brief irradiation with violet light, known as photoactivatable proteins, have been also engineered. Moreover, RFPs with a large Stokes shift of fluorescence emission have been recently designed. Because of their distinctive excitation and fluorescence detection conditions developed specifically for microscopy, these fluorescent probes can be suboptimal for flow cytometry. Here, we have selected and summarized the advanced orange, red, and far-red fluorescent proteins with the properties specifically required for the flow cytometry applications. Their effective brightness was calculated for the laser sources available for the commercial flow cytometers and sorters. Compatibility of the fluorescent proteins of different colors in a multiparameter flow cytometry was determined. Novel FRET pairs, utilizing RFPs, RFP-based intracellular biosensors, and their application to a high-throughput screening, are also discussed.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
939
|
Green Fluorescent Protein-Based Chloride Ion Sensors for In Vivo Imaging. FLUORESCENT PROTEINS II 2011. [DOI: 10.1007/4243_2011_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
940
|
Abstract
This mini-symposium aims to provide an integrated perspective on recent developments in optogenetics. Research in this emerging field combines optical methods with targeted expression of genetically encoded, protein-based probes to achieve experimental manipulation and measurement of neural systems with superior temporal and spatial resolution. The essential components of the optogenetic toolbox consist of two kinds of molecular devices: actuators and reporters, which respectively enable light-mediated control or monitoring of molecular processes. The first generation of genetically encoded calcium reporters, fluorescent proteins, and neural activators has already had a great impact on neuroscience. Now, a second generation of voltage reporters, neural silencers, and functionally extended fluorescent proteins hold great promise for continuing this revolution. In this review, we will evaluate and highlight the limitations of presently available optogenic tools and discuss where these technologies and their applications are headed in the future.
Collapse
|
941
|
Dib-Hajj SD. Proteomics of voltage-gated ion channels. Neurosci Lett 2010; 486:51-2. [PMID: 20849915 DOI: 10.1016/j.neulet.2010.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
942
|
Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 2010; 711:87-99. [PMID: 21126526 DOI: 10.1016/j.mrfmmm.2010.11.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/29/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| | | |
Collapse
|
943
|
van Rooy I, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res 2010; 28:456-71. [PMID: 20924653 PMCID: PMC3044085 DOI: 10.1007/s11095-010-0291-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/20/2010] [Indexed: 11/30/2022]
Abstract
Several in vivo techniques have been developed to study and measure the uptake of CNS compounds into the brain. With these techniques, various parameters can be determined after drug administration, including the blood-to-brain influx constant (Kin), the permeability-surface area (PS) product, and the brain uptake index (BUI). These techniques have been mostly used for drugs that are expected to enter the brain via transmembrane diffusion or by carrier-mediated transcytosis. Drugs that have limitations in entering the brain via such pathways have been encapsulated in nanoparticles (based on lipids or synthetic polymers) to enhance brain uptake. Nanoparticles are different from CNS compounds in size, composition and uptake mechanisms. This has led to different methods and approaches to study brain uptake in vivo. Here we discuss the techniques generally used to measure nanoparticle uptake in addition to the techniques used for CNS compounds. Techniques include visualization methods, behavioral tests, and quantitative methods.
Collapse
Affiliation(s)
- Inge van Rooy
- Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
944
|
Hunt ME, Scherrer MP, Ferrari FD, Matz MV. Very bright green fluorescent proteins from the Pontellid copepod Pontella mimocerami. PLoS One 2010; 5:e11517. [PMID: 20644720 PMCID: PMC2904364 DOI: 10.1371/journal.pone.0011517] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/15/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fluorescent proteins (FP) homologous to the green fluorescent protein (GFP) from the jellyfish Aequorea victoria have revolutionized biomedical research due to their usefulness as genetically encoded fluorescent labels. Fluorescent proteins from copepods are particularly promising due to their high brightness and rapid fluorescence development. RESULTS Here we report two novel FPs from Pontella mimocerami (Copepoda, Calanoida, Pontellidae), which were identified via fluorescence screening of a bacterial cDNA expression library prepared from the whole-body total RNA of the animal. The proteins are very similar in sequence and spectroscopic properties. They possess high molar extinction coefficients (79,000 M(-1) cm(-)) and quantum yields (0.92), which make them more than two-fold brighter than the most common FP marker, EGFP. Both proteins form oligomers, which we were able to counteract to some extent by mutagenesis of the N-terminal region; however, this particular modification resulted in substantial drop in brightness. CONCLUSIONS The spectroscopic characteristics of the two P. mimocerami proteins place them among the brightest green FPs ever described. These proteins may therefore become valuable additions to the in vivo imaging toolkit.
Collapse
Affiliation(s)
- Marguerite E. Hunt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Michael P. Scherrer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Frank D. Ferrari
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Suitland, Maryland, United States of America
| | - Mikhail V. Matz
- Section of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|