51
|
Li TR, Yang Q, Hu X, Han Y. Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage. Curr Neuropharmacol 2022; 20:713-737. [PMID: 34030620 PMCID: PMC9878962 DOI: 10.2174/1570159x19666210524153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly "asymptomatic" in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, 50924, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China;,Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China;,National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China;,School of Biomedical Engineering, Hainan University, Haikou, 570228, China;,Address correspondence to this author at the Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Tel: +86 13621011941; E-mail:
| |
Collapse
|
52
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
53
|
Álvarez-Sánchez L, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Novel Ultrasensitive Detection Technologies for the Identification of Early and Minimally Invasive Alzheimer's Disease Blood Biomarkers. J Alzheimers Dis 2022; 86:1337-1369. [PMID: 35213367 DOI: 10.3233/jad-215093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Single molecule array (SIMOA) and other ultrasensitive detection technologies have allowed the determination of blood-based biomarkers of Alzheimer's disease (AD) for diagnosis and monitoring, thereby opening up a promising field of research. OBJECTIVE To review the published bibliography on plasma biomarkers in AD using new ultrasensitive techniques. METHODS A systematic review of the PubMed database was carried out to identify reports on the use of blood-based ultrasensitive technology to identify biomarkers for AD. RESULTS Based on this search, 86 works were included and classified according to the biomarker determined. First, plasma amyloid-β showed satisfactory accuracy as an AD biomarker in patients with a high risk of developing dementia. Second, plasma t-Tau displayed good sensitivity in detecting different neurodegenerative diseases. Third, plasma p-Tau was highly specific for AD. Fourth, plasma NfL was highly sensitive for distinguishing between patients with neurodegenerative diseases and healthy controls. In general, the simultaneous determination of several biomarkers facilitated greater accuracy in diagnosing AD (Aβ42/Aβ40, p-Tau181/217). CONCLUSION The recent development of ultrasensitive technology allows the determination of blood-based biomarkers with high sensitivity, thus facilitating the early detection of AD through the analysis of easily obtained biological samples. In short, as a result of this knowledge, pre-symptomatic and early AD diagnosis may be possible, and the recruitment process for future clinical trials could be more precise. However, further studies are necessary to standardize levels of blood-based biomarkers in the general population and thus achieve reproducible results among different laboratories.
Collapse
Affiliation(s)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
54
|
Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies. J Neural Transm (Vienna) 2022; 129:239-259. [PMID: 35175385 DOI: 10.1007/s00702-022-02471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, is characterized neuropathologically by extracellular Aβ plaques and intracellular tau neurofibrillary tangles. While in AD tau pathology probably follows early alterations in Aβ metabolism, it develops independently in the so-called primary tauopathies, the main form being frontotemporal lobar degeneration with tau pathology. Tau pathology in AD brain is reflected in the cerebrospinal fluid (CSF) by elevated levels of the two AD tau biomarkers total and phosphorylated tau, which are now used for routine diagnostic purposes. On the contrary, no established neurochemical biomarkers exist for tau pathology in primary tauopathies. Thanks to recent technological advances, total and phosphorylated tau can now be quantified also on peripheral blood, and accumulating evidence shows that measurement of plasma phosphorylated tau species (P-tau181, P-tau217, and P-tau231) has high performances in discriminating AD patients from cognitively unimpaired subjects but also from patients with other dementias. Moreover, plasma P-tau levels are associated with tracer uptake on tau- and amyloid-PET as well as with brain atrophy, cognitive measures and longitudinal changes of these parameters. These features, together with the low invasiveness, scalability, and ease of longitudinal sampling, which differentiate plasma P-tau species from their CSF counterparts, make these proteins promising peripheral biomarkers for AD in both research and clinical setting. This review discusses the recent developments in the field of plasma tau proteins as diagnostic, pathophysiological and prognostic biomarkers of Alzheimer's disease; additional findings from the fields of genetic forms of AD and of non-AD proteinopathies are also summarized.
Collapse
|
55
|
Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Senapati S, Malampati S, Zhu Z, Su CF, Liu J, Guan XJ, Tong BCK, Cheung KH, Tan JQ, Lu JH, Durairajan SSK, Song JX, Li M. Protopine promotes the proteasomal degradation of pathological tau in Alzheimer's disease models via HDAC6 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153887. [PMID: 34936968 DOI: 10.1016/j.phymed.2021.153887] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ashok Iyaswamy
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sandeep Malampati
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-Fu Su
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia Liu
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin-Jie Guan
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Benjamin Chun-Kit Tong
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - King-Ho Cheung
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Jie-Qiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jia-Hong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macao, Macao, China
| | - Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India.
| | - Ju-Xian Song
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
56
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
57
|
Vorobev SV, Yanishevskij SN, Emelin AY, Lebedev AA, Lebedev SP, Makarov YN, Usikov AS, Klotchenko SA, Vasin AV. Prospects for the use of graphene-based biological sensors in the early diagnosis of Alzheimer's disease (review of literature). Klin Lab Diagn 2022; 67:5-12. [PMID: 35077063 DOI: 10.51620/0869-2084-2022-67-1-5-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the most significant challenges presented to modern medicine is the problem of cognitive disorders. The relevance of her research is determined by the wide spread of disorders of the higher cortical functions, their significant negative impact on the quality of life of patients, as well as high economic costs on the part of the state and the patient's relatives aimed at organizing medical, diagnostic and rehabilitation processes. The main cause of cognitive impairment in the elderly is Alzheimer's disease. Currently, the criteria for the diagnosis of this nosological form have been developed and are widely used in practice. However, it should be noted that their use is most effective if the patient has a detailed clinical picture, at the stage of dementia. In addition, they provide for the study of biomarkers in a number of cases in the cerebrospinal fluid or using positron emission tomography, which presents certain technical difficulties. Especially significant problems arise in the pre-dement stages. This situation dictates the need to search for new promising diagnostic methods that will have high sensitivity and specificity, as well as the possibility of application in the early stages of Alzheimer's disease, including in outpatient settings. The article provides information about modern methods of computer neuroimaging, discusses the research directions of individual biomarkers, and also shows the prospects for using diagnostic test panels developed on the basis of graphene biosensors, taking into account the latest achievements of nanotechnology and their integration into medical science.
Collapse
Affiliation(s)
- S V Vorobev
- Almazov National Medical Research Centre.,Saint-Petersburg State Pediatric Medical University
| | - S N Yanishevskij
- Almazov National Medical Research Centre.,Military Medical Academy named after S.M. Kirov
| | - A Yu Emelin
- Military Medical Academy named after S.M. Kirov
| | - A A Lebedev
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Ioffe Institute
| | | | - Yu N Makarov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | - A S Usikov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | | | - A V Vasin
- Smorodintsev Research Institute of Influenza.,Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University
| |
Collapse
|
58
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
59
|
Marks JD, Syrjanen JA, Graff-Radford J, Petersen RC, Machulda MM, Campbell MR, Algeciras-Schimnich A, Lowe V, Knopman DS, Jack CR, Vemuri P, Mielke MM. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res Ther 2021; 13:199. [PMID: 34906229 PMCID: PMC8672619 DOI: 10.1186/s13195-021-00944-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jordan D Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
60
|
Hu CJ, Chiu MJ, Pai MC, Yan SH, Wang PN, Chiu PY, Lin CH, Chen TF, Yang FC, Huang KL, Hsu YT, Hou YC, Lin WC, Lu CH, Huang LK, Yang SY. Assessment of High Risk for Alzheimer's Disease Using Plasma Biomarkers in Subjects with Normal Cognition in Taiwan: A Preliminary Study. J Alzheimers Dis Rep 2021; 5:761-770. [PMID: 34870102 PMCID: PMC8609520 DOI: 10.3233/adr-210310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background In Alzheimer's disease (AD), cognitive impairment begins 10-15 years later than neurodegeneration in the brain. Plasma biomarkers are promising candidates for assessing neurodegeneration in people with normal cognition. It has been reported that subjects with the concentration of plasma amyloid-β 1-42×total tau protein higher than 455 pg2/ml2 are assessed as having a high risk of amnesic mild impairment or AD, denoted as high risk of AD (HRAD). Objective The prevalence of high-risk for dementia in cognitively normal controls is explored by assaying plasma biomarkers. Methods 422 subjects with normal cognition were enrolled around Taiwan. Plasma Aβ1-40, Aβ1-42, and T-Tau levels were assayed using immunomagnetic reduction to assess the risk of dementia. Results The results showed that 4.6% of young adults (age: 20-44 years), 8.5% of middle-aged adults (age: 45-64 years), and 7.3% of elderly adults (age: 65-90 years) had HRAD. The percentage of individuals with HRAD dramatically increased in middle-aged and elderly adults compared to young adults. Conclusion The percentage of HRAD in cognitively normal subjects are approximately 10%, which reveals that the potentially public-health problem of AD in normal population. Although the subject having abnormal levels of Aβ or tau is not definitely going on to develop cognitive declines or AD, the risk of suffering cognitive impairment in future is relatively high. Suitable managements are suggested for these high-risk cognitively normal population. Worth noting, attention should be paid to preventing cognitive impairment due to AD, not only in elderly adults but also middle-aged adults.
Collapse
Affiliation(s)
- Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sui-Hing Yan
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Chunghwa, Taiwan.,MR-guided Focus Ultrasound Center, Chang Bin Show Chwan Memorial Hospital, Chunghwa, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Kai Huang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | |
Collapse
|
61
|
Hall JR, Petersen M, Johnson L, O'Bryant SE. Plasma Total Tau and Neurobehavioral Symptoms of Cognitive Decline in Cognitively Normal Older Adults. Front Psychol 2021; 12:774049. [PMID: 34803857 PMCID: PMC8603823 DOI: 10.3389/fpsyg.2021.774049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and related neurobehavioral symptoms are common features of Alzheimer’s disease and other dementias. The presence of these potentially modifiable neurobehavioral symptoms in cognitively intact older adults may represent an early indication of pathophysiological processes in the brain. Tau pathology is a key feature of a number of dementias. A number of studies have found an association between tau and neurobehavioral symptoms. The current study investigated the relationship of a blood-based biomarker of tau and symptoms of depression, anxiety, worry, and sleep disturbances in 538 community based, cognitively normal older adults. Logistic regression revealed no significant relationship between plasma total tau and any measures of neurobehavioral symptoms. To assess the impact of level of tau on these relationships, participants were divided into those in the highest quintile of tau and those in the lower four quintiles. Regression analyses showed a significant relationship between level of plasma total tau and measures of depression, apathy, anxiety, worry and sleep. The presence of higher levels of plasma tau and elevated neurobehavioral symptoms may be an early indicator of cognitive decline and prodromal Alzheimer’s disease. Longitudinal research is needed to evaluate the impact of these factors on the development of dementia and may suggest areas for early intervention.
Collapse
Affiliation(s)
- James R Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Leigh Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Sid E O'Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
62
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
63
|
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer's disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:704-710. [PMID: 34752348 DOI: 10.1016/j.nrleng.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Early diagnosis of Alzheimer disease (AD) through the use of biomarkers could assist in the implementation and monitoring of early therapeutic interventions, and has the potential to significantly modify the course of the disease. DEVELOPMENT The classic cerebrospinal fluid and approved structural and functional neuroimaging biomarkers are of limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would increase their use in clinical practice. We review the available published evidence on the main blood biochemical biomarkers potentially useful for diagnosing AD. CONCLUSIONS Blood biomarkers are more cost- and time-effective than CSF biomarkers. However, immediate applicability in clinical practice is relatively unlikely. The main limitations come from the difficulty of measuring and standardising thresholds between different laboratories and the failure to replicate results. Of all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through "omics" approaches, such as isolated or combined metabolomics, offer the most promising results.
Collapse
Affiliation(s)
- M Altuna-Azkargorta
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| | - M Mendioroz-Iriarte
- Laboratorio de Neuroepigenética, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; Servicio de Neurología, Complejo Hospitalario de Navarra, Pamplona, Spain
| |
Collapse
|
64
|
Chen YR, Liang CS, Chu H, Voss J, Kang XL, O'Connell G, Jen HJ, Liu D, Shen Hsiao ST, Chou KR. Diagnostic accuracy of blood biomarkers for Alzheimer's disease and amnestic mild cognitive impairment: A meta-analysis. Ageing Res Rev 2021; 71:101446. [PMID: 34391944 DOI: 10.1016/j.arr.2021.101446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To examine the diagnostic accuracy of blood-based biomarkers for detecting Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). METHODS Seven electronic databases were comprehensively searched for studies evaluating the diagnostic accuracy of blood-based biomarkers for detecting AD or aMCI up to July 31, 2020. The pooled sensitivity, specificity, and the diagnostic odds ratio (DOR) were calculated using a hierarchical summary receiver operating characteristic model. RESULTS A total of 17 studies (n = 2,083) were included. In differentiating patients with AD from the controls, the DOR was 32.2 for the plasma Aβ42 (sensitivity = 88 %, specificity = 81 %), 29.1 for the plasma Aβ oligomer (sensitivity = 80 %, specificity = 88 %), and 52.1 for the plasma tau (sensitivity = 90 %, specificity = 87 %). For differentiating aMCI from the controls, the DOR was 60.4 for the plasma Aβ42 (sensitivity = 86 %, specificity = 90 %) and 49.1 for the plasma tau (sensitivity = 79 %, specificity = 94 %). The use of ultra-high sensitive technology explained the heterogeneity in the diagnostic performance of blood-based biomarkers (P = .01). CONCLUSIONS We suggest that blood-based biomarkers are minimally invasive and cost-effective tools for detecting AD; however, the evidence for detecting aMCI was still limited.
Collapse
|
65
|
Yin X, Zhou Z, Qiu Y, Fan X, Zhao C, Bao J, Liu C, Liu F, Qian W. SIRT1 Regulates Tau Expression and Tau Synaptic Pathology. J Alzheimers Dis 2021; 84:895-904. [PMID: 34602486 DOI: 10.3233/jad-215118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Amyloid plaques and neurofibrillary tangles are two pathological hallmarks of Alzheimer's disease (AD). However, synaptic deficits occur much earlier and correlate stronger with cognitive decline than amyloid plaques and neurofibrillary tangles. Mislocalization of tau is an early hallmark of neurodegeneration and precedes aggregations. Sirtuin type 1 (SIRT1) is a deacetylase which acts on proteins including transcriptional factors and associates closely with AD. OBJECTIVE The present study investigated the association between SIRT1 and tau expression/tau localization in cells and in mice brains. METHODS Western blot was performed to detected tau, SIRT1, C/EBPα, and GAPDH protein levels. Immunological fluorescence assay was used to assess tau localization in primary cortical neuronal cells. Golgi staining was performed to evaluated dendritic spine morphology in mice brains. RESULTS In the present study, we found that SIRT1 negatively regulates expression of tau at the transcriptional level through transcriptional factor C/EBPα. Inhibition of the activity of SIRT1 limits the distribution of tau to the neurites. In the meantime, the alteration of dendritic spine morphology is also observed in the brains of SIRT1+/- mice. CONCLUSION SIRT1 may be a potential drug target for early intervention in AD.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Xing Fan
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Chenxu Liu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| |
Collapse
|
66
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
67
|
Wang W, Cao Q, Tan T, Yang F, Williams JB, Yan Z. Epigenetic treatment of behavioral and physiological deficits in a tauopathy mouse model. Aging Cell 2021; 20:e13456. [PMID: 34547169 PMCID: PMC8520711 DOI: 10.1111/acel.13456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic abnormality is implicated in neurodegenerative diseases associated with cognitive deficits, such as Alzheimer's disease (AD). A common feature of AD is the accumulation of neurofibrillary tangles composed of hyperphosphorylated tau. Transgenic mice expressing mutant P301S human tau protein develop AD‐like progressive tau pathology and cognitive impairment. Here, we show that the euchromatic histone‐lysine N‐methyltransferase 2 (EHMT2) is significantly elevated in the prefrontal cortex (PFC) of P301S Tau mice (5–7 months old), leading to the increased repressive histone mark, H3K9me2, which is reversed by treatment with the selective EHMT inhibitor UNC0642. Behavioral assays show that UNC0642 treatment induces the robust rescue of spatial and recognition memory deficits in P301S Tau mice. Concomitantly, the diminished PFC neuronal excitability and glutamatergic synaptic transmission in P301S Tau mice are also normalized by UNC0642 treatment. In addition, EHMT inhibition dramatically attenuates the hyperphosphorylated tau level in PFC of P301S Tau mice. Transcriptomic analysis reveals that UNC0642 treatment of P301S Tau mice has normalized a number of dysregulated genes in PFC, which are enriched in cytoskeleton and extracellular matrix organization, ion channels and transporters, receptor signaling, and stress responses. Together, these data suggest that targeting histone methylation enzymes to adjust gene expression could be used to treat cognitive and synaptic deficits in neurodegenerative diseases linked to tauopathies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Qing Cao
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Tao Tan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Fengwei Yang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Jamal B. Williams
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Zhen Yan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| |
Collapse
|
68
|
Cianflone A, Coppola L, Mirabelli P, Salvatore M. Predictive Accuracy of Blood-Derived Biomarkers for Amyloid-β Brain Deposition Along with the Alzheimer's Disease Continuum: A Systematic Review. J Alzheimers Dis 2021; 84:393-407. [PMID: 34542072 DOI: 10.3233/jad-210496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND An amyloid-β (Aβ) positron emission tomography (Aβ-PET) scan of the human brain could lead to an early diagnosis of Alzheimer's disease (AD) and estimate disease progression. However, Aβ-PET imaging is expensive, invasive, and rarely applicable to cognitively normal subjects at risk for dementia. The identification of blood biomarkers predictive of Aβ brain deposition could help the identification of subjects at risk for dementia and could be helpful for the prognosis of AD progression. OBJECTIVE This study aimed to analyze the prognostic accuracy of blood biomarkers in predicting Aβ-PET status along with progression toward AD. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched bibliographic databases from 2010 to 2020. The quality of the included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. RESULTS A total of 8 studies were retrieved. The prognostic accuracy of Aβ-PET status was calculated by obtaining ROCs for the following biomarkers: free, total, and bound Aβ42 and Aβ40; Aβ42/40 ratio; neurofilaments (NFL); total tau (T-tau); and phosphorylated-tau181 (P-tau181). Higher and lower plasma baseline levels of P-tau181 and the Aβ42/40 ratio, respectively, showed consistently good prognostication of Aβ-PET brain accumulation. Only P-tau181 was shown to predict AD progression. CONCLUSION In conclusion, the Aβ42/40 ratio and plasma P-tau181 were shown to predict Aβ-PET status. Plasma P-tau181 could also be a preclinical biomarker for AD progression.
Collapse
|
69
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
70
|
Campese N, Beatino MF, Del Gamba C, Belli E, Giampietri L, Del Prete E, Galgani A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Ultrasensitive techniques and protein misfolding amplification assays for biomarker-guided reconceptualization of Alzheimer's and other neurodegenerative diseases. Expert Rev Neurother 2021; 21:949-967. [PMID: 34365867 DOI: 10.1080/14737175.2021.1965879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The clinical validation and qualification of biomarkers reflecting the complex pathophysiology of neurodegenerative diseases (NDDs) is a fundamental challenge for current drug discovery and development and next-generation clinical practice. Novel ultrasensitive detection techniques and protein misfolding amplification assays hold the potential to optimize and accelerate this process. AREAS COVERED Here we perform a PubMed-based state of the art review and perspective report on blood-based ultrasensitive detection techniques and protein misfolding amplification assays for biomarkers discovery and development in NDDs. EXPERT OPINION Ultrasensitive assays represent innovative solutions for blood-based assessments during the entire Alzheimer's disease (AD) biological and clinical continuum, for contexts of use (COU) such as prediction, detection, early diagnosis, and prognosis of AD. Moreover, cerebrospinal fluid (CSF)-based misfolding amplification assays show encouraging performance in detecting α-synucleinopathies in prodromal or at-high-risk individuals and may serve as tools for patients' stratification by the presence of α-synuclein pathology. Further clinical research will help overcome current methodological limitations, also through exploring multiple accessible bodily matrices. Eventually, integrative longitudinal studies will support precise definitions for appropriate COU across NDDs.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Claudia Del Gamba
- Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, Prato, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié- Salpêtrière Hospital, Boulevard De L'hôpital, Paris, France
| |
Collapse
|
71
|
Desai P, Evans D, Dhana K, Aggarwal NT, Wilson RS, McAninch E, Rajan KB. Longitudinal Association of Total Tau Concentrations and Physical Activity With Cognitive Decline in a Population Sample. JAMA Netw Open 2021; 4:e2120398. [PMID: 34379124 PMCID: PMC8358733 DOI: 10.1001/jamanetworkopen.2021.20398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IMPORTANCE Tau is a brain protein located in neurons and develops abnormally in individuals with Alzheimer disease. New technology is convenient for measuring blood total tau concentrations and provides a unique and increased opportunity for early intervention to slow cognitive decline. OBJECTIVE To evaluate the association of physical activity and total tau concentrations with cognitive decline at baseline and over time. DESIGN, SETTING, AND PARTICIPANTS The Chicago Health and Aging Project is a population-based cohort study conducted in 4 Chicago communities. Data collection occurred in 3-year cycles between 1993 and 2012. Participants completed in-home interviews. Clinical evaluations, which included blood samples, were performed with a stratified random sample of 1159 participants. Statistical analyses were conducted from October 30, 2020, to May 25, 2021. EXPOSURES Physical activity and total serum tau concentrations. Data on physical activity were obtained through self-report items, and a sum of minutes per week was calculated. Little physical activity was defined as no participation in a minimum of 4 of the items on the physical activity measure. Medium activity was defined as participating in less than 150 minutes of physical activity per week, and high activity was defined as participating in 150 minutes or more of physical activity per week. MAIN OUTCOMES AND MEASURES The main outcome for this study is global cognitive function, measured through a battery of cognitive tests. The study hypothesis was developed after data were collected. RESULTS Of the 1159 participants in the study, 728 were women (63%), and 696 were African American (60%); the mean (SD) age was 77.4 (6.0) years, and the mean (SD) educational level was 12.6 (3.5) years. Participants with high total tau concentrations with medium physical activity had a 58% slower rate of cognitive decline (estimate, -0.028 standard deviation unit [SDU] per year [95% CI, -0.057 to 0.002 SDU per year]; difference, 0.038 SDU per year [95% CI, 0.011-0.065 SDU per year]), and those with high physical activity had a 41% slower rate of cognitive decline (estimate, -0.038 SDU per year [95% CI, -0.068 to -0.009 SDU per year]; difference, 0.027 SDU per year [95% CI, -0.002 to 0.056 SDU per year]), compared with those with little physical activity. Among participants with low total tau concentrations, medium physical activity was associated with a 2% slower rate of cognitive decline (estimate, -0.050 SDU per year [95% CI, -0.069 to -0.031 SDU per year]; difference, 0.001 SDU per year [95% CI, -0.019 to 0.021 SDU per year]), and high physical activity was associated with a 27% slower rate of cognitive decline (estimate, -0.037 SDU per year [95% CI, -0.055 to -0.019 SDU per year]; difference, 0.014 SDU per year [95% CI, -0.007 to 0.034 SDU per year]), compared with little physical activity. Individual tests of cognitive function showed similar results. CONCLUSIONS AND RELEVANCE This study suggests that, among participants with both high and low total tau concentrations, physical activity was associated with slower cognitive decline. Results support the potential utility of blood biomarkers in measuring the benefits associated with health behaviors and may contribute to specifying target populations or informing interventions for trials that focus on improving physical activity behavior. Future work should examine the association of total tau concentrations with other health behaviors and physical activity types.
Collapse
Affiliation(s)
- Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Denis Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Neelum T. Aggarwal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Elizabeth McAninch
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
- Department of Neurology, University of California at Davis, Davis
| |
Collapse
|
72
|
Rost NS, Meschia JF, Gottesman R, Wruck L, Helmer K, Greenberg SM. Cognitive Impairment and Dementia After Stroke: Design and Rationale for the DISCOVERY Study. Stroke 2021; 52:e499-e516. [PMID: 34039035 PMCID: PMC8316324 DOI: 10.1161/strokeaha.120.031611] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke is a leading cause of the adult disability epidemic in the United States, with a major contribution from poststroke cognitive impairment and dementia (PSCID), the rates of which are disproportionally high among the health disparity populations. Despite the PSCID's overwhelming impact on public health, a knowledge gap exists with regard to the complex interaction between the acute stroke event and highly prevalent preexisting brain pathology related to cerebrovascular and Alzheimer disease or related dementia. Understanding the factors that modulate PSCID risk in relation to index stroke event is critically important for developing personalized prognostication of PSCID, targeted interventions to prevent it, and for informing future clinical trial design. The DISCOVERY study (Determinants of Incident Stroke Cognitive Outcomes and Vascular Effects on Recovery), a collaborative network of thirty clinical performance clinical sites with access to acute stroke populations and the expertise and capacity for systematic assessment of PSCID will address this critical challenge. DISCOVERY is a prospective, multicenter, observational, nested-cohort study of 8000 nondemented ischemic and hemorrhagic stroke patients enrolled at the time of index stroke and followed for a minimum of 2 years, with serial cognitive evaluations and assessments of functional outcome, with subsets undergoing research magnetic resonance imaging and positron emission tomography and comprehensive genetic/genomic and fluid biomarker testing. The overall scientific objective of this study is to elucidate mechanisms of brain resilience and susceptibility to PSCID in diverse US populations based on complex interplay between life-course exposure to multiple vascular risk factors, preexisting burden of microvascular and neurodegenerative pathology, the effect of strategic acute stroke lesions, and the mediating effect of genomic and epigenomic variation.
Collapse
Affiliation(s)
- Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Karl Helmer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
73
|
Qu Y, Ma YH, Huang YY, Ou YN, Shen XN, Chen SD, Dong Q, Tan L, Yu JT. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 128:479-486. [PMID: 34245759 DOI: 10.1016/j.neubiorev.2021.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
The development of blood-based biomarkers of Alzheimer's disease (AD) pathology as tools for screening the general population is essential, but persists controversies. We aimed to evaluate the effects of AD core pathological biomarkers on blood, and systematical searched Embase, PubMed and Cochrane for eligible studies. Biomarker performance was rated by random-effects meta-analysis based on the ratio of means method and multivariable-adjusted effect estimates. Finally, 150 articles were included, which demonstrated T-tau (average ratio: 1.25-1.62), P-tau 181 (1.36-2.16) and NfL (1.24-1.86) were increased, and AβPPr (0.65-0.88) were decreased from controls to amnestic mild cognitive impairment (aMCI) to AD. Furthermore, Aβ42, Aβ42/Aβ40 ratio and P-tau 217 using ultrasensitive platforms also had great diagnostic accuracy from controls to aMCI to AD. Consequently, significantly changes of blood AD core biomarkers were verified in comparison between AD, aMCI and control, supporting biomarkers were strongly valid in identifying AD and aMCI, which provides a new prospect of AD early diagnosis and progressive monitoring. This study is registered with PROSPERO, number CRD42020191927.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
74
|
Elevated Tau in Military Personnel Relates to Chronic Symptoms Following Traumatic Brain Injury. J Head Trauma Rehabil 2021; 35:66-73. [PMID: 31033745 DOI: 10.1097/htr.0000000000000485] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To understand the relationships between traumatic brain injury (TBI), blood biomarkers, and symptoms of posttraumatic stress disorder (PTSD), depression, and postconcussive syndrome symptoms. DESIGN Cross-sectional cohort study using multivariate analyses. PARTICIPANTS One hundred nine military personnel and veterans, both with and without a history of TBI. MAIN MEASURES PTSD Checklist-Civilian Version (PCL-C); Neurobehavioral Symptom Inventory (NSI); Ohio State University TBI Identification Method; Patient Health Questionnaire-9 (PHQ-9); Simoa-measured concentrations of tau, amyloid-beta (Aβ) 40, Aβ42, and neurofilament light (NFL). RESULTS Controlling for age, sex, time since last injury (TSLI), and antianxiety/depression medication use, NFL was trending toward being significantly elevated in participants who had sustained 3 or more TBIs compared with those who had sustained 1 or 2 TBIs. Within the TBI group, partial correlations that controlled for age, sex, TSLI, and antianxiety/depression medication use showed that tau concentrations were significantly correlated with greater symptom severity, as measured with the NSI, PCL, and PHQ-9. CONCLUSIONS Elevations in tau are associated with symptom severity after TBI, while NFL levels are elevated in those with a history of repetitive TBIs and in military personnel and veterans. This study shows the utility of measuring biomarkers chronically postinjury. Furthermore, there is a critical need for studies of biomarkers longitudinally following TBI.
Collapse
|
75
|
Kondo T, Banno H, Okunomiya T, Amino Y, Endo K, Nakakura A, Uozumi R, Kinoshita A, Tada H, Morita S, Ishikawa H, Shindo A, Yasuda K, Taruno Y, Maki T, Suehiro T, Mori K, Ikeda M, Fujita K, Izumi Y, Kanemaru K, Ishii K, Shigenobu K, Kutoku Y, Sunada Y, Kawakatsu S, Shiota S, Watanabe T, Uchikawa O, Takahashi R, Tomimoto H, Inoue H. Repurposing bromocriptine for Aβ metabolism in Alzheimer's disease (REBRAnD) study: randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer's disease with presenilin 1 (PSEN1) mutations. BMJ Open 2021; 11:e051343. [PMID: 34193504 PMCID: PMC8246358 DOI: 10.1136/bmjopen-2021-051343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the most common causes of dementia. Pathogenic variants in the presenilin 1 (PSEN1) gene are the most frequent cause of early-onset AD. Medications for patients with AD bearing PSEN1 mutation (PSEN1-AD) are limited to symptomatic therapies and no established radical treatments are available. Induced pluripotent stem cell (iPSC)-based drug repurposing identified bromocriptine as a therapeutic candidate for PSEN1-AD. In this study, we used an enrichment strategy with iPSCs to select the study population, and we will investigate the safety and efficacy of an orally administered dose of bromocriptine in patients with PSEN1-AD. METHODS AND ANALYSIS This is a multicentre, randomised, placebo-controlled trial. AD patients with PSEN1 mutations and a Mini Mental State Examination-Japanese score of ≤25 will be randomly assigned, at a 2:1 ratio, to the trial drug or placebo group (≥4 patients in TW-012R and ≥2 patients in placebo). This clinical trial consists of a screening period, double-blind phase (9 months) and extension phase (3 months). The double-blind phase for evaluating the efficacy and safety is composed of the low-dose maintenance period (10 mg/day), high-dose maintenance period (22.5 mg/day) and tapering period of the trial drug. Additionally, there is an open-labelled active drug extension period for evaluating long-term safety. Primary outcomes are safety and efficacy in cognitive and psychological function. Also, exploratory investigations for the efficacy of bromocriptine by neurological scores and biomarkers will be conducted. ETHICS AND DISSEMINATION The proposed trial is conducted according to the Declaration of Helsinki, and was approved by the Institutional Review Board (K070). The study results are expected to be disseminated at international or national conferences and published in international journals following the peer-review process. TRIAL REGISTRATION NUMBER jRCT2041200008, NCT04413344.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Haruhiko Banno
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Taro Okunomiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Kayoko Endo
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Akiyoshi Nakakura
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Ryuji Uozumi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akemi Kinoshita
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Fujita
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutomi Kanemaru
- Department of Stroke, Tokyo Metropolitan Geriatric Medical Center, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Fukushima Medical University Aizu Medical Center, Aizu, Japan
| | | | | | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
76
|
Metabolomics: A Scoping Review of Its Role as a Tool for Disease Biomarker Discovery in Selected Non-Communicable Diseases. Metabolites 2021; 11:metabo11070418. [PMID: 34201929 PMCID: PMC8305588 DOI: 10.3390/metabo11070418] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Metabolomics is a branch of ‘omics’ sciences that utilises a couple of analytical tools for the identification of small molecules (metabolites) in a given sample. The overarching goal of metabolomics is to assess these metabolites quantitatively and qualitatively for their diagnostic, therapeutic, and prognostic potentials. Its use in various aspects of life has been documented. We have also published, howbeit in animal models, a few papers where metabolomic approaches were used in the study of metabolic disorders, such as metabolic syndrome, diabetes, and obesity. As the goal of every research is to benefit humankind, the purpose of this review is to provide insights into the applicability of metabolomics in medicine vis-à-vis its role in biomarker discovery for disease diagnosis and management. Here, important biomarkers with proven diagnostic and therapeutic relevance in the management of disease conditions, such as Alzheimer’s disease, dementia, Parkinson’s disease, inborn errors of metabolism (IEM), diabetic retinopathy, and cardiovascular disease, are noted. The paper also discusses a few reasons why most metabolomics-based laboratory discoveries are not readily translated to the clinic and how these could be addressed going forward.
Collapse
|
77
|
Zerr I, Villar-Piqué A, Hermann P, Schmitz M, Varges D, Ferrer I, Riggert J, Zetterberg H, Blennow K, Llorens F. Diagnostic and prognostic value of plasma neurofilament light and total-tau in sporadic Creutzfeldt-Jakob disease. Alzheimers Res Ther 2021; 13:86. [PMID: 33883011 PMCID: PMC8059191 DOI: 10.1186/s13195-021-00815-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity. METHODS Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer's disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson's disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated. RESULTS Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity. CONCLUSIONS Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna Villar-Piqué
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
| | - Isidre Ferrer
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical School, Göttingen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Franc Llorens
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
78
|
Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Rodriguez JL, Snellman A, Suárez-Calvet M, Zetterberg H, Blennow K, Schöll M. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum. Brain 2021; 144:325-339. [PMID: 33257949 PMCID: PMC7880671 DOI: 10.1093/brain/awaa399] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/31/2022] Open
Abstract
Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer’s disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer’s disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer’s disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer’s disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-β1–42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer’s disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer’s disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer’s disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer’s disease.
Collapse
Affiliation(s)
- Alexis Moscoso
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Michel J Grothe
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Juan Lantero Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Turku PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
79
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
80
|
Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J Exp Med 2021; 217:151982. [PMID: 32725127 PMCID: PMC7596823 DOI: 10.1084/jem.20200861] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
Highly sensitive and specific plasma biomarkers for Alzheimer’s disease (AD) have the potential to improve diagnostic accuracy in the clinic and facilitate research studies including enrollment in prevention and treatment trials. We recently reported CSF tau hyperphosphorylation, especially on T217, is an accurate predictor of β-amyloidosis at asymptomatic and symptomatic stages. In the current study, we determine by mass spectrometry the potential utility of plasma p-tau isoforms to detect AD pathology and investigate CSF and plasma tau isoforms’ profile relationships. Plasma tau was truncated as previously described in CSF. CSF and plasma measures of p-tau-217 and p-tau-181 were correlated. No correlation was found between CSF and plasma on total-tau levels and pS202 measures. We found p-tau-217 and p-tau-181 were highly specific for amyloid plaque pathology in the discovery cohort (n = 36, AUROC = 0.99 and 0.98 respectively). In the validation cohort (n = 92), p-tau-217 measures were still specific to amyloid status (AUROC = 0.92), and p-tau-181 measures were less specific (AUROC = 0.75).
Collapse
Affiliation(s)
- Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kanta Horie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO.,Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
81
|
Jayachandran M, Miller VM, Lahr BD, Bailey KR, Lowe VJ, Fields JA, Mielke MM, Kantarci K. Peripheral Markers of Neurovascular Unit Integrity and Amyloid-β in the Brains of Menopausal Women. J Alzheimers Dis 2021; 80:397-405. [PMID: 33554914 PMCID: PMC8075395 DOI: 10.3233/jad-201410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The identification of blood-borne biomarkers for the diagnosis and prognosis of Alzheimer's disease and related dementias is more feasible at the population level than obtaining cerebrospinal fluid or neuroimaging markers. OBJECTIVE This study determined the association of blood microvesicles, derived from cells of the neurovascular unit, with brain amyloid-β deposition in menopausal women. METHODS A subset of women from the Kronos Early Estrogen Prevention Study underwent brain amyloid-β positron emission tomography three years following cessation of study treatment with placebo (PL, n = 29), transdermal 17β-estradiol (tE2; n = 21), or oral conjugated equine estrogen (oCEE; n = 17). Isolated peripheral venous blood microvesicles were analyzed by digital flow cytometry using fluorophore conjugated antibodies directed toward total tau, amyloid-β 1-42 (Aβ1-42), neuron specific class III β-tubulin (Tuj1), microglia ionized calcium -binding adaptor molecule 1(Iba1), glial fibrillary acid protein (GFAP), and low density lipoprotein receptor-related protein1 (LRP1). Principal components analysis reduced the dimensionality of these selected six markers to two principal components (PCs). Proportional odds ordinal logistic regression analysis was used with amyloid-β deposition regressed on these PCs. RESULTS Only the number of microvesicles positive for Aβ1-42 differed statistically among prior treatment groups (median [IQR]: 6.06 [2.11, 12.55] in PL; 2.49 [0.73, 3.59] in tE2; and 4.96 [0.83, 10.31] in oCEE; p = 0.032). The joint association between the 2 PCs and brain amyloid-β deposition was significant (p = 0.045). CONCLUSION Six selected markers expressing peripheral blood microvesicles derived from cells of the neurovascular unit, when summarized into two principal components, were associated with brain amyloid-β deposition.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Divisions of Nephrology and Hypertension and Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Virginia M Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brian D Lahr
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kent R Bailey
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
82
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
83
|
Jablonski AM, Warren L, Usenovic M, Zhou H, Sugam J, Parmentier-Batteur S, Voleti B. Astrocytic expression of the Alzheimer's disease risk allele, ApoEε4, potentiates neuronal tau pathology in multiple preclinical models. Sci Rep 2021; 11:3438. [PMID: 33564035 PMCID: PMC7873246 DOI: 10.1038/s41598-021-82901-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
ApoEε4 is a major genetic risk factor for Alzheimer's disease (AD), a disease hallmarked by extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). The presence of the ApoEε4 allele is associated with increased Aβ deposition and a role for ApoEε4 in the potentiation of tau pathology has recently emerged. This study focused on comparing the effects of adeno-associated virus (AAV)-mediated overexpression of the three predominant human ApoE isoforms within astrocytes. The isoform-specific effects of human ApoE were evaluated within in vitro models of tau pathology within neuron/astrocyte co-cultures, as well as in a transgenic tau mouse model. Tau aggregation, accumulation, and phosphorylation were measured to determine if the three isoforms of human ApoE had differential effects on tau. Astrocytic overexpression of the human ApoEε4 allele increased phosphorylation and misfolding of overexpressed neuronal tau in multiple models, including the aggregation and accumulation of added tau oligomers, in an isoform-specific manner. The ability of ApoEε4 to increase tau aggregation could be inhibited by an ApoEε4-specific antibody. This study indicates that astrocytic expression of ApoEε4 can potentiate tau aggregation and phosphorylation within neurons and supports a gain of toxic function hypothesis for the effect of hApoEε4 on tau.
Collapse
Affiliation(s)
- Angela Marie Jablonski
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| | - Lee Warren
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| | - Marija Usenovic
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| | - Heather Zhou
- grid.417993.10000 0001 2260 0793Genetics and Pharmacogenomics, MRL, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
| | - Jonathan Sugam
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| | - Sophie Parmentier-Batteur
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| | - Bhavya Voleti
- grid.417993.10000 0001 2260 0793Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486 USA
| |
Collapse
|
84
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
85
|
Arastoo M, Lofthouse R, Penny LK, Harrington CR, Porter A, Wischik CM, Palliyil S. Current Progress and Future Directions for Tau-Based Fluid Biomarker Diagnostics in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8673. [PMID: 33212983 PMCID: PMC7698492 DOI: 10.3390/ijms21228673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Despite continued efforts, there remain no disease-modifying drugs approved by the United States Food and Drug Administration (FDA) or European Medicines Agency (EMA) to combat the global epidemic of Alzheimer's disease. Currently approved medicines are unable to delay disease progression and are limited to symptomatic treatment. It is well established that the pathophysiology of this disease remains clinically silent for decades prior to symptomatic clinical decline. Identifying those at risk of disease progression could allow for effective treatment whilst the therapeutic window remains open for preservation of quality of life. This review aims to evaluate critically the current advances in the interpretation of tau-based biomarkers and their use to provide insights into the onset and progression of Alzheimer's disease, whilst highlighting important future directions for the field. This review emphasises the need for a more comprehensive analysis and interrogation of tau within biological fluids, to aid in obtaining a disease specific molecular signature for each stage of Alzheimer's disease. Success in achieving this could provide essential utility for presymptomatic patient selection for clinical trials, monitoring disease progression, and evaluating disease modifying therapies.
Collapse
Affiliation(s)
- Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Lewis K. Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Charles R. Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Genting TauRx Diagnostic Centre Sdn. Bhd., Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Claude M. Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Genting TauRx Diagnostic Centre Sdn. Bhd., Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZP, UK; (M.A.); (R.L.); (L.K.P.); (C.R.H.); (A.P.); (S.P.)
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| |
Collapse
|
86
|
Baldacci F, Lista S, Manca ML, Chiesa PA, Cavedo E, Lemercier P, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Vergallo A, Hampel H. Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:147. [PMID: 33183357 PMCID: PMC7663867 DOI: 10.1186/s13195-020-00704-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer’s disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood.
Collapse
Affiliation(s)
- Filippo Baldacci
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France. .,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France.,Qynapse, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images (www.cati-neuroimaging.com), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, F-75013, Paris, France
| | - Marie Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), F-75013, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | | | | |
Collapse
|
87
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
88
|
Cantero JL, Atienza M, Ramos-Cejudo J, Fossati S, Wisniewski T, Osorio RS. Plasma tau predicts cerebral vulnerability in aging. Aging (Albany NY) 2020; 12:21004-21022. [PMID: 33147571 PMCID: PMC7695405 DOI: 10.18632/aging.104057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Identifying cerebral vulnerability in late life may help prevent or slow the progression of aging-related chronic diseases. However, non-invasive biomarkers aimed at detecting subclinical cerebral changes in the elderly are lacking. Here, we have examined the potential of plasma total tau (t-tau) for identifying cerebral and cognitive deficits in normal elderly subjects. Patterns of cortical thickness and cortical glucose metabolism were used as outcomes of cerebral vulnerability. We found that increased plasma t-tau levels were associated with widespread reductions of cortical glucose uptake, thinning of the temporal lobe, and memory deficits. Importantly, tau-related reductions of glucose consumption in the orbitofrontal cortex emerged as a determining factor of the relationship between cortical thinning and memory loss. Together, these results support the view that plasma t-tau may serve to identify subclinical cerebral and cognitive deficits in normal aging, allowing detection of individuals at risk for developing aging-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Ricardo S. Osorio
- Division of Brain Aging, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
89
|
Bistaffa E, Tagliavini F, Matteini P, Moda F. Contributions of Molecular and Optical Techniques to the Clinical Diagnosis of Alzheimer's Disease. Brain Sci 2020; 10:E815. [PMID: 33153223 PMCID: PMC7692713 DOI: 10.3390/brainsci10110815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. The distinctive neuropathological feature of AD is the intracerebral accumulation of two abnormally folded proteins: β-amyloid (Aβ) in the form of extracellular plaques, and tau in the form of intracellular neurofibrillary tangles. These proteins are considered disease-specific biomarkers, and the definite diagnosis of AD relies on their post-mortem identification in the brain. The clinical diagnosis of AD is challenging, especially in the early stages. The disease is highly heterogeneous in terms of clinical presentation and neuropathological features. This phenotypic variability seems to be partially due to the presence of distinct Aβ conformers, referred to as strains. With the development of an innovative technique named Real-Time Quaking-Induced Conversion (RT-QuIC), traces of Aβ strains were found in the cerebrospinal fluid of AD patients. Emerging evidence suggests that different conformers may transmit their strain signature to the RT-QuIC reaction products. In this review, we describe the current challenges for the clinical diagnosis of AD and describe how the RT-QuIC products could be analyzed by a surface-enhanced Raman spectroscopy (SERS)-based systems to reveal the presence of strain signatures, eventually leading to early diagnosis of AD with the recognition of individual disease phenotype.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| | - Fabrizio Tagliavini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Scientific Directorate, 20133 Milan, Italy;
| | - Paolo Matteini
- IFAC-CNR, Institute of Applied Physics “Nello Carrara”, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| |
Collapse
|
90
|
Wilczyńska K, Waszkiewicz N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. J Clin Med 2020; 9:jcm9113452. [PMID: 33121040 PMCID: PMC7692800 DOI: 10.3390/jcm9113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of research in progress covering this subject. Research on dementia biomarkers in serum validates anticipated health and economic benefits from early screening tests. Biomarkers are also essential for improving the process of developing new drugs. Methods: The result analysis, of current studies on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in the serum of patients with dementia and mild cognitive disorders, involved a search for papers available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results: The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among people with cognitive disorders and a control group are incoherent. Most of the analyzed papers showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum, whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups. In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising. To date, several studies have only covered the field of biomarker concentrations in dementia disorders other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from imperfection of the used laboratorial techniques or inadequate selection of control groups with their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of prodromal states in mild AD. Due to the insignificant number of studies conducted to date among patients with dementia disorders other than AD, it is not possible to make a sound assessment of their usefulness in dementia differential diagnostics.
Collapse
|
91
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
92
|
Rajan KB, Aggarwal NT, McAninch EA, Weuve J, Barnes LL, Wilson RS, DeCarli C, Evans DA. Remote Blood Biomarkers of Longitudinal Cognitive Outcomes in a Population Study. Ann Neurol 2020; 88:1065-1076. [PMID: 32799383 DOI: 10.1002/ana.25874] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/11/2020] [Accepted: 08/09/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The longitudinal association of the blood biomarkers total tau (t-tau), neurofilament light (Nf-L), and glial fibrillary acidic protein (GFAP) with common sporadic Alzheimer disease (AD) and cognitive decline is not established. METHODS Using a single molecule array technology, ultrasensitive immunoassays for serum concentrations of t-tau, Nf-L, and GFAP were measured in a population sample of 1,327 participants (60% African Americans and women) who had a clinical evaluation for AD, had completed in-home cognitive assessments, and had undergone 1.5T structural magnetic resonance imaging. RESULTS Higher concentrations of serum biomarkers were associated with the development of clinical AD; especially, the time-specific associations were notable: t-tau 8 to 16 years, and Nf-L and GFAP 4 to 8 years prior to clinical AD. Serum biomarkers were associated with faster cognitive decline over 16 years; baseline t-tau > 0.40pg/ml had 30% faster decline, Nf-L > 25.5pg/ml had 110% faster decline, and GFAP > 232pg/ml had 130% faster decline compared to those in the lowest quartile. Participants with baseline GFAP > 232pg/ml showed 160% faster decline in hippocampal volume compared to those with values < 160pg/ml. Additionally, higher baseline t-tau was associated with faster increase in 3rd ventricular volume, and baseline Nf-L and GFAP were associated with faster decline in cortical thickness. INTERPRETATION Serum t-tau, Nf-L, and GFAP predict the development of sporadic AD and cognitive decline, and changes in structural brain characteristics, suggesting their usefulness not only as screening and predictive biomarkers, but also in capturing the pathogenesis of Alzheimer dementia. ANN NEUROL 2020;88:1065-1076.
Collapse
Affiliation(s)
- Kumar B Rajan
- Department of Public Health Sciences, University of California, Davis, CA, USA.,Alzheimer's Disease Center, University of California, Sacramento, CA, USA
| | | | - Elizabeth A McAninch
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | | | | | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Denis A Evans
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
93
|
Mengel D, Janelidze S, Glynn RJ, Liu W, Hansson O, Walsh DM. Plasma
NT1
Tau is a Specific and Early Marker of Alzheimer's Disease. Ann Neurol 2020; 88:878-892. [DOI: 10.1002/ana.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
| | - Robert J. Glynn
- Division of Preventive Medicine Brigham & Women's Hospital Boston MA USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
- Memory Clinic Skåne University Hospital Malmö Sweden
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
94
|
Okan G, Baki AM, Yorulmaz E, Doğru-Abbasoğlu S, Vural P. A preliminary study about neurofilament light chain and tau protein levels in psoriasis: Correlation with disease severity. J Clin Lab Anal 2020; 35:e23564. [PMID: 32896023 PMCID: PMC7843295 DOI: 10.1002/jcla.23564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/26/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Studies investigating cognitive dysfunction in psoriatic patients remain inconclusive. OBJECTIVE To investigate the risk of cognitive decline in plaque-type psoriasis patients. METHODS Serum neurofilament light chain (NFL) and tau protein concentrations in 45 patients with plaque-type psoriasis and forty-five healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Mean homeostasis model assessment (HOMA-IR) values (6.82 vs 3.25) and serum levels of insulin (28.19 vs 15.71), NFL (5.74 vs 1.98), and tau (348.17 vs 207.30) in patients with psoriasis were found to be significantly higher than those of in healthy controls. There was a significant positive correlation between NFL and tau (r = .257, P = .015). There was significant correlation between NFL, tau and PASI (r = .310, P = .040) and (r = .383, P = .010), respectively. Significant correlations between NFL and insulin, TC, HDL-C, TG, VLDL-C, and BMI were found. NFL (9.38 vs 3.08) and tau (439.28 vs 281.58) concentrations and PASI values (23.94 vs 14.18) in patients with disease onset before 40 years were significantly higher than that of the patients with disease onset after 40 years. C-reactive protein (CRP) was significantly correlated with BMI (r = .449, P < .001), LDL-C (r = .240, P = .026), TG (r = .244, P = .024), and VLDL-C (r = .241, P = .025) in patients with psoriasis. CONCLUSIONS Increased serum NFL and tau protein levels and the presence of positive correlations between NFL, tau protein and PASI score show cognitive decline risk may be higher in moderate-to-severe psoriasis.
Collapse
Affiliation(s)
- Gokhan Okan
- Department of Dermatology, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | - Adile Merve Baki
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Eda Yorulmaz
- Department of Biochemistry, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pervin Vural
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
95
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
96
|
Ye J, Yin Y, Yin Y, Zhang H, Wan H, Wang L, Zuo Y, Gao D, Li M, Li J, Liu Y, Ke D, Wang J. Tau-induced upregulation of C/EBPβ-TRPC1-SOCE signaling aggravates tauopathies: A vicious cycle in Alzheimer neurodegeneration. Aging Cell 2020; 19:e13209. [PMID: 32815315 PMCID: PMC7511862 DOI: 10.1111/acel.13209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular accumulating of the hyperphosphorylated tau plays a pivotal role in neurodegeneration of Alzheimer disease (AD), but the mechanisms underlying the gradually aggravated tau hyperphosphorylation remain elusive. Here, we show that increasing intracellular tau could upregulate mRNA and protein levels of TRPC1 (transient receptor potential channel 1) with an activated store‐operated calcium entry (SOCE), an increased intraneuronal steady‐state [Ca2+]i, an enhanced endoplasmic reticulum (ER) stress, an imbalanced protein kinases and phosphatase, and an aggravated tauopathy. Furthermore, overexpressing TRPC1 induced ER stress, kinases‐phosphatase imbalance, tau hyperphosphorylation and cognitive deficits in cultured neurons and mice, while pharmacological inhibiting or knockout TRPC1 attenuated the hTau‐induced deregulations in SOCE, ER homeostasis, kinases‐phosphatase balance, and tau phosphorylation level with improved synaptic and cognitive functions. Finally, an increased CCAAT‐enhancer‐binding protein (C/EBPβ) activity was observed in hTau‐overexpressing cells and the hippocampus of the AD patients, while downregulating C/EBPβ by siRNA abolished the hTau‐induced TRPC1 upregulation. These data reveal that increasing intracellular tau can upregulate C/EBPβ‐TRPC1‐SOCE signaling and thus disrupt phosphorylating system, which together aggravates tau pathologies leading to a chronic neurodegeneration.
Collapse
Affiliation(s)
- Jinwang Ye
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Yin
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yaling Yin
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Huaqiu Zhang
- Department of Neurosurgery Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Huali Wan
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Lu Wang
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Yue Zuo
- Department of Physiology and Neurobiology School of Basic Medical Sciences Xinxiang Medical University Xinxiang China
| | - Di Gao
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mengzhu Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Department of Neurosurgery The Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jun Li
- Department of Neurosurgery The Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanchao Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jian‐Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Co‐innovation Center of Neurodegeneration Nantong University Nantong China
| |
Collapse
|
97
|
McDade E, Bednar MM, Brashear HR, Miller DS, Maruff P, Randolph C, Ismail Z, Carrillo MC, Weber CJ, Bain LJ, Hake AM. The pathway to secondary prevention of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12069. [PMID: 32885024 PMCID: PMC7453146 DOI: 10.1002/trc2.12069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a continuum consisting of a preclinical stage that occurs decades before symptoms appear. As researchers make advances in investigating the continuum, the importance of developing drugs for secondary prevention is garnering increased discussion. For efficacious drug development for secondary prevention it is important to define what are the earliest biological stages of AD. The Alzheimer's Association Research Roundtable convened November 27 to 28, 2018 to focus on pre-clinical AD. This review will address the biological approach to defining pre-clinical AD, detection, identification of at-risk individuals, and lessons learned from trials such as A4 and TOMMORROW.
Collapse
Affiliation(s)
- Eric McDade
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Martin M. Bednar
- Takeda Pharmaceuticals International Co.Americas, Inc.CambridgeMassachusettsUSA
| | | | | | | | - Christopher Randolph
- MedAvante‐ProPhaseHamiltonNew JerseyUSA
- Department of NeurologyLoyola University Medical CenterMaywoodIllinoisUSA
| | - Zahinoor Ismail
- Cumming School of MedicineThe University of CalgaryCalgaryCanada
| | | | | | - Lisa J. Bain
- Independent Science WriterElversonPennsylvaniaUSA
| | - Ann Marie Hake
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
98
|
Lesman-Segev OH, Edwards L, Rabinovici GD. Chronic Traumatic Encephalopathy: A Comparison with Alzheimer's Disease and Frontotemporal Dementia. Semin Neurol 2020; 40:394-410. [PMID: 32820492 DOI: 10.1055/s-0040-1715134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical diagnosis of chronic traumatic encephalopathy (CTE) is challenging due to heterogeneous clinical presentations and overlap with other neurodegenerative dementias. Depending on the clinical presentation, the differential diagnosis of CTE includes Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease, amyotrophic lateral sclerosis, primary mood disorders, posttraumatic stress disorder, and psychotic disorders. The aim of this article is to compare the clinical aspects, genetics, fluid biomarkers, imaging, treatment, and pathology of CTE to those of AD and bvFTD. A detailed clinical evaluation, neurocognitive assessment, and structural brain imaging can inform the differential diagnosis, while molecular biomarkers can help exclude underlying AD pathology. Prospective studies that include clinicopathological correlations are needed to establish tools that can more accurately determine the cause of neuropsychiatric decline in patients at risk for CTE.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Lauren Edwards
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Department of Neurology, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Weill Neuroscience Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|
99
|
Laing KK, Simoes S, Baena-Caldas GP, Lao PJ, Kothiya M, Igwe KC, Chesebro AG, Houck AL, Pedraza L, Hernández AI, Li J, Zimmerman ME, Luchsinger JA, Barone FC, Moreno H, Brickman AM. Cerebrovascular disease promotes tau pathology in Alzheimer's disease. Brain Commun 2020; 2:fcaa132. [PMID: 33215083 PMCID: PMC7660042 DOI: 10.1093/braincomms/fcaa132] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.
Collapse
Affiliation(s)
- Krystal K Laing
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gloria P Baena-Caldas
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- School of Biomedical Sciences, Health Sciences Division, Universidad del Valle, Cali, Colombia, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexander L Houck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lina Pedraza
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | - A Iván Hernández
- Department of Pathology. SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Jie Li
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | | | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frank C Barone
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
100
|
Villa C, Lavitrano M, Salvatore E, Combi R. Molecular and Imaging Biomarkers in Alzheimer's Disease: A Focus on Recent Insights. J Pers Med 2020; 10:jpm10030061. [PMID: 32664352 PMCID: PMC7565667 DOI: 10.3390/jpm10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Institute for the Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy;
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| |
Collapse
|