99801
|
Mandal P, Mullick S, Nayak MK, Mukherjee A, Ganguly N, Niyogi P, Panda S, Chawla-Sarkar M. Complete genotyping of unusual species A rotavirus G12P[11] and G10P[14] isolates and evidence of frequent in vivo reassortment among the rotaviruses detected in children with diarrhea in Kolkata, India, during 2014. Arch Virol 2016; 161:2773-85. [PMID: 27447463 DOI: 10.1007/s00705-016-2969-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Species A rotaviruses (RVA) are the most important cause of acute gastroenteritis in the young of humans and many animal species globally. G1P[8], G2P[4], G3P[8], G4P[8], G9P[6/8] and G12P[6/8] are the predominantly isolated genotypes throughout the world including India. Unusual genotypes from different host species such as G5, G6, G8, G10 and G11 have also been reported in humans with low frequency. In the present study, among >650 RVA positive stool samples collected from children with diarrhea in Kolkata, India, during 2014, two isolates each of the genotype G12P[11] and G10P[14] were obtained and their genomes completely sequenced. The full genotype constellations were G12-P[11]-I1-R1-C1-M2-A1-N1-T2-E1-H1 and G12-P[11]-I1-R1-C1-M1-A5-N1-T1-E1-H1 for G12P[11] viruses, suggesting several reassortments between Wa- and DS-1-like human RVA strains, including possible reassortment of a simian NSP1 gene. The G10P[14] viruses (G10-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) were found to contain multiple genes closely related to RVAs of artiodactyl origin, highlighting the role of inter-host species transmissions of RVAs. From the G/P constellation of all RVA isolates, it could be concluded that approximately one quarter had likely arisen from reassortment events in vivo among RVAs of 'usual' genotypes.
Collapse
Affiliation(s)
- Paulami Mandal
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Satarupa Mullick
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mukti Kant Nayak
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Anupam Mukherjee
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | | | | | - Samiran Panda
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
99802
|
Duan D, Scoffield JA, Zhou X, Wu H. Fine-tuned production of hydrogen peroxide promotes biofilm formation of Streptococcus parasanguinis by a pathogenic cohabitant Aggregatibacter actinomycetemcomitans. Environ Microbiol 2016; 18:4023-4036. [PMID: 27348605 DOI: 10.1111/1462-2920.13425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022]
Abstract
Balanced bacterial biofilm communities help to maintain host health. Disturbance of such balance can lead to bacterial dysbiosis and pathogenesis. However, complex and dynamic bacterial interactions within the biofilm communities are poorly understood. In this study, we used a dual-species biofilm consisting of the periodontal pathogen Aggregatibacter actinomycetemcomitans, and a commensal Streptococcus parasanguinis to investigate bacterial interactions since the two organisms have been found to coexist during the development of localized aggressive periodontal disease. We report that A. actinomycetemcomitans promoted biofilm formation of S. parasanguinis in vitro and in vivo. Protein profiling of S. parasanguinis co-cultured with A. actinomycetemcomitans revealed a significant decrease in the protein level of pyruvate oxidase(PoxL), an enzyme required for the generation of hydrogen peroxide (H2 O2 ). Consistently, the H2 O2 concentration was concurrently decreased. However, the complete removal of H2 O2 impaired the biofilm formation. H2 O2 at a low concentration range regulated by A. actinomycetemcomitans enhanced the biofilm formation. These results demonstrate that A. actinomycetemcomitans promotes the S. parasanguinis biofilm formation through modulating the production of H2 O2 by fine-tuning the expression of poxL, indicating that H2 O2 functions as a signaling molecule. Taken together, this report revealed a previously unknown bacteria-bacteria interaction mechanism.
Collapse
Affiliation(s)
- Dingyu Duan
- Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Jessica A Scoffield
- Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Hui Wu
- Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
99803
|
Abstract
Cryptococcus neoformans is an encapsulated fungal pathogen that is remarkable for its tendency to cause meningoencephalitis, especially in patients with AIDS. While disease is less common in children than adults, it remains an important cause of morbidity and mortality among HIV-infected children without access to anti-retroviral therapy. This review highlights recent insights into both the biology and treatment of cryptococcosis with a special emphasis on the pediatric literature.
Collapse
Affiliation(s)
- Carol Kao
- Division of Pediatric Infectious Diseases, Children's Hospital at Montefiore, The Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY, 10467, USA
| | - David L Goldman
- Division of Pediatric Infectious Diseases, Children's Hospital at Montefiore, The Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY, 10467, USA.
| |
Collapse
|
99804
|
Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:4722-33. [PMID: 27216077 DOI: 10.1128/aac.00075-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022] Open
Abstract
Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution.
Collapse
|
99805
|
Raynes JM, Frost HRC, Williamson DA, Young PG, Baker EN, Steemson JD, Loh JM, Proft T, Dunbar PR, Atatoa Carr PE, Bell A, Moreland NJ. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Front Microbiol 2016; 7:1119. [PMID: 27499748 PMCID: PMC4957554 DOI: 10.3389/fmicb.2016.01119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to ‘prime’ the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host.
Collapse
Affiliation(s)
- Jeremy M Raynes
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - Hannah R C Frost
- School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Deborah A Williamson
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; Institute of Environmental Science and ResearchWellington, New Zealand; The Peter Doherty Institute, University of MelbourneMelbourne, Australia
| | - Paul G Young
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - Edward N Baker
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - John D Steemson
- School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Jacelyn M Loh
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; School of Medical Sciences, University of AucklandAuckland, New Zealand
| | - Thomas Proft
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; School of Medical Sciences, University of AucklandAuckland, New Zealand
| | - P R Dunbar
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | | | - Anita Bell
- Waikato District Health Board Hamilton, New Zealand
| | - Nicole J Moreland
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| |
Collapse
|
99806
|
Vetor R, Murray CK, Mende K, Melton-Kreft R, Akers KS, Wenke J, Spirk T, Guymon C, Zera W, Beckius ML, Schnaubelt ER, Ehrlich G, Vento TJ. The use of PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) to detect bacterial and fungal colonization in healthy military service members. BMC Infect Dis 2016; 16:338. [PMID: 27448413 PMCID: PMC4957419 DOI: 10.1186/s12879-016-1651-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Background The role of microbial colonization in disease is complex. Novel molecular tools to detect colonization offer theoretical improvements over traditional methods. We evaluated PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) as a screening tool to study colonization of healthy military service members. Methods We assessed 101 healthy Soldiers using PCR/ESI-TOF-MS on nares, oropharynx, and groin specimens for the presence of gram-positive and gram-negative bacteria (GNB), fungi, and antibiotic resistance genes. A second set of swabs was processed by traditional culture, followed by identification using the BD Phoenix automated system; comparison between PCR/ESI-TOF-MS and culture was carried out only for GNB. Results Using PCR/ESI-TOF-MS, at least one colonizing organism was found on each individual: mean (SD) number of organisms per subject of 11.8(2.8). The mean number of organisms in the nares, groin and oropharynx was 3.8(1.3), 3.8(1.4) and 4.2(2), respectively. The most commonly detected organisms were aerobic gram-positive bacteria: primarily coagulase-negative Staphylococcus (101 subjects: 341 organisms), Streptococcus pneumoniae (54 subjects: 57 organisms), Staphylococcus aureus (58 subjects: 80 organisms) and Nocardia asteroides (45 subjects: 50 organisms). The mecA gene was found in 96 subjects. The most commonly found GNB was Haemophilus influenzae (20 subjects: 21 organisms) and the most common anaerobe was Propionibacterium acnes (59 subjects). Saccharomyces species (30 subjects) were the most common fungi detected. Only one GNB (nares E. coli) was identified in the same subject by both diagnostic systems. Conclusion PCR/ESI-TOF-MS detected common colonizing organisms and identified more typically-virulent bacteria in asymptomatic, healthy adults. PCR/ESI-TOF-MS appears to be a useful method for detecting bacterial and fungal organisms, but further clinical correlation and validation studies are needed.
Collapse
Affiliation(s)
- Ryan Vetor
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Clinton K Murray
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Katrin Mende
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rachel Melton-Kreft
- Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA, USA
| | - Kevin S Akers
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA
| | - Joseph Wenke
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA
| | - Tracy Spirk
- Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA, USA
| | - Charles Guymon
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA
| | - Wendy Zera
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Miriam L Beckius
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA
| | | | - Garth Ehrlich
- Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA, USA
| | - Todd J Vento
- San Antonio Military Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA. .,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA. .,Infectious Disease Service, (MCHE-MDI), Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, 78234, Texas, USA.
| |
Collapse
|
99807
|
Musthafa KS, Hmoteh J, Thamjarungwong B, Voravuthikunchai SP. Antifungal potential of eugenyl acetate against clinical isolates of Candida species. Microb Pathog 2016; 99:19-29. [PMID: 27452957 DOI: 10.1016/j.micpath.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
The study evaluated the efficiency of eugenyl acetate (EA), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Minimum inhibitory concentrations (MIC) of EA against Candida isolates were in the range between 0.1% and 0.4% (v/v). Spot assay further confirmed the susceptibility of Candida isolates to the compound upon treatment with respective 1 × MIC. Growth profile measured in time kill study evidence that the compound at 1 × MIC and 1/2 × MIC retarded the growth of Candida cells, divulging the fungicidal activity. Light microscopic observation demonstrated that upon treated with EA, rough cell morphology, cell damage, and fragmented patterns were observed in C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata. Furthermore, unusual morphological changes of the organism were observed in scanning electron microscopic study. Therefore, it is validated that the compound could cause cell damage resulting in the cell death of Candida clinical isolates. Eventually, the compound at sub-MIC (0.0125% v/v) significantly inhibited serum-induced germ tube formation by C. albicans. Eugenyl acetate inhibited biofilm forming ability of the organisms as well as reduced the adherence of Candida cells to HaCaT keratinocytes cells. In addition, upon treatment with EA, the phagocytic activity of macrophages was increased significantly against C. albicans (P < 0.05). The results demonstrated the potential of EA as a valuable phytochemical to fight against emerging Candida infections.
Collapse
Affiliation(s)
- Khadar Syed Musthafa
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Jutharat Hmoteh
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Thamjarungwong
- Clinical Microbiology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
99808
|
Ding H, Mayer FL, Sánchez-León E, de S Araújo GR, Frases S, Kronstad JW. Networks of fibers and factors: regulation of capsule formation in Cryptococcus neoformans. F1000Res 2016; 5. [PMID: 27516877 PMCID: PMC4979528 DOI: 10.12688/f1000research.8854.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
The ability of the pathogenic fungus
Cryptococcus neoformans to cause life-threatening meningoencephalitis in immunocompromised individuals is due in large part to elaboration of a capsule consisting of polysaccharide fibers. The size of the cell-associated capsule is remarkably responsive to a variety of environmental and host conditions, but the mechanistic details of the regulation, synthesis, trafficking, and attachment of the polysaccharides are poorly understood. Recent studies reveal a complex network of transcription factors that influence capsule elaboration in response to several different signals of relevance to disease (e.g., iron deprivation). The emerging complexity of the network is consistent with the diversity of conditions that influence the capsule and illustrates the responsiveness of the fungus to both the environment and mammalian hosts.
Collapse
Affiliation(s)
- Hao Ding
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - François L Mayer
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
99809
|
Global Dissemination of blaKPC into Bacterial Species beyond Klebsiella pneumoniae and In Vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam. Antimicrob Agents Chemother 2016; 60:4490-500. [PMID: 27161636 DOI: 10.1128/aac.00107-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/01/2016] [Indexed: 02/06/2023] Open
Abstract
The Klebsiella pneumoniae carbapenemase (KPC), first described in the United States in 1996, is now a widespread global problem in several Gram-negative species. A worldwide surveillance study collected Gram-negative pathogens from 202 global sites in 40 countries during 2012 to 2014 and determined susceptibility to β-lactams and other class agents by broth microdilution testing. Molecular mechanisms of β-lactam resistance among carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were determined using PCR and sequencing. Genes encoding KPC enzymes were found in 586 isolates from 22 countries (76 medical centers), including countries in the Asia-Pacific region (32 isolates), Europe (264 isolates), Latin America (210 isolates), and the Middle East (19 isolates, Israel only) and the United States (61 isolates). The majority of isolates were K. pneumoniae (83.4%); however, KPC was detected in 13 additional species. KPC-2 (69.6%) was more common than KPC-3 (29.5%), with regional variation observed. A novel KPC variant, KPC-18 (KPC-3[V8I]), was identified during the study. Few antimicrobial agents tested remained effective in vitro against KPC-producing isolates, with ceftazidime-avibactam (MIC90, 4 μg/ml), aztreonam-avibactam (MIC90, 0.5 μg/ml), and tigecycline (MIC90, 2 μg/ml) retaining the greatest activity against Enterobacteriaceae cocarrying KPC and other β-lactamases, whereas colistin (MIC90, 2 μg/ml) demonstrated the greatest in vitro activity against KPC-positive P. aeruginosa This analysis of surveillance data demonstrated that KPC is widely disseminated. KPC was found in multiple species of Enterobacteriaceae and P. aeruginosa and has now become a global problem.
Collapse
|
99810
|
Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments. Appl Microbiol Biotechnol 2016; 100:9187-9200. [PMID: 27450681 DOI: 10.1007/s00253-016-7737-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 01/08/2023]
Abstract
Spatial organization via encapsulation of enzymes within recombinant nanocompartments may increase efficiency in multienzyme cascades. Previously, we reported the encapsulation of single cargo proteins within nanocompartments in the heterologous host Escherichia coli. This was achieved by coexpression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK, with a signal sequence EutC1-19 cargo protein fusion. Optimization of this system, leading to the targeting of more than one cargo protein, requires an understanding of the encapsulation mechanism. In this work, we report that the signal sequence EutC1-19 targets cargo to the interior of nanocompartments via a hydrophobic interaction with a helix on shell protein EutS. We confirm that EutC1-19 does not interact with other Eut BMC shell proteins, EutMNLK. Furthermore, we show that a second signal sequence EutE1-21 interacts specifically with the same helix on EutS. Both signal sequences appear to compete for the same EutS helix to simultaneously colocalize two cargo proteins to the interior of recombinant nanocompartments. This work offers the first insights into signal sequence-shell protein interactions required for cargo sequestration within Eut BMCs. It also provides a basis for the future engineering of Eut nanocompartments as a platform for the potential colocalization of multienzyme cascades for synthetic biology applications.
Collapse
|
99811
|
|
99812
|
Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax. Antimicrob Agents Chemother 2016; 60:4878-85. [PMID: 27270276 DOI: 10.1128/aac.00546-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023] Open
Abstract
Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets.
Collapse
|
99813
|
Li Y, Yi X, Zhuang Y, Chu J. Regulation of porcine circovirus type 2-like particles expressed in baculovirus expression system. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0114-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
99814
|
Ocampo D, Booth M. The application of evolutionary medicine principles for sustainable malaria control: a scoping study. Malar J 2016; 15:383. [PMID: 27449143 PMCID: PMC4957922 DOI: 10.1186/s12936-016-1446-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Methods Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. Results There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. Conclusions This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1446-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Ocampo
- Department of Anthropology, Durham University, Stockton Rd, Durham, UK
| | - Mark Booth
- School of Medicine, Pharmacy and Health, Durham University, University Boulevard, Thornaby, UK.
| |
Collapse
|
99815
|
diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 2016; 7:12219. [PMID: 27447951 PMCID: PMC4961836 DOI: 10.1038/ncomms12219] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. The genome of some bacteria consists of two or more chromosomes or replicons. Here, diCenzo et al. integrate genome-scale metabolic modelling and growth data from a collection of mutants of the plant symbiont Sinorhizobium meliloti to estimate the fitness contribution of each replicon in three environments.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Sciences, University of Florence, 50144 Sesto Fiorentino, Italy
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Marco Galardini
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
99816
|
Lu P, Wang Y, Zhang Y, Hu Y, Thompson KM, Chen S. RpoS-dependent sRNA RgsA regulates Fis and AcpP in Pseudomonas aeruginosa. Mol Microbiol 2016; 102:244-259. [PMID: 27381272 DOI: 10.1111/mmi.13458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 12/01/2022]
Abstract
RgsA is a phylogenetically conserved small regulatory RNA (sRNA) in Pseudomonas species. This sRNA has been shown to be directly controlled by the major stationary phase and stress sigma factor σS (RpoS), and also indirectly regulated by the GacS/GacA two-component system. However, the role and the regulatory targets of this sRNA remain unclear. Here, two direct regulatory targets of RgsA, the mRNAs coding for the global transcriptional regulator Fis and the acyl carrier protein AcpP, were identified in P. aeruginosa. RgsA downregulates the synthesis of Fis and AcpP by base-pairing, and this regulation requires the RNA chaperone protein Hfq. Alignment of RgsA homologs in Pseudomonas revealed a conserved core region, which is strictly required for RgsA target recognition. Specifically, RgsA inhibits fis expression via an 11 + 11 bp RNA duplex, whereas this interaction region is not sufficient for repression and the 35 nt downstream region is also required. Interestingly, two functional start codons initiate fis mRNA translation and both are repressed by RgsA. Furthermore, deletion of rgsA significantly increased swarming motility in P. aeruginosa. Together, this study suggests a novel regulatory role of sRNA in which the versatile transcriptional regulator Fis and the stress regulator RpoS are connected by RgsA.
Collapse
Affiliation(s)
- Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yifei Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, 20059, USA
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
99817
|
Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094. Antimicrob Agents Chemother 2016; 60:4659-69. [PMID: 27216050 DOI: 10.1128/aac.00318-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.
Collapse
|
99818
|
Oogai Y, Kawada-Matsuo M, Komatsuzawa H. Staphylococcus aureus SrrAB Affects Susceptibility to Hydrogen Peroxide and Co-Existence with Streptococcus sanguinis. PLoS One 2016; 11:e0159768. [PMID: 27441894 PMCID: PMC4956065 DOI: 10.1371/journal.pone.0159768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus is a pathogen and a commensal bacterial species that is found in humans. Bacterial two-component systems (TCSs) sense and respond to environmental stresses, which include antimicrobial agents produced by other bacteria. In this study, we analyzed the relation between the TCS SrrAB and susceptibility to the hydrogen peroxide (H2O2) that is produced by Streptococcus sanguinis, which is a commensal oral streptococcus. An srrA-inactivated S. aureus mutant demonstrated low susceptibility to the H2O2 produced by S. sanguinis. We investigated the expression of anti-oxidant factors in the mutant. The expression of katA in the mutant was significantly higher than in the wild-type (WT) in the presence or absence of 0.4 mM H2O2. The expression of dps in the mutant was significantly increased compared with the WT in the presence of H2O2 but not in the absence of H2O2. A katA or a dps-inactivated mutant had high susceptibility to H2O2 compared with WT. In addition, we found that the nitric oxide detoxification protein (flavohemoglobin: Hmp), which is regulated by SrrAB, was related to H2O2 susceptibility. The hmp-inactivated mutant had slightly lower susceptibility to the H2O2 produced by S. sanguinis than did WT. When a srrA-inactivated mutant or the WT were co-cultured with S. sanguinis, the population percentage of the mutant was significantly higher than the WT. In conclusion, SrrAB regulates katA, dps and hmp expression and affects H2O2 susceptibility. Our findings suggest that SrrAB is related in vivo to the co-existence of S. aureus with S. sanguinis.
Collapse
Affiliation(s)
- Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
99819
|
Weingarten-Gabbay S, Segal E. Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biol 2016; 13:927-933. [PMID: 27442807 DOI: 10.1080/15476286.2016.1212802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translational regulation is a critical step in the production of proteins from genomic material in both human and viruses. However, unlike other steps of the central dogma, such as transcriptional regulation, little is known about the cis-regulatory elements involved. In a recent study we devised a high-throughput bicistronic reporter assay for the discovery and the characterization of thousands of novel Internal Ribosome Entry Sites (IRESs) in human and hundreds of viral genomes. Our results provide insights into the landscape of IRES elements in human and viral transcripts and the cis-regulatory sequences underlying their activity. Here, we discuss these results as well as emerging insights from other studies, providing new views about translational regulation in human and viruses. In addition, we highlight recent high-throughput technologies in the field and discuss how combining insights from high- and low-throughput approaches can illuminate yet uncovered mechanisms of translational regulation.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| | - Eran Segal
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
99820
|
Silber J, Kramer A, Labes A, Tasdemir D. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Mar Drugs 2016; 14:md14070137. [PMID: 27455283 PMCID: PMC4962027 DOI: 10.3390/md14070137] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 02/02/2023] Open
Abstract
Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.
Collapse
Affiliation(s)
- Johanna Silber
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Annemarie Kramer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Antje Labes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Deniz Tasdemir
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
- Faculty of Mathematics and Natural Sciences, University of Kiel, Christian-Albrechts-Platz 4, Kiel 24118, Germany.
| |
Collapse
|
99821
|
Li X, Krafczyk R, Macošek J, Li YL, Zou Y, Simon B, Pan X, Wu QY, Yan F, Li S, Hennig J, Jung K, Lassak J, Hu HG. Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first Arg Rha specific antibody. Chem Sci 2016; 7:6995-7001. [PMID: 28451135 PMCID: PMC5363779 DOI: 10.1039/c6sc02889f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
A previously discovered posttranslational modification strategy - arginine rhamnosylation - is essential for elongation factor P (EF-P) dependent rescue of polyproline stalled ribosomes in clinically relevant species such as Pseudomonas aeruginosa and Neisseria meningitidis. However, almost nothing is known about this new type of N-linked glycosylation. In the present study we used NMR spectroscopy to show for the first time that the α anomer of rhamnose is attached to Arg32 of EF-P, demonstrating that the corresponding glycosyltransferase EarP inverts the sugar of its cognate substrate dTDP-β-l-rhamnose. Based on this finding we describe the synthesis of an α-rhamnosylated arginine containing peptide antigen in order to raise the first anti-rhamnosyl arginine specific antibody (anti-ArgRha). Using ELISA and Western Blot analyses we demonstrated both its high affinity and specificity without any cross-reactivity to other N-glycosylated proteins. Having the anti-ArgRha at hand we were able to visualize endogenously produced rhamnosylated EF-P. Thus, we expect the antibody to be not only important to monitor EF-P rhamnosylation in diverse bacteria but also to identify further rhamnosyl arginine containing proteins. As EF-P rhamnosylation is essential for pathogenicity, our antibody might also be a powerful tool in drug discovery.
Collapse
Affiliation(s)
- Xiang Li
- Department of Organic Chemistry , School of Pharmacy , Second Military Medical University , Shanghai 200433 , China .
| | - Ralph Krafczyk
- Department of Biology I, Microbiology , Ludwig Maximilians-Universität München , Munich , Germany.,Center for Integrated Protein Science Munich , Ludwig-Maximilians-Universität München , Munich , Germany .
| | - Jakub Macošek
- Structural and Computational Biology Unit , EMBL Heidelberg , Heidelberg 69117 , Germany
| | - Yu-Lei Li
- Department of Organic Chemistry , School of Pharmacy , Second Military Medical University , Shanghai 200433 , China . .,School of Pharmacy , Wei Fang Medical University , Shandong 261053 , China
| | - Yan Zou
- Department of Organic Chemistry , School of Pharmacy , Second Military Medical University , Shanghai 200433 , China .
| | - Bernd Simon
- Structural and Computational Biology Unit , EMBL Heidelberg , Heidelberg 69117 , Germany
| | - Xing Pan
- Institute of Infection and Immunity , Taihe Hospital , Hubei University of Medicine , Shiyan , Hubei 442000 , China
| | - Qiu-Ye Wu
- Department of Organic Chemistry , School of Pharmacy , Second Military Medical University , Shanghai 200433 , China .
| | - Fang Yan
- School of Pharmacy , Wei Fang Medical University , Shandong 261053 , China
| | - Shan Li
- Institute of Infection and Immunity , Taihe Hospital , Hubei University of Medicine , Shiyan , Hubei 442000 , China
| | - Janosch Hennig
- Structural and Computational Biology Unit , EMBL Heidelberg , Heidelberg 69117 , Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology , Ludwig Maximilians-Universität München , Munich , Germany.,Center for Integrated Protein Science Munich , Ludwig-Maximilians-Universität München , Munich , Germany .
| | - Jürgen Lassak
- Department of Biology I, Microbiology , Ludwig Maximilians-Universität München , Munich , Germany.,Center for Integrated Protein Science Munich , Ludwig-Maximilians-Universität München , Munich , Germany .
| | - Hong-Gang Hu
- Department of Organic Chemistry , School of Pharmacy , Second Military Medical University , Shanghai 200433 , China .
| |
Collapse
|
99822
|
Anil Kumar V, Goyal R, Bansal R, Singh N, Sevalkar RR, Kumar A, Sarkar D. EspR-dependent ESAT-6 Protein Secretion of Mycobacterium tuberculosis Requires the Presence of Virulence Regulator PhoP. J Biol Chem 2016; 291:19018-30. [PMID: 27445330 DOI: 10.1074/jbc.m116.746289] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 01/09/2023] Open
Abstract
Attenuation of Mycobacterium bovis BCG strain is related to the loss of the RD1-encoded ESX-1 secretion system. The ESX-1 system secretes virulence factor ESAT-6 that plays a critical role in modulation of the host immune system, which is essential for establishment of a productive infection. Previous studies suggest that among the reasons for attenuation of Mycobacterium tuberculosis H37Ra is a mutation in the phoP gene that interferes with the ESX-1 secretion system and inhibits secretion of ESAT-6. Here, we identify a totally different and distinct regulatory mechanism involving PhoP and transcription regulator EspR on transcriptional control of the espACD operon, which is required for ESX-1-dependent ESAT-6 secretion. Although both of these regulators are capable of influencing espACD expression, we show that activation of espACD requires direct recruitment of both PhoP and EspR at the espACD promoter. The most fundamental insights are derived from the inhibition of EspR binding at the espACD regulatory region of the phoP mutant strain because of PhoP-EspR protein-protein interactions. Based on these results, a model is proposed suggesting how PhoP and EspR protein-protein interactions contribute to activation of espACD expression and, in turn, control ESAT-6 secretion, an essential pathogenic determinant of M. tuberculosis Together, these results have significant implications on the mechanism of virulence regulation of M. tuberculosis.
Collapse
Affiliation(s)
- Vijjamarri Anil Kumar
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Rajni Goyal
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Roohi Bansal
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Nisha Singh
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Ritesh Rajesh Sevalkar
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Ashwani Kumar
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Dibyendu Sarkar
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| |
Collapse
|
99823
|
Hassuna NA. Molecular Detection of the Virulent ExoU Genotype of Pseudomonas aeruginosa Isolated from Infected Surgical Incisions. Surg Infect (Larchmt) 2016; 17:610-4. [PMID: 27441791 DOI: 10.1089/sur.2016.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the major pathogens responsible for hospital-acquired infections, which harbor a wide array of virulence factors. The main aim of this study was to determine the frequency of the virulent ExoU genotype in relation to the ExoS genotype among isolated P. aeruginosa from infected surgical incisions, followed by phylogenetic analysis. METHODS A total of 66 P. aeruginosa isolates were identified by cultural and biochemical characteristics. All isolates were tested for antimicrobial susceptibility against the following antimicrobial agents: imipenem, amikacin, gentamicin, amoxycillin, cefotaxime, cefepime, and levofloxacin. Molecular detection of the ExoS and ExoU as well as two other virulence genes was done by polymerase chain reaction (PCR). Sequencing of ExoU gene and phylogenetic analysis was performed. RESULTS Approximately 81% of the isolated P. aeruginosa were multi-drug resistant. The ExoS genotype was more prevalent (63%) among the isolates than the ExoU genotype (18%), with 9% of the isolates possessing both toxins. LasB and AprA were detected in 63.6% and 27.2% of the isolates, respectively. An association was observed between the number of virulence genes and the presence of multi-drug resistance. All the ExoU were multi-drug resistant (MDR), whereas 71% of the ExoS were MDR. Phylogenetic analysis of ExoU gene showed a 99% similarity with four different strains. CONCLUSION Despite the greater frequency of the ExoS genotype, the presence of the virulent MDR ExoU genotype isolates from surgical site infections is an alarming sign requiring further intervention and investigations.
Collapse
Affiliation(s)
- Noha A Hassuna
- Department of Microbiology and Immunology, Minia University , Minia, Egypt
| |
Collapse
|
99824
|
Abstract
The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism.
Collapse
Affiliation(s)
- Aaron David Goldman
- Department of Biology, Oberlin College, Oberlin, Ohio, United States of America
- * E-mail: (ADG); (LFL)
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (ADG); (LFL)
| |
Collapse
|
99825
|
Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects. PLoS One 2016; 11:e0159884. [PMID: 27442435 PMCID: PMC4956303 DOI: 10.1371/journal.pone.0159884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates.
Collapse
|
99826
|
Richards SN, Nash MN, Baker ES, Webster MW, Lehane AM, Shafik SH, Martin RE. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathog 2016; 12:e1005725. [PMID: 27441371 PMCID: PMC4956231 DOI: 10.1371/journal.ppat.1005725] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite. In acquiring resistance to one drug, many pathogens and cancer cells become hypersensitive to other drugs. This phenomenon could be exploited to combat existing drug resistance and to delay the emergence of resistance to new drugs. However, much remains to be understood about the mechanisms that underlie drug hypersensitivity in otherwise drug-resistant microbes. Here, we describe two mechanisms by which the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) causes the malaria parasite to become hypersensitive to structurally-diverse drugs. First, we show that an antimalarial drug that normally exerts its killing effect within the parasite’s digestive vacuole is also able to bind extremely tightly to certain forms of PfCRT. This activity will block the natural, essential function of the protein and thereby provide the drug with an additional killing effect. The second mechanism arises when a cytosolic-acting drug that normally sequesters within the digestive vacuole is leaked back into the cytosol via PfCRT. In both cases, mutations that suppress hypersensitivity also abrogate the ability of PfCRT to transport chloroquine, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding and exploiting the hypersensitivity of chloroquine-resistant parasites to several of the current antimalarials.
Collapse
Affiliation(s)
- Sashika N. Richards
- Research School of Biology, Australian National University, Canberra, Australia
| | - Megan N. Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Eileen S. Baker
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michael W. Webster
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
99827
|
Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infect Immun 2016; 84:2324-2335. [PMID: 27271740 DOI: 10.1128/iai.00098-16] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities.
Collapse
|
99828
|
Crespo BG, Wallhead PJ, Logares R, Pedrós-Alió C. Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort. PLoS One 2016; 11:e0159195. [PMID: 27442429 PMCID: PMC4956085 DOI: 10.1371/journal.pone.0159195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.
Collapse
Affiliation(s)
- Bibiana G. Crespo
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- * E-mail:
| | - Philip J. Wallhead
- Norwegian Institute for Water Research (NIVA), Thormøhlens gate 53D, N-5006 Bergen, Norway
| | - Ramiro Logares
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Carlos Pedrós-Alió
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| |
Collapse
|
99829
|
Peak IR, Chen A, Jen FEC, Jennings C, Schulz BL, Saunders NJ, Khan A, Seifert HS, Jennings MP. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils. J Proteome Res 2016; 15:2356-65. [PMID: 26562068 DOI: 10.1021/acs.jproteome.5b00938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells.
Collapse
Affiliation(s)
- Ian R Peak
- School of Medical Science, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia.,Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Adrienne Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Freda E-C Jen
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Courtney Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St. Lucia, Brisbane, QLD 4072, Australia
| | - Nigel J Saunders
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - Arshad Khan
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - H Steven Seifert
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Michael P Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| |
Collapse
|
99830
|
Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila. Infect Immun 2016; 84:2185-2197. [PMID: 27185787 DOI: 10.1128/iai.01306-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted.
Collapse
|
99831
|
Nai C, Magrini B, Offe J. Let microorganisms do the talking, let us talk more about microorganisms. Fungal Biol Biotechnol 2016; 3:5. [PMID: 28955464 PMCID: PMC5611652 DOI: 10.1186/s40694-016-0023-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
Microorganisms are of uttermost importance, yet in the eyes of the general public they are often associated with dirt and diseases. At the same time, microbiologists have access to and comprehensive knowledge of just a tiny minority of the microbial diversity existing in nature. In this commentary, we present these issues of public misconception and scientific limitations and their possible consequences, and propose ways to overcome them. A particular interest is directed toward the secondary metabolism of filamentous fungi as well as novel outreach activities, including so-called “science slams” and interactions between the arts and the sciences, to raise awareness about the relevance of microorganisms.
Collapse
Affiliation(s)
- Corrado Nai
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.,Federation of the European Microbiological Societies (FEMS), Delftechpark 37a, 2628 XJ Delft, The Netherlands
| | | | | |
Collapse
|
99832
|
Sabur A, Asad M, Ali N. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cell Immunol 2016; 309:55-60. [PMID: 27470274 DOI: 10.1016/j.cellimm.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
99833
|
Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP. Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation? Trends Ecol Evol 2016; 31:689-699. [PMID: 27453351 DOI: 10.1016/j.tree.2016.06.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
During times of rapid environmental change, survival of most vertebrate populations depends on their phenomic plasticity. Although differential gene-expression and post-transcriptional processes of the host genome receive focus as the main molecular mechanisms, growing evidence points to the gut microbiota as a key driver defining hosts' phenotypes. We propose that the plasticity of the gut microbiota might be an essential factor determining phenomic plasticity of vertebrates, and that it might play a pivotal role when vertebrates acclimate and adapt to fast environmental variation. We contemplate some key questions and suggest methodological approaches and experimental designs that can be used to evaluate whether gut microorganisms provide a boost of plasticity to vertebrates' phenomes, thereby increasing their acclimation and adaptation capacity.
Collapse
Affiliation(s)
- Antton Alberdi
- EvoGenomics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Ostaizka Aizpurua
- EvoGenomics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Kristine Bohmann
- EvoGenomics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UG, UK
| | - Marie Lisandra Zepeda-Mendoza
- EvoGenomics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- EvoGenomics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia; NTNU University Museum, N-7491 Trondheim, Norway.
| |
Collapse
|
99834
|
Robin M, Page P, Archer D, Baylis M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet J 2016; 48:659-69. [PMID: 27292229 DOI: 10.1111/evj.12600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/09/2016] [Indexed: 11/26/2022]
Abstract
African horse sickness (AHS) is an arboviral disease of equids transmitted by Culicoides biting midges. The virus is endemic in parts of sub-Saharan Africa and official AHS disease-free status can be obtained from the World Organization for Animal Health on fulfilment of a number of criteria. AHS is associated with case fatality rates of up to 95%, making an outbreak among naïve horses both a welfare and economic disaster. The worldwide distributions of similar vector-borne diseases (particularly bluetongue disease of ruminants) are changing rapidly, probably due to a combination of globalisation and climate change. There is extensive evidence that the requisite conditions for an AHS epizootic currently exist in disease-free countries. In particular, although the stringent regulations enforced upon competition horses make them extremely unlikely to redistribute the virus, there are great concerns over the effects of illegal equid movement. An outbreak of AHS in a disease free region would have catastrophic effects on equine welfare and industry, particularly for international events such as the Olympic Games. While many regions have contingency plans in place to manage an outbreak of AHS, further research is urgently required if the equine industry is to avoid or effectively contain an AHS epizootic in disease-free regions. This review describes the key aspects of AHS as a global issue and discusses the evidence supporting concerns that an epizootic may occur in AHS free countries, the planned government responses, and the roles and responsibilities of equine veterinarians.
Collapse
Affiliation(s)
- M Robin
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK
| | - P Page
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - D Archer
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK
| | - M Baylis
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| |
Collapse
|
99835
|
Casas V, Vadillo S, San Juan C, Carrascal M, Abian J. The Exposed Proteomes of Brachyspira hyodysenteriae and B. pilosicoli. Front Microbiol 2016; 7:1103. [PMID: 27493641 PMCID: PMC4955376 DOI: 10.3389/fmicb.2016.01103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Brachyspira hyodysenteriae and Brachyspira pilosicoli are well-known intestinal pathogens in pigs. B. hyodysenteriae is the causative agent of swine dysentery, a disease with an important impact on pig production while B. pilosicoli is responsible of a milder diarrheal disease in these animals, porcine intestinal spirochetosis. Recent sequencing projects have provided information for the genome of these species facilitating the search of vaccine candidates using reverse vaccinology approaches. However, practically no experimental evidence exists of the actual gene products being expressed and of those proteins exposed on the cell surface or released to the cell media. Using a cell-shaving strategy and a shotgun proteomic approach we carried out a large-scale characterization of the exposed proteins on the bacterial surface in these species as well as of peptides and proteins in the extracellular medium. The study included three strains of B. hyodysenteriae and two strains of B. pilosicoli and involved 148 LC-MS/MS runs on a high resolution Orbitrap instrument. Overall, we provided evidence for more than 29,000 different peptides pointing to 1625 and 1338 different proteins in B. hyodysenteriae and B. pilosicoli, respectively. Many of the most abundant proteins detected corresponded to described virulence factors and vaccine candidates. The level of expression of these proteins, however, was different among species and strains, stressing the value of determining actual gene product levels as a complement of genomic-based approaches for vaccine design.
Collapse
Affiliation(s)
- Vanessa Casas
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Carlos San Juan
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Montserrat Carrascal
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Joaquin Abian
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
99836
|
Abstract
Bacteria can build a biofilm matrix scaffold from exopolysaccharides or proteins, and DNA. In a recent report, Taglialegna and colleagues show that pathogenic Staphylococcus aureus produces a protein scaffold based on amyloid assembly of fragments from the biofilm-associated protein. Amyloidogenesis occurs in response to environmental signals.
Collapse
Affiliation(s)
- Patrick Di Martino
- Laboratoire ERRMECe-EA1391, Université de Cergy-Pontoise, 5 mail Gay-Lussac CS 20601 Neuville, 95031 Cergy-Pontoise cedex, France.
| |
Collapse
|
99837
|
Ren GH, Cao LC, Kong W, Wang ZJ, Liu YH. Efficient Secretion of the β-Galactosidase Bgal1-3 via both Tat-Dependent and Tat-Independent Pathways in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5708-5716. [PMID: 27380825 DOI: 10.1021/acs.jafc.6b01735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the twin-arginine (Tat) signal peptide PhoD was used to direct the secretion of the β-galactosidase Bgal1-3 into the growth medium of an engineered strain of Bacillus subtilis 168. After 24 h of cultivation, the extracellular activity reached 1.15 U/mL, representing 78% of the total activity. Bgal1-3 was exported via both Tat-dependent and Tat-independent pathways. To improve the secretion amounts, two more copies of the target gene were inserted into the designated loci on the chromosome, further improving the extracellular enzymatic activity to 2.15 U/mL. The engineered strain with three copies of bgal1-3 was genetically stable after 150 generations. To the best of our knowledge, this is the first report on the functional secretion of a heterologous protein via both Tat-dependent and Tat-independent pathways mediated by a Tat signal peptide in B. subtilis. Furthermore, this study provides us with a markerless engineered strain for the production of β-galactosidase.
Collapse
Affiliation(s)
- Guang-Hui Ren
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Li-Chuang Cao
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Wei Kong
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Zhi-Jun Wang
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Yu-Huan Liu
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
99838
|
Muth T, Renard BY, Martens L. Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics 2016; 13:757-69. [DOI: 10.1080/14789450.2016.1209418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
99839
|
Abstract
Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered.
Collapse
|
99840
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
99841
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
99842
|
Johnson PM, Gucinski GC, Garza-Sánchez F, Wong T, Hung LW, Hayes CS, Goulding CW. Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei. J Biol Chem 2016; 291:19387-400. [PMID: 27445337 DOI: 10.1074/jbc.m116.736074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition. CDI(+) bacteria deploy large CdiA effector proteins, which carry variable C-terminal toxin domains (CdiA-CT). CDI(+) cells also produce CdiI immunity proteins that specifically neutralize cognate CdiA-CT toxins to prevent auto-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(E479) toxin/immunity protein complex from Burkholderia pseudomallei isolate E479. The CdiA-CT(E479) tRNase domain contains a core α/β-fold that is characteristic of PD(D/E)XK superfamily nucleases. Unexpectedly, the closest structural homolog of CdiA-CT(E479) is another CDI toxin domain from B. pseudomallei 1026b. Although unrelated in sequence, the two B. pseudomallei nuclease domains share similar folds and active-site architectures. By contrast, the CdiI(E479) and CdiI(1026b) immunity proteins share no significant sequence or structural homology. CdiA-CT(E479) and CdiA-CT(1026b) are both tRNases; however, each nuclease cleaves tRNA at a distinct position. We used a molecular docking approach to model each toxin bound to tRNA substrate. The resulting models fit into electron density envelopes generated by small-angle x-ray scattering analysis of catalytically inactive toxin domains bound stably to tRNA. CdiA-CT(E479) is the third CDI toxin found to have structural homology to the PD(D/E)XK superfamily. We propose that CDI systems exploit the inherent sequence variability and active-site plasticity of PD(D/E)XK nucleases to generate toxin diversity. These findings raise the possibility that many other uncharacterized CDI toxins may belong to the PD(D/E)XK superfamily.
Collapse
Affiliation(s)
| | | | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106-9625, and
| | - Timothy Wong
- From the Departments of Molecular Biology and Biochemistry and
| | - Li-Wei Hung
- the Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Christopher S Hayes
- the Biomolecular Science and Engineering Program and Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106-9625, and
| | - Celia W Goulding
- From the Departments of Molecular Biology and Biochemistry and Pharmaceutical Sciences, University of California at Irvine, Irvine, California 92697,
| |
Collapse
|
99843
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
99844
|
Zhou H, Dang H, Klotz MG. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Front Microbiol 2016; 7:1111. [PMID: 27489551 PMCID: PMC4951488 DOI: 10.3389/fmicb.2016.01111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography, and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in sediments of the more research-accessible marginal seas. Here we report on an investigation of the environmental geochemistry and putative diazotrophic microbiota in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing bacteria (SRB) were found to be the dominant putative nitrogen-fixing microbes. Community statistical analyses suggested bottom water temperature, bottom water chlorophyll a content (or the covarying turbidity) and sediment porewater Eh (or the covarying pH) as the most significant environmental factors controlling the structure and spatial distribution of the putative diazotrophic communities, while sediment Hg content, sulfide content, and porewater SiO32−-Si content were identified as the key environmental factors correlated positively with the nifH gene abundance in Bohai Sea sediments. Comparative analyses between the Bohai Sea and the northern South China Sea (nSCS) identified a significant composition difference of the putative diazotrophic communities in sediments between the shallow-water (estuarine and nearshore) and deep-water (offshore and deep-sea) environments, and sediment porewater dissolved oxygen content, water depth and in situ temperature as the key environmental factors tentatively controlling the species composition, community structure, and spatial distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the ecophysiological specialization and niche differentiation between the shallow-water and deep-water sediment diazotrophic communities and suggests that the in situ physical and geochemical conditions play a more important role than geographical contiguity in determining the community similarity of the diazotrophic microbiota in marginal sea sediments.
Collapse
Affiliation(s)
- Haixia Zhou
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China; Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China)Qingdao, China; Department of Food Quality and Safety, College of Life Science, Dezhou UniversityDezhou, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen University Xiamen, China
| | - Martin G Klotz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China; Department of Biology and School of Earth and Environmental Sciences, Queens College, City University of New YorkQueens, NY, USA
| |
Collapse
|
99845
|
Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Bracher F, Bowyer P, Haas H, Brakhage AA, Bromley MJ. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. PLoS Pathog 2016; 12:e1005775. [PMID: 27438727 PMCID: PMC4954732 DOI: 10.1371/journal.ppat.1005775] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023] Open
Abstract
Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis. Aspergillus fumigatus is the most important airborne mould pathogen and allergen worldwide. Estimates suggest that >3 million people have invasive or chronic infections that lead to >600,000 deaths every year. Very few drugs are available to treat the various forms of aspergillosis and we rely predominantly on the azole class of agents which inhibit sterol biosynthesis. Resistance to the azoles is growing alarmingly, primarily driven by strains with two principal genetic signatures (TR34/L98H and TR46/Y121F/T289A). In this study we identify that the transcriptional mechanism governing resistance in this group of isolates is linked to the opposing actions of 2 transcriptional regulators, SrbA and the CBC, and uncover a role for the CBC in sterol regulation and virulence in A. fumigatus. We propose targeting SrbA would provide an effective avenue for therapeutic intervention for resistant strains.
Collapse
Affiliation(s)
- Fabio Gsaller
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Paul D. Carr
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Bharat Rash
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Javier Capilla
- Microbiology Unit, Medical School, Universitat Rovira i Virgili, Reus, Spain
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Paul Bowyer
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Hubertus Haas
- Division of Molecular Biology, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
99846
|
Inflammation Perturbs the IL-7 Axis, Promoting Senescence and Exhaustion that Broadly Characterize Immune Failure in Treated HIV Infection. J Acquir Immune Defic Syndr 2016; 71:483-92. [PMID: 26627102 DOI: 10.1097/qai.0000000000000913] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND HIV-infected patients who fail to normalize CD4 T cells despite suppressive antiretroviral therapy have impaired immune homeostasis: diminished naive T-cell numbers, elevated T-cell turnover, senescence, and inflammation. METHODS Blood samples from immune failures (n = 60), immune successes (n = 20), and healthy controls (n = 20) were examined for plasma interleukin (IL)-7 levels, for cellular expression of the IL-7Rα chain (CD127), for the exhaustion and senescence markers programed death 1 (PD-1) and CD57, and for the survival factor Bcl2. Because both inflammatory and homeostatic cytokines can induce T-cell cycling, we also examined the effects of these mediators on exhaustion and senescence markers. RESULTS Plasma levels of IL-7 were elevated and both CD4 and CD8 T-cell CD127 expression was decreased in immune failure. Plasma levels of IL-7 correlated directly with naive CD4 T-cell counts in immune success and inversely with T-cell cycling (Ki67) in healthy controls and immune success, but not in immune failure. CD4 T-cell density of PD-1 was increased and Bcl2+ CD4 T cells were decreased in immune failure but not in immune success, whereas the proportion of T cells expressing CD57 was increased in immune failure. PD-1 and CD57 were induced on CD4 but not CD8 T cells by stimulation in vitro with inflammatory IL-1β or homeostatic (IL-7) cytokines. CONCLUSIONS Perturbation of the IL-7/IL-7 receptor axis, increased T-cell turnover, and increased senescence may reflect dysregulated responses to both homeostatic and inflammatory cytokines in immune failure patients.
Collapse
|
99847
|
Kathirvel M, Buchad H, Nair M. Enhancement of the pathogenicity of Staphylococcus aureus strain Newman by a small noncoding RNA SprX1. Med Microbiol Immunol 2016; 205:563-574. [PMID: 27438010 DOI: 10.1007/s00430-016-0467-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
The pathogenesis of Staphylococcus aureus from local infection to systemic dissemination involves a range of virulence factors including structural and secreted products. Among various control mechanisms, small noncoding RNAs are involved in the regulation of multiple pathogenicity factors in S. aureus. The sRNA SprX which is encoded in the pathogenicity island of methicillin-susceptible S. aureus strain Newman and was shown to influence antibiotic resistance previously, upregulated the expression of virulence genes, especially the cell wall-associated clumping factor B (ClfB) and delta hemolysin (Hld). Bioinformatic analysis revealed several multiple mRNAs associated with pathogenicity as targets for SprX1, one of the three copies of sprX. Both overexpression and chromosomal disruption of sprX1 supported the scheme of upregulation of clfB and hld expression. Altered expression of SprX1 altered the levels of Hld and ClfB mRNAs, hemolysis, clumping of cells, biofilm formation by plate adhesion studies and confocal microscopic analysis as well as infection pathology of modified strains in mice models. ClfB and Hld mRNAs interacted directly with SprX1 in in vitro assays. Increased level of the regulatory RNA, namely RNAIII, that comprises Hld mRNA and also regulates the biofilm formation, indicates that SprX1 may also function through RNAIII for regulating virulence factors. An immunodominant protein, antigen A, was downregulated by SprX1 in two-dimensional electrophoresis. Taken together, these results signify the role of sRNA SprX in the pathogenicity of S. aureus Newman.
Collapse
Affiliation(s)
- Manikandan Kathirvel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hasmatbanu Buchad
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
99848
|
Woda M, Friberg H, Currier JR, Srikiatkhachorn A, Macareo LR, Green S, Jarman RG, Rothman AL, Mathew A. Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions. J Infect Dis 2016; 214:1001-9. [PMID: 27443614 DOI: 10.1093/infdis/jiw308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The development of reagents to identify and characterize antigen-specific B cells has been challenging. METHODS We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. RESULTS In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. CONCLUSIONS AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination.
Collapse
Affiliation(s)
- Marcia Woda
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester Institute for Immunology and Informatics, University of Rhode Island, Providence
| | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Anon Srikiatkhachorn
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis R Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sharone Green
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester
| | | | - Alan L Rothman
- Institute for Immunology and Informatics, University of Rhode Island, Providence
| | - Anuja Mathew
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester Institute for Immunology and Informatics, University of Rhode Island, Providence
| |
Collapse
|
99849
|
Li X, Chen X, Jiang Y, Chen S, Qu L, Qu Z, Yuan J, Shi H. Highly Efficient Ultrasonic-Assisted CuCl-Catalyzed 1,3-Dipolar Cycloaddition Reactions in Water: Synthesis of Coumarin Derivatives Linked with 1,2,3-Triazole Moiety. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Li
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
| | - Xiaolan Chen
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
| | - Yuqin Jiang
- College of Chemistry and Environmental Science; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Senshen Chen
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
- Chemistry and Chemical Engineering School; Henan University of Technology; Henan Province Zhengzhou 450001 People's Republic of China
| | - Zhibo Qu
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
| | - Jinwei Yuan
- Chemistry and Chemical Engineering School; Henan University of Technology; Henan Province Zhengzhou 450001 People's Republic of China
| | - Hanyu Shi
- College of Chemistry and Molecular Engineering; Zhengzhou University, Key Laboratory of Organic Chemistry and Chemical Biology; Henan Province Zhengzhou 450052 People's Republic of China
| |
Collapse
|
99850
|
Moncla BJ, Chappell CA, Debo BM, Meyn LA. The Effects of Hormones and Vaginal Microflora on the Glycome of the Female Genital Tract: Cervical-Vaginal Fluid. PLoS One 2016; 11:e0158687. [PMID: 27437931 PMCID: PMC4954690 DOI: 10.1371/journal.pone.0158687] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022] Open
Abstract
In this study, we characterized the glycome of cervical-vaginal fluid, collected with a Catamenial cup. We quantified: glycosidase levels; sialic acid and high mannose specific lectin binding; mucins, MUC1, MUC4, MUC5AC, MUC7; and albumin in the samples collected. These data were analyzed in the context of hormonal status (day of menstrual cycle, hormonal contraception use) and role, if any, of the type of the vaginal microflora present. When the Nugent score was used to stratify the subjects by microflora as normal, intermediate, or bacterial vaginosis, several important differences were observed. The activities of four of six glycosidases in the samples from women with bacterial vaginosis were significantly increased when compared to normal or intermediate women: sialidase, P = <0.001; α-galactosidase, P = 0.006; β-galactosidase, P = 0.005; α-glucosidase, P = 0.056. Sialic acid binding sites as measured by two lectins, Maackia amurensis and Sambucus nigra binding, were significantly lower in women with BV compared to women with normal and intermediate scores (P = <0.0001 and 0.008 respectively). High mannose binding sites, a measure of innate immunity were also significantly lower in women with BV (P = <0.001). Additionally, we observed significant increases in MUC1, MUC4, MUC5AC, and MUC7 concentrations in women with BV (P = <0.001, 0.001, <0.001, 0.02 respectively). Among normal women we found that the membrane bound mucin MUC4 and the secreted MUC5AC were decreased in postmenopausal women (P = 0.02 and 0.07 respectively), while MUC7 (secreted) was decreased in women using levonorgestrel-containing IUDs (P = 0.02). The number of sialic acid binding sites was lower in the postmenopausal group (P = 0.04), but the number of high mannose binding sites, measured with Griffithsin, was not significantly different among the 6 hormonal groups. The glycosidase levels in the cervical-vaginal mucus were rather low in the groups, with exception of α-glucosidase activity that was much lower in the postmenopausal group (P<0.001). These studies present compelling evidence that the vaginal ecosystem responds to the presence of different vaginal microorganisms. These effects were so influential that it required us to remove subjects with BV for data interpretation of the impact of hormones. We also suggest that certain changes occurring in vaginal/cervical proteins are due to bacteria or their products. Therefore, the quantitation of vaginal mucins and lectin binding offers a new method to monitor bacteria-host interactions in the female reproductive tract. The data suggest that some of the changes in these components are the result of host processing, such as the increases in mucin content, while the microflora is responsible for the increases in glycosidases and the decreases in lectin binding. The methods should be considered a valid marker for insult to the female genital tract.
Collapse
Affiliation(s)
- Bernard J. Moncla
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Catherine A. Chappell
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Brian M. Debo
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leslie A. Meyn
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|