51
|
Afzal MZ, Vahdat LT. Evolving Management of Breast Cancer in the Era of Predictive Biomarkers and Precision Medicine. J Pers Med 2024; 14:719. [PMID: 39063972 PMCID: PMC11278458 DOI: 10.3390/jpm14070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common cancer among women in the world as well as in the United States. Molecular and histological differentiation have helped clinicians optimize treatments with various therapeutics, including hormonal therapy, chemotherapy, immunotherapy, and radiation therapy. Recently, immunotherapy has become the standard of care in locally advanced triple-negative breast cancer and an option across molecular subtypes for tumors with a high tumor mutation burden. Despite the advancements in personalized medicine directing the management of localized and advanced breast cancers, the emergence of resistance to these therapies is the leading cause of death among breast cancer patients. Therefore, there is a critical need to identify and validate predictive biomarkers to direct treatment selection, identify potential responders, and detect emerging resistance to standard therapies. Areas of active scientific and clinical research include novel personalized and predictive biomarkers incorporating tumor microenvironment, tumor immune profiling, molecular characterization, and histopathological differentiation to predict response and the potential emergence of resistance.
Collapse
Affiliation(s)
- Muhammad Zubair Afzal
- Medical Oncology, Comprehensive Breast Program, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Linda T. Vahdat
- Medical Oncology and Hematology (Interim), Dartmouth Cancer Center, Lebanon, NH 03755, USA;
| |
Collapse
|
52
|
Mohanty A, Lee M, Mohapatra A, Lee H, Vasukutty A, Baek S, Lee JY, Park IK. "Three-in-one": A Photoactivable Nanoplatform Evokes Anti-Immune Response by Inhibiting BRD4-cMYC-PDL1 Axis to Intensify Photo-Immunotherapy. Adv Healthc Mater 2024; 13:e2304093. [PMID: 38409920 DOI: 10.1002/adhm.202304093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Combinatorial immuno-cancer therapy is recognized as a promising approach for efficiently treating malignant tumors. Yet, the development of multifunctional nanomedicine capable of precise tumor targeting, remote activation, and immune-regulating drug delivery remains a significant challenge. In this study, nanoparticles loaded with an immune checkpoint inhibitor (JQ-1) using polypyrrole/hyaluronic acid (PPyHA/JQ-1) are developed. These nanoparticles offer active tumor targeting, photothermal tumor ablation using near-infrared light, and laser-controlled JQ-1 release for efficient breast cancer treatment. When the molecular weight of HA varies (from 6.8 kDa to 3 MDa) in the PPyHA nanoparticles, it is found that the nanoparticles synthesized using 1 MDa HA, referred to as PPyHA (1 m), show the most suitable properties, including small hydrodynamic size, high surface HA contents, and colloidal stability. Upon 808 nm laser irradiation, PPyHA/JQ-1 elevates the temperature above 55 °C, which is sufficient for thermal ablation and active release of JQ-1 in the tumor microenvironment (TME). Notably, the controlled release of JQ-1 substantially inhibits the expression of cancer-promoting genes. Furthermore, PPyHA/JQ-1 effectively suppresses the expression of programmed cell death ligand 1 (PD-L1) and prolongs dendritic cell maturation and CD8+ T cell activation against the tumor both in vitro and in vivo. PPyHA/JQ-1 treatment simultaneously provides a significant tumor regression through photothermal therapy and immune checkpoint blockade, leading to a durable antitumor-immune response. Overall, "Three-in-one" immunotherapeutic photo-activable nanoparticles have the potential to be beneficial for a targeted combinatorial treatment approach for TNBC.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Seonguk Baek
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
- DR Cure Inc., Hwasun, 58128, Republic of Korea
| |
Collapse
|
53
|
Licata L, Dieci MV, De Angelis C, Marchiò C, Miglietta F, Cortesi L, Fabi A, Schmid P, Cortes J, Pusztai L, Bianchini G, Curigliano G. Navigating practical challenges in immunotherapy for metastatic triple negative breast cancer. Cancer Treat Rev 2024; 128:102762. [PMID: 38776613 DOI: 10.1016/j.ctrv.2024.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Immunotherapy has revolutionized cancer therapy and now represents a standard of care for many tumor types, including triple-negative breast cancer. Despite the positive results that have led to the approval of immunotherapy in both early- and advanced-stage triple-negative breast cancer, pivotal clinical trials cannot address the myriad questions arising in everyday clinical practice, often falling short in delivering all the information that clinicians require. In this manuscript, we aim to address some of these practical questions, with the purpose of providing clinicians with a guide for optimizing the use of immune checkpoint inhibitors in the management of breast cancer patients and identifying opportunities for future research to clarify unresolved questions.
Collapse
Affiliation(s)
- Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Caterina Marchiò
- Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Laura Cortesi
- University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Madrid and Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
54
|
Dietl AK, Beckmann MW, Stuebs FA, Gass P, Emons J, Hartmann A, Erber R. PD-L1 Expression and Silva Invasion Pattern in Villoglandular Adenocarcinoma of the Uterine Cervix. Int J Gynecol Pathol 2024; 43:397-404. [PMID: 38293999 DOI: 10.1097/pgp.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Villoglandular adenocarcinoma (VGA) of the uterine cervix is a rare subtype of endocervical adenocarcinoma in young women. Between 2007 and 2020, all women with endocervical adenocarcinoma were retrospectively reviewed to find patients with VGA. Eight patients in whom pure VGA had been diagnosed were included. The mean age at initial diagnosis was 36.3 years (range 24-46). After surgical treatment, patients were followed up for 59 months (range 16-150). To date, all patients are alive with no evidence of disease. Neither lymph node involvement nor lymphovascular invasion was found. Furthermore, we examined the samples with a focus on morphological invasion pattern (Silva), stromal tumor-infiltrating lymphocytes (sTILs), and immunohistochemical programmed death ligand-1 (PD-L1) expression. PD-L1 expression was observed in 7/8 using the combined positive score (cutoff≥1%), 1/8 of VGAs using the tumor proportion score (cutoff≥1%), and 7/8 using the immune cell (cutoff≥1%). Using combined positive score and immune cell, PD-L1 expression was seen in 7/8 of pattern B and C tumors, with significantly higher expression in tumors with destructive-type patterns ( P <0.05, A vs. B+C). Using tumor proportion score, no significant difference in PD-L1 expression was seen between VGAs with different invasion patterns. VGAs demonstrated twice higher sTILs in tumors with destructive-type invasion patterns. Our observations suggest that PD-L1 expression, tumor invasion patterns, and sTILs do not correlate with the excellent prognosis of pure VGA.
Collapse
|
55
|
Wang Y, Sun Y, Lu F, Zhao X, Nie Z, Zhu F, He B. Efficacy and safety of a combination treatment of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis. Clin Transl Oncol 2024; 26:1725-1737. [PMID: 38587602 DOI: 10.1007/s12094-024-03396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) in combination with chemotherapy have showed its benefits in clinical studies, and here we conducted a further evaluation on the safety and efficacy of this treatment strategy. METHODS A systematic literature review was conducted in PubMed, Embase and Cochrane Library to identify clinical studies on ICIs and chemotherapy for metastatic breast cancer. The primary efficacy endpoints were progression-free survival (PFS) and overall survival (OS), and adverse events (AEs) were analyzed. Random or fixed effects models were used to estimate pooled Hazard ratio (HR), odds ratio (OR) and the data of 95% confidence interval (CI) depend on the Heterogeneity. Cochrane risk assessment tool was used to assess risk of bias. We also drew forest plots and funnel plots, respectively. RESULTS Seven studies with intend-to-treat (ITT) population for 3255 patients were analyzed. ICIs pooled therapy showed clinical benefits compared with chemotherapy alone, improving PFS (HR = 0.81, 95% CI: 0.74-0.90) of patients with metastatic triple negative breast cancer (mTNBC), especially in patients with PD-L1-positive tumors. However, it had no effect on OS (HR = 0.92, 95% CI 0.85-1.01). Besides, mTNBC patients received pooled therapy were less frequently to have AEs (OR = 1.30, 95% CI: 1.09-1.54). In patients with metastatic Human Epidermal Growth Factor Receptor 2 (HER2) negative breast cancer, pooled therapy showed no benefit for PFS (HR = 0.80, 95% CI: 0.50-1.28) and OS (HR = 0.87, 95% CI: 0.48-1.58). CONCLUSION Pooled therapy had improved PFS in mTNBC patients, especially in patients with PD-L1-positive tumors, and it was less likely to cause grade ≥ 3 AEs.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yalan Sun
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fang Lu
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xianghong Zhao
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenlin Nie
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Feng Zhu
- Department of Laboratory Medicine, Nanjing Jiangning People's Hospital, 68 Gushan Road, Jiangning District, Nanjing, Jiangsu, 211100, China.
| | - Bangshun He
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
56
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
57
|
Zheng C, Zhang W, Gong X, Xiong F, Jiang L, Zhou L, Zhang Y, Zhu HH, Wang H, Li Y, Zhang P. Chemical conjugation mitigates immunotoxicity of chemotherapy via reducing receptor-mediated drug leakage from lipid nanoparticles. SCIENCE ADVANCES 2024; 10:eadk9996. [PMID: 38838152 DOI: 10.1126/sciadv.adk9996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wen Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xiang Gong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
58
|
Zhang M, Li X, Zhou P, Zhang P, Wang G, Lin X. Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics. Front Oncol 2024; 14:1411261. [PMID: 38903726 PMCID: PMC11187250 DOI: 10.3389/fonc.2024.1411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Construct models based on grayscale ultrasound and radiomics and compare the efficacy of different models in preoperatively predicting the level of tumor-infiltrating lymphocytes in breast cancer. Materials and methods This study retrospectively collected clinical data and preoperative ultrasound images from 185 breast cancer patients confirmed by surgical pathology. Patients were randomly divided into a training set (n=111) and a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-infiltrating lymphocytes (TIL) levels, patients were classified into low-level and high-level groups. Radiomic features were extracted and selected using the training set. The evaluation included assessing the relationship between TIL levels and both radiomic features and grayscale ultrasound features. Subsequently, grayscale ultrasound models, radiomic models, and nomograms combining radiomics score (Rad-score) and grayscale ultrasound features were established. The predictive performance of different models was evaluated through receiver operating characteristic (ROC) analysis. Calibration curves assessed the fit of the nomograms, and decision curve analysis (DCA) evaluated the clinical effectiveness of the models. Results Univariate analyses and multivariate logistic regression analyses revealed that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval [CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001, OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high levels of TIL in breast cancer. In comparison to grayscale ultrasound model (Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the nomogram demonstrated superior discriminative ability on both the training (AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high consistency between the nomogram model's predicted probability of breast cancer TIL levels and the actual occurrence probability. DCA revealed that the radiomics model and the nomogram model achieved higher clinical net benefits compared to the grayscale ultrasound model. Conclusion The nomogram based on preoperative ultrasound radiomics features exhibits robust predictive capacity for the non-invasive evaluation of breast cancer TIL levels, potentially providing a significant basis for individualized treatment decisions in breast cancer.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuanyu Li
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Pin Zhou
- Department of Pathology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Panpan Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| |
Collapse
|
59
|
Brown LJ, Ahn J, Gao B, Gee H, Nagrial A, Hau E, da Silva IP. Site-Specific Response and Resistance Patterns in Patients with Advanced Non-Small-Cell Lung Cancer Treated with First-Line Systemic Therapy. Cancers (Basel) 2024; 16:2136. [PMID: 38893255 PMCID: PMC11172392 DOI: 10.3390/cancers16112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with advanced NSCLC have heterogenous responses to immune checkpoint inhibitors (ICIs) with or without chemotherapy. In NSCLC, the impact of the distribution of metastatic sites and the response to systemic therapy combinations remain poorly understood. In a retrospective cohort study of patients with unresectable stage III/IV NSCLC who received first-line systemic therapy, we sought to assess the association between the site of metastases with patterns of response and progression. Data regarding demographics, tumour characteristics (including site, size, and volume of metastases), treatment, and outcomes were examined at two cancer care centres. The endpoints included organ site-specific response rate, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Two-hundred and eighty-five patients were included in the analysis. In a multivariate analysis, patients with bone metastases had a reduced ORR, PFS, and OS. Primary resistance was also more likely in patients with bone metastases. Patients with bone or liver metastases had a shorter OS when receiving ICIs with or without chemotherapy, but not with chemotherapy alone, suggesting an immunological basis for therapeutic resistance. A directed assessment of the tumour microenvironment in these locations and a deeper understanding of the drivers of organ-specific resistance to immunotherapy are critical to optimise novel combination therapies and sequencing in these patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- Department of Medical Oncology, Westmead Hospital, Sydney, NSW 2145, Australia (A.N.); (I.P.d.S.)
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Julie Ahn
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Sydney West Radiation Oncology Network (SWRON), Sydney, NSW 2145, Australia
| | - Bo Gao
- Department of Medical Oncology, Westmead Hospital, Sydney, NSW 2145, Australia (A.N.); (I.P.d.S.)
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Harriet Gee
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney West Radiation Oncology Network (SWRON), Sydney, NSW 2145, Australia
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Westmead Hospital, Sydney, NSW 2145, Australia (A.N.); (I.P.d.S.)
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Eric Hau
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney West Radiation Oncology Network (SWRON), Sydney, NSW 2145, Australia
| | - Inês Pires da Silva
- Department of Medical Oncology, Westmead Hospital, Sydney, NSW 2145, Australia (A.N.); (I.P.d.S.)
- Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, NSW 2148, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Melanoma Institute Australia, Wollstonecraft, NSW 2065, Australia
| |
Collapse
|
60
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
61
|
Raghani RM, Urie RR, Ma JA, Escalona G, Schrack IA, DiLillo KM, Kandagatla P, Decker JT, Morris AH, Arnold KB, Jeruss JS, Shea LD. Engineered Immunologic Niche Monitors Checkpoint Blockade Response and Probes Mechanisms of Resistance. IMMUNOMEDICINE 2024; 4:e1052. [PMID: 39246390 PMCID: PMC11376346 DOI: 10.1002/imed.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 09/10/2024]
Abstract
Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1+ metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.
Collapse
Affiliation(s)
- Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Guillermo Escalona
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian A Schrack
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
62
|
Zhang X, Lao M, Yang H, Sun K, Dong Y, He L, Jiang X, Wu H, Jiang Y, Li M, Ying H, Liu X, Xu J, Chen Y, Zhang H, Zhou R, Gao J, Bai X, Liang T. Targeting cancer-associated fibroblast autophagy renders pancreatic cancer eradicable with immunochemotherapy by inhibiting adaptive immune resistance. Autophagy 2024; 20:1314-1334. [PMID: 38174993 PMCID: PMC11210910 DOI: 10.1080/15548627.2023.2300913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/02/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses in vivo tumor development in immune-deficient xenografts. This deletion compromises anti-tumor immunity and anti-tumor efficacy both in vitro and in vivo by upregulating CD274/PDL1 levels in an immune-competent mouse model. A block in CAF autophagy reduced the production of IL6 (interleukin 6), disrupting high desmoplastic TME and decreasing USP14 expression at the transcription level in pancreatic cancer cells. We further identify USP14 as the post-translational factor responsible for downregulating CD274 expression by removing K63 linked-ubiquitination at the K280 residue. Finally, chloroquine diphosphate-loaded mesenchymal stem cell (MSC)-liposomes, by accurately targeting CAFs, inhibited CAF autophagy, improving the efficacy of immunochemotherapy to combat pancreatic cancer.Abbreviation: AIR: adaptive immune resistance; ATRA: all-trans-retinoicacid; CAF: cancer-associated fibroblast; CD274/PDL1: CD274 molecule; CM: conditioned medium; CQ: chloroquine diphosphate; CyTOF: Mass cytometry; FGF2/bFGF: fibroblast growth factor 2; ICB: immune checkpoint blockade; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; MS: mass spectrometer; MSC: mesenchymal stem cell; PDAC: pancreatic ductal adenocarcinoma; TEM: transmission electron microscopy; TILs: tumor infiltrating lymphocytes; TME: tumor microenvironment; USP14: ubiquitin specific peptidase 14.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunfei Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yangwei Jiang
- Institute of Quantitative Biology, College of Life Sciences, and Shanghai Institute for Advanced Study, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanjia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, and Shanghai Institute for Advanced Study, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
63
|
Downs-Canner S, Weiss A. Systemic Therapy Advances for HER2-Positive and Triple Negative Breast Cancer: What the Surgeon Needs to Know. Clin Breast Cancer 2024; 24:328-336. [PMID: 38616443 DOI: 10.1016/j.clbc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
Neoadjuvant systemic therapy (NST) was initially reserved for unresectable patients however it has been increasingly used to facilitate breast conservation, downstage the axilla, and inform adjuvant therapy decisions based on response. For patients with HER2+ and triple-negative breast cancer (TNBC), clinical trials have resulted in the ability to individualize treatment regimens. For HER2+ breast cancer, de-escalation of neoadjuvant regimens to minimize cytotoxic chemotherapy and de-escalation or escalation of adjuvant regimens based on response have been effective. For TNBC, the approval of the combination of chemotherapy plus immunotherapy in the neoadjuvant setting has resulted in a major practice shift and opened the door to many additional treatment questions including de-escalation of the chemotherapy backbone or the adjuvant regimen. For both HER2+ and TNBC, most patients are treated with NST except those with very small tumors. Efforts are also being made to optimally identify patients with T1c tumors who may benefit from more aggressive NST. For patients treated according to or enrolled in NST de-escalation trials, breast conservation (even those who become eligible based on response to NST) and sentinel lymph node biopsy when cN0 at the completion of NST are safe and feasible. Continued involvement of surgeons and multidisciplinary teams in the design and reporting of trials will streamline their adoption into clinical practice. Surgeons need to remain aware of ongoing systemic therapy trials to appropriately select patients for NST and plan for appropriate post-neoadjuvant surgical care.
Collapse
Affiliation(s)
- Stephanie Downs-Canner
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Anna Weiss
- Division of Surgical Oncology, Department of Surgery, University of Rochester Medical Center, Rochester, NY; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
64
|
Michaels E, Chen N, Nanda R. The Role of Immunotherapy in Triple-Negative Breast Cancer (TNBC). Clin Breast Cancer 2024; 24:263-270. [PMID: 38582617 DOI: 10.1016/j.clbc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 04/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, generally associated with a high risk of recurrence and poor prognosis. Our understanding of the heterogeneity of TNBC has increased over the past decade, and with it a recognition that some TNBCs are immunogenically active. This finding has led to the investigation of immunotherapy-based approaches for treatment of both early and advanced-stage TNBC. In this review, we provide an overview of the biologic rationale for immunotherapy use in TNBC, and review data from seminal trials which have culminated in the approval of immunotherapy for both early and advanced TNBC. Identification of predictive biomarkers to aid in treatment selection, development of novel treatment combinations to combat resistance, and refinement of therapeutic targets enables continued improvement in outcomes with immunotherapy for TNBC.
Collapse
Affiliation(s)
- Elena Michaels
- Department of Medicine, The University of Chicago Medicine, Chicago, IL
| | - Nan Chen
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Rita Nanda
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL.
| |
Collapse
|
65
|
Van Cauwenberge J, Van Baelen K, Maetens M, Geukens T, Nguyen HL, Nevelsteen I, Smeets A, Deblander A, Neven P, Koolen S, Wildiers H, Punie K, Desmedt C. Reporting on patient's body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review. Breast Cancer Res 2024; 26:81. [PMID: 38778365 PMCID: PMC11112918 DOI: 10.1186/s13058-024-01832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most drugs according to the body mass index (BMI). Here, we conducted a systematic review on recent clinical drug trials to document the dosing regimen of recent drugs, the reporting of BMI and the possible exclusion of patients according to BMI, other adiposity measurements and/or diabetes (leading comorbidity of obesity). We further explored whether treatment efficacy was evaluated according to BMI. METHODS A search of Pubmed and ClinicalTrials.gov was performed to identify phase I-IV trials investigating novel systemic breast cancer treatments. Dosing regimens and exclusion based on BMI, adiposity measurements or diabetes, documentation of BMI and subgroup analyses according to BMI were assessed. RESULTS 495 trials evaluating 26 different drugs were included. Most of the drugs (21/26, 81%) were given in a fixed dose independent of patient weight. BMI was an exclusion criterion in 3 out of 495 trials. Patients with diabetes, the leading comorbidity of obesity, were excluded in 67/495 trials (13.5%). Distribution of patients according to BMI was mentioned in 8% of the manuscripts, subgroup analysis was performed in 2 trials. No other measures of adiposity/body composition were mentioned in any of the trials. Retrospective analyses on the impact of BMI were performed in 6 trials. CONCLUSIONS Patient adiposity is hardly considered as most novel drug treatments are given in a fixed dose. BMI is generally not reported in recent trials and few secondary analyses are performed. Given the prevalence of patients with obesity and the impact obesity can have on pharmacokinetics and cancer biology, more attention should be given by investigators and study sponsors to reporting patient's BMI and evaluating its impact on treatment efficacy and toxicity.
Collapse
Affiliation(s)
- Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ha Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne Deblander
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium.
| |
Collapse
|
66
|
Arulraj T, Wang H, Deshpande A, Varadhan R, Emens LA, Jaffee EM, Fertig EJ, Santa-Maria CA, Popel AS. Virtual patient analysis identifies strategies to improve the performance of predictive biomarkers for PD-1 blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595235. [PMID: 38826266 PMCID: PMC11142158 DOI: 10.1101/2024.05.21.595235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Patients with metastatic triple-negative breast cancer (TNBC) show variable responses to PD-1 inhibition. Efficient patient selection by predictive biomarkers would be desirable, but is hindered by the limited performance of existing biomarkers. Here, we leveraged in-silico patient cohorts generated using a quantitative systems pharmacology model of metastatic TNBC, informed by transcriptomic and clinical data, to explore potential ways to improve patient selection. We tested 90 biomarker candidates, including various cellular and molecular species, by a cutoff-based biomarker testing algorithm combined with machine learning-based feature selection. Combinations of pre-treatment biomarkers improved the specificity compared to single biomarkers at the cost of reduced sensitivity. On the other hand, early on-treatment biomarkers, such as the relative change in tumor diameter from baseline measured at two weeks after treatment initiation, achieved remarkably higher sensitivity and specificity. Further, blood-based biomarkers had a comparable ability to tumor- or lymph node-based biomarkers in identifying a subset of responders, potentially suggesting a less invasive way for patient selection.
Collapse
|
67
|
Mashiach E, Alzate JD, De Nigris Vasconcellos F, Adams S, Santhumayor B, Meng Y, Schnurman Z, Donahue BR, Bernstein K, Orillac C, Bollam R, Kwa MJ, Meyers M, Oratz R, Novik Y, Silverman JS, Harter DH, Golfinos JG, Kondziolka D. Improved outcomes for triple negative breast cancer brain metastases patients after stereotactic radiosurgery and new systemic approaches. J Neurooncol 2024; 168:99-109. [PMID: 38630386 DOI: 10.1007/s11060-024-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 05/15/2024]
Abstract
PURPOSE Although ongoing studies are assessing the efficacy of new systemic therapies for patients with triple negative breast cancer (TNBC), the overwhelming majority have excluded patients with brain metastases (BM). Therefore, we aim to characterize systemic therapies and outcomes in a cohort of patients with TNBC and BM managed with stereotactic radiosurgery (SRS) and delineate predictors of increased survival. METHODS We used our prospective patient registry to evaluate data from 2012 to 2023. We included patients who received SRS for TNBC-BM. A competing risk analysis was conducted to assess local and distant control. RESULTS Forty-three patients with 262 tumors were included. The median overall survival (OS) was 16 months (95% CI 13-19 months). Predictors of increased OS after initial SRS include Breast GPA score > 1 (p < 0.001) and use of immunotherapy such as pembrolizumab (p = 0.011). The median time on immunotherapy was 8 months (IQR 4.4, 11.2). The median time to new CNS lesions after the first SRS treatment was 17 months (95% CI 12-22). The cumulative rate for development of new CNS metastases after initial SRS at 6 months, 1 year, and 2 years was 23%, 40%, and 70%, respectively. Thirty patients (70%) underwent multiple SRS treatments, with a median time of 5 months (95% CI 0.59-9.4 months) for the appearance of new CNS metastases after second SRS treatment. CONCLUSIONS TNBC patients with BM can achieve longer survival than might have been previously anticipated with median survival now surpassing one year. The use of immunotherapy is associated with increased median OS of 23 months.
Collapse
Affiliation(s)
- Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA.
| | - Juan Diego Alzate
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Brandon Santhumayor
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Ying Meng
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Zane Schnurman
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Bernadine R Donahue
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
- Maimonides Cancer Center, Maimonides Health, Brooklyn, NY, 11220, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - Cordelia Orillac
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Rishitha Bollam
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Maryann J Kwa
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Marleen Meyers
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Yelena Novik
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - David H Harter
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - John G Golfinos
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| |
Collapse
|
68
|
Buisseret L, Bareche Y, Venet D, Girard E, Gombos A, Emonts P, Majjaj S, Rouas G, Serra M, Debien V, Agostinetto E, Garaud S, Willard-Gallo K, Larsimont D, Stagg J, Rothé F, Sotiriou C. The long and winding road to biomarkers for immunotherapy: a retrospective analysis of samples from patients with triple-negative breast cancer treated with pembrolizumab. ESMO Open 2024; 9:102964. [PMID: 38703428 PMCID: PMC11087916 DOI: 10.1016/j.esmoop.2024.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) in combination with chemotherapy improves outcome of patients with triple-negative breast cancer (TNBC) in metastatic and early settings. The identification of predictive biomarkers able to guide treatment decisions is challenging and currently limited to programmed death-ligand 1 (PD-L1) expression and high tumor mutational burden (TMB) in the advanced setting, with several limitations. MATERIALS AND METHODS We carried out a retrospective analysis of clinical-pathological and molecular characteristics of tumor samples from 11 patients with advanced TNBC treated with single-agent pembrolizumab participating in two early-phase clinical trials: KEYNOTE-012 and KEYNOTE-086. Clinical, imaging, pathological [i.e. tumor-infiltrating lymphocytes (TILs), PD-L1 status], RNA sequencing, and whole-exome sequencing data were analyzed. We compared our results with publicly available transcriptomic data from TNBC cohorts from TCGA and METABRIC. RESULTS Response to pembrolizumab was heterogeneous: two patients experienced exceptional long-lasting responses, six rapid progressions, and three relatively slower disease progression. Neither PD-L1 nor stromal TILs were significantly associated with response to treatment. Increased TMB values were observed in tumor samples from exceptional responders compared to the rest of the cohort (P = 3.4 × 10-4). Tumors from exceptional responders were enriched in adaptive and innate immune cell signatures. Expression of regulatory T-cell markers (FOXP3, CCR4, CCR8, TIGIT) was mainly observed in tumors from responders except for glycoprotein-A repetitions predominant (GARP), which was overexpressed in tumors from rapid progressors. GARP RNA expression in primary breast tumors from the public dataset was significantly associated with a worse prognosis. CONCLUSIONS The wide spectrum of clinical responses to ICB supports that TNBC is a heterogeneous disease. Tumors with high TMB respond better to ICB. However, the optimal cut-off of 10 mutations (mut)/megabase (Mb) may not reflect the complexity of all tumor subtypes, despite its approval as a tumor-agnostic biomarker. Further studies are required to better elucidate the relevance of the tumor microenvironment and its components as potential predictive biomarkers in the context of ICB.
Collapse
Affiliation(s)
- L Buisseret
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels; Medical Oncology Department, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium.
| | - Y Bareche
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal; Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - D Venet
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - E Girard
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels; Centre Oscar Lambret, Lille, France
| | - A Gombos
- Medical Oncology Department, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - P Emonts
- Radiology Department, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - S Majjaj
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - G Rouas
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - M Serra
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - V Debien
- Academic Trials Promoting Team, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - E Agostinetto
- Academic Trials Promoting Team, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - S Garaud
- Molecular Immunology Unit, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - K Willard-Gallo
- Molecular Immunology Unit, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - D Larsimont
- Pathology Department, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - J Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal; Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - F Rothé
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| | - C Sotiriou
- Breast Cancer Translational Research Laboratory J-C Heuson, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels
| |
Collapse
|
69
|
Çetin K, Kökten Ş, Sarıkamış B, Yıldırım S, Gökçe ON, Barışık NÖ, Kılıç Ü. The association of PD-L1 expression and CD8-positive T cell infiltration rate with the pathological complete response after neoadjuvant treatment in HER2-positive breast cancer. Breast Cancer Res Treat 2024; 205:17-27. [PMID: 38273215 PMCID: PMC11062965 DOI: 10.1007/s10549-023-07242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Achieving a pathological complete response (pCR) after neoadjuvant therapy in HER2-positive breast cancer patients is the most significant prognostic indicator, suggesting a low risk of recurrence and a survival advantage. This study aims to investigate clinicopathological parameters that can predict the response to neoadjuvant treatment in HER2 + breast cancers and to explore the roles of tumour-infiltrating lymphocytes (TILs), CD8 + T lymphocytes and PD-L1 expression. METHODS This single-centre retrospective study was conducted with 85 HER2-positive breast cancer patients who underwent surgery after receiving neoadjuvant therapy between January 2017 and January 2020. Paraffin blocks from these patients were selected for immunohistochemical studies. RESULTS A complete pathological response to neoadjuvant treatment was determined in 39 (45.9%) patients. High Ki-67 index (> 30%), moderate to high TIL infiltration, PD-L1 positivity and high CD8 cell count (≥ 25) were significantly associated with pCR in univariate analyses (p: 0.023, 0.025, 0.017 and 0.003, respectively). Multivariate regression analysis identified high Ki-67 index (> 30%) and CD8 cell infiltration as independent predictors for pCR in HER2-positive breast cancer. CONCLUSIONS High Ki-67 index, and high CD8 cell count are strong predictors for pCR in HER2-positive breast cancer. Tumours with high Ki-67 index, high TILs and CD8 infiltration may represent a subgroup where standard therapies are adequate. Conversely, those with low TILs and CD8 infiltration may identify a subgroup where use of novel strategies, including those that increase CD8 infiltration could be applied.
Collapse
Affiliation(s)
- Kenan Çetin
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Şermin Kökten
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Bahar Sarıkamış
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Sedat Yıldırım
- Department of Medical Oncology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Oruç Numan Gökçe
- Department of General Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Nagehan Özdemir Barışık
- Department of Pathology, University of Health Sciences, Kartal Dr. Lutfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Ülkan Kılıç
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
70
|
Bruss C, Albert V, Seitz S, Blaimer S, Kellner K, Pohl F, Ortmann O, Brockhoff G, Wege AK. Neoadjuvant radiotherapy in ER +, HER2 +, and triple-negative -specific breast cancer based humanized tumor mice enhances anti-PD-L1 treatment efficacy. Front Immunol 2024; 15:1355130. [PMID: 38742103 PMCID: PMC11089195 DOI: 10.3389/fimmu.2024.1355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephanie Blaimer
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Fabian Pohl
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Radiotherapy, University Medical Center Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| |
Collapse
|
71
|
Fang M, Yin W, Qiu C, Song T, Lin B, Wang Y, Xiong H, Wu S. Stromal B Lymphocytes Affecting Prognosis in Triple-Negative Breast Cancer by Opal/TSA Multiplexed Immunofluorescence. Int J Womens Health 2024; 16:755-767. [PMID: 38706691 PMCID: PMC11067943 DOI: 10.2147/ijwh.s444202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Immune cells play a key role in tumor microenvironment. The purpose of this study was to investigate the infiltration and clinical indication of immune cells including their combined prognostic value in microenvironment of triple negative breast cancer. Methods We investigated 100 patients with triple negative breast cancer by Opal/Tyramide Signal Amplification multispectral immunofluorescence between 2003 and 2017 at Zhejiang Provincial people's Hospital. Intratumoral and stromal immune cells of triple negative breast cancer were classified and quantitatively analyzed. Survival outcomes were compared using the Kaplan-Meier method and further analyzed with multivariate analysis. Results Infiltration level of stromal B lymphocytes, stromal and intratumoral CD8+ T cells, stromal CD4+ T cells, stromal PD-L1 and intratumoral tumor associated macrophages 2 cells were shown as independent factors affecting disease-free survival and overall survival in univariate analysis. Stromal B lymphocytes, T stage, N stage and pathological type were independent predictive factors for both DFS and OS in multivariate analysis. We firstly found that patients with B lymphocytes-enriched subtypes have a better prognosis than those with T lymphocytes-enriched subtypes and tumor-associated macrophage-enriched subtypes. Conclusion The present study identified a bunch of immune targets and subtypes, which could be exploited in future combined immunotherapy/chemotherapy strategies for triple negative breast cancer patients.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Chunyan Qiu
- National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People’s Republic of China
| | - Tao Song
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Baihua Lin
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shixiu Wu
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
72
|
Chauhan SK, Dunn C, Andresen NK, Røssevold AH, Skorstad G, Sike A, Gilje B, Raj SX, Huse K, Naume B, Kyte JA. Peripheral immune cells in metastatic breast cancer patients display a systemic immunosuppressed signature consistent with chronic inflammation. NPJ Breast Cancer 2024; 10:30. [PMID: 38653982 DOI: 10.1038/s41523-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Immunotherapies blocking the PD-1/PD-L1 checkpoint show some efficacy in metastatic breast cancer (mBC) but are often hindered by immunosuppressive mechanisms. Understanding these mechanisms is crucial for personalized treatments, with peripheral blood monitoring representing a practical alternative to repeated biopsies. In the present study, we performed a comprehensive mass cytometry analysis of peripheral blood immune cells in 104 patients with HER2 negative mBC and 20 healthy donors (HD). We found that mBC patients had significantly elevated monocyte levels and reduced levels of CD4+ T cells and plasmacytoid dendritic cells, when compared to HD. Furthermore, mBC patients had more effector T cells and regulatory T cells, increased expression of immune checkpoints and other activation/exhaustion markers, and a shift to a Th2/Th17 phenotype. Furthermore, T-cell phenotypes identified by mass cytometry correlated with functionality as assessed by IFN-γ production. Additional analysis indicated that previous chemotherapy and CDK4/6 inhibition impacted the numbers and phenotype of immune cells. From 63 of the patients, fresh tumor samples were analyzed by flow cytometry. Paired PBMC-tumor analysis showed moderate correlations between peripheral CD4+ T and NK cells with their counterparts in tumors. Further, a CD4+ T cell cluster in PBMCs, that co-expressed multiple checkpoint receptors, was negatively associated with CD4+ T cell tumor infiltration. In conclusion, the identified systemic immune signatures indicate an immune-suppressed environment in mBC patients who had progressed/relapsed on standard treatments, and is consistent with ongoing chronic inflammation. These activated immuno-suppressive mechanisms may be investigated as therapeutic targets, and for use as biomarkers of response or treatment resistance.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nikolai Kragøe Andresen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Hagen Røssevold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gjertrud Skorstad
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Sunil Xavier Raj
- Department of Oncology, St Olav University Hospital, Trondheim, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway.
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
73
|
Cheng B, Li C, Li J, Gong L, Liang P, Chen Y, Zhan S, Xiong S, Zhong R, Liang H, Feng Y, Wang R, Wang H, Zheng H, Liu J, Zhou C, Shao W, Qiu Y, Sun J, Xie Z, Liang Z, Yang C, Cai X, Su C, Wang W, He J, Liang W. The activity and immune dynamics of PD-1 inhibition on high-risk pulmonary ground glass opacity lesions: insights from a single-arm, phase II trial. Signal Transduct Target Ther 2024; 9:93. [PMID: 38637495 PMCID: PMC11026465 DOI: 10.1038/s41392-024-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Longlong Gong
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Peng Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Haixuan Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hongbo Zheng
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Chengzhi Zhou
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenlong Shao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yuan Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jiancong Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhu Liang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
74
|
Pan H, Yu M, Tang X, Mao X, Liu M, Zhang K, Qian C, Wang J, Xie H, Qiu W, Ding Q, Wang S, Zhou W. Preoperative single-dose camrelizumab and/or microwave ablation in women with early-stage breast cancer: A window-of-opportunity trial. MED 2024; 5:291-310.e5. [PMID: 38417440 DOI: 10.1016/j.medj.2024.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).
Collapse
Affiliation(s)
- Hong Pan
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Muxin Yu
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyu Tang
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinrui Mao
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingduo Liu
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kai Zhang
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qian
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211112, China
| | - Ji Wang
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Xie
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technology of the Ministry of Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Ding
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shui Wang
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Wenbin Zhou
- Department of Breast Surgery & General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
75
|
Yee EJ, Gilbert D, Kaplan J, Wani S, Kim SS, McCarter MD, Stewart CL. Effect of Neoadjuvant Chemotherapy on Tumor-Infiltrating Lymphocytes in Resectable Gastric Cancer: Analysis from a Western Academic Center. Cancers (Basel) 2024; 16:1428. [PMID: 38611107 PMCID: PMC11010931 DOI: 10.3390/cancers16071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are an emerging biomarker predictive of response to immunotherapy across a spectrum of solid organ malignancies. The characterization of TILs in gastric cancer (GC) treated with contemporary, multiagent neoadjuvant chemotherapy (NAC) is understudied. In this retrospective investigation, we analyzed the degree of infiltration, phenotype, and spatial distribution of TILs via immunohistochemistry within resected GC specimens treated with or without NAC at a Western center. We hypothesized that NAC executes immunostimulatory roles, as evidenced by an increased number of anti-tumor TILs in the tumor microenvironment. We found significantly elevated levels of conventional and memory CD8+ T cells, as well as total TILs (CD4+, CD8+, Treg, B cells), within chemotherapy-treated tumors compared with chemotherapy-naïve specimens. We also revealed important associations between survival and pathologic responses with enhanced TIL infiltration. Taken together, our findings advocate for an immunostimulatory role of chemotherapy and underscore the potential synergistic effect of combining chemotherapy with immunotherapy in resectable gastric cancer.
Collapse
Affiliation(s)
- Elliott J. Yee
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (D.G.); (M.D.M.); (C.L.S.)
| | - Danielle Gilbert
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (D.G.); (M.D.M.); (C.L.S.)
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado, Aurora, CO 80045, USA;
| | - Sachin Wani
- Division of Gastroenterology, Department of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Sunnie S. Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Martin D. McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (D.G.); (M.D.M.); (C.L.S.)
| | - Camille L. Stewart
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (D.G.); (M.D.M.); (C.L.S.)
| |
Collapse
|
76
|
Wang XD, Liu YS, Chen MD, Hu MH. Discovery of a triphenylamine-based ligand that targets mitochondrial DNA G-quadruplexes and activates the cGAS-STING immunomodulatory pathway. Eur J Med Chem 2024; 269:116361. [PMID: 38547736 DOI: 10.1016/j.ejmech.2024.116361] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Stabilization of G-quadruplex (G4) structures in mitochondria leads to the damage of mitochondrial DNA (mtDNA), making mtDNA G4s a promising target in the field of cancer therapy in recent years. Damaged mtDNA released into the cytosol can stimulate cytosolic DNA-sensing pathways, and cGAS-STING pathway is a typical one with potent immunostimulatory effects. A few small molecule ligands of mtDNA G4s are identified with antitumor efficacy, but little is known about their results and mechanisms on immunomodulation. In this study, we engineered a series of triphenylamine-based analogues targeting mtDNA G4s, and A6 was determined as the most promising compound. Cellular studies indicated that A6 caused severe mtDNA damage. Then, damaged mtDNA stimulated cGAS-STING pathway, resulting in the following cytokine production of tumor cells and the maturation of DCs. In vivo experiments certified that A6 exerted suppressive influences on tumor growth and metastasis in 4T1 cell-bearing mice by the regulation of TME, including the remodeling of macrophages and the activation of T cells. To our knowledge, it is the first time to report a ligand targeting mtDNA G4s to activate the cGAS-STING immunomodulatory pathway, providing a novel strategy for the future development of mtDNA G4-based antitumor agents.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Yong-Si Liu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Meng-Die Chen
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
77
|
Li H, Dong T, Tao M, Zhao H, Lan T, Yan S, Gong X, Hou Q, Ma X, Song Y. Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota. Food Funct 2024; 15:3463-3478. [PMID: 38456333 DOI: 10.1039/d3fo04807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Currently, the clinical efficacy of anti-PD-1/PD-L1 monotherapy strategies against breast cancer is limited, and low response rates need to be improved. Gut microbiota plays a crucial role in the sensitization process of immunotherapy. As a natural dietary supplement, fucoidan has been reported to have immunomodulatory effects, while some studies have found that oral fucoidan may act as a potential prebiotic to modulate the gut microbiota. Therefore, this study investigated whether fucoidan could enhance the effects of anti-PD-1 monoclonal antibody antitumor immunotherapy by modulating gut microbiota and its metabolites. We found that the anti-tumor effect of the combination treatment was significantly enhanced, while fucoidan significantly improved the composition of the gut microbiota by increasing the number of potentially beneficial bacteria, such as Bifidobacterium, Faecalibaculum and Lactobacillus. Interference with the gut microbiota by antibiotics revealed impaired antitumor efficacy, confirming the necessity of gut microbiota in the antitumor effects of fucoidan in vivo. Metabolomics further revealed that fucoidan may have reversed the metabolic disturbances induced by the breast cancer model through tryptophan metabolism and glycerophospholipid metabolism pathways, with the most significant increase in the content of short-chain fatty acids, especially acetic and butyric acids. These modulations improved the function of effector T cells and suppressed Treg cell production. Thus, our findings suggest that fucoidan combined with the anti-PD-1 monoclonal antibody may be a novel strategy to sensitize breast cancer patients to anti-PD-1 monoclonal antibody immunotherapy. Meanwhile, the gut microbiota might serve as a new biomarker to predict the anti-PD-1 monoclonal antibody response to breast cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Tieying Dong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Meng Tao
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Inspection, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese, Medicine, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Shiyu Yan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xinyi Gong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Qilong Hou
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
78
|
Haq ATA, Yang PP, Jin C, Shih JH, Chen LM, Tseng HY, Chen YA, Weng YS, Wang LH, Snyder MP, Hsu HL. Immunotherapeutic IL-6R and targeting the MCT-1/IL-6/CXCL7/PD-L1 circuit prevent relapse and metastasis of triple-negative breast cancer. Theranostics 2024; 14:2167-2189. [PMID: 38505617 PMCID: PMC10945351 DOI: 10.7150/thno.92922] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process. Methods: We assessed primary tumor invasion, postsurgical local recurrence and distant metastasis in orthotopic syngeneic mice given the indicated immunotherapy and MCT-1 silencing (shMCT-1). Results: We found that shMCT-1 suppresses the transcriptomes of the inflammatory response and metastatic signaling in TNBC cells and inhibits tumor recurrence, metastasis and mortality in xenograft mice. IL-6R immunotherapy and shMCT-1 combined further decreased intratumoral M2 macrophages and T regulatory cells (Tregs) and avoided postsurgical TNBC expansion. shMCT-1 also enhances IL-6R-based immunotherapy effectively in preventing postsurgical TNBC metastasis, recurrence and mortality. Anti-IL-6R improved helper T, cytotoxic T and natural killer (NK) cells in the lymphatic system and decreased Tregs in the recurrent and metastatic tumors. Combined IL-6R and PD-L1 immunotherapies abridged TNBC cell stemness and M2 macrophage activity to a greater extent than monotherapy. Sequential immunotherapy of PD-L1 and IL-6R demonstrated the best survival outcome and lowest postoperative recurrence and metastasis compared with synchronized therapy, particularly in the shMCT-1 context. Multiple positive feedforward loops of the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 axis were identified in TNBC cells, which boosted metastatic niches and immunosuppressive microenvironments. Clinically, MCT-1high/PD-L1high/CXCL7high and CXCL7high/IL-6high/IL-6Rhigh expression patterns predict worse prognosis and poorer survival of breast cancer patients. Conclusion: Systemic targeting the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 interconnections enhances immune surveillance that inhibits the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pao-Pao Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Christopher Jin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
79
|
Pourmir I, Van Halteren HK, Elaidi R, Trapani D, Strasser F, Vreugdenhil G, Clarke M. A conceptual framework for cautious escalation of anticancer treatment: How to optimize overall benefit and obviate the need for de-escalation trials. Cancer Treat Rev 2024; 124:102693. [PMID: 38330752 DOI: 10.1016/j.ctrv.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The developmental workflow of the currently performed phase 1, 2 and 3 cancer trial stages lacks essential information required for the determination of the optimal efficacy threshold of new anticancer regimens. Due to this there is a serious risk of overdosing and/or treating for an unnecessary long time, leading to excess toxicity and a higher financial burden for society. But often post-approval de-escalation trials for dose-optimization and treatment de-intensification are not performed due to failing resources and time. Therefore, the developmental workflow needs to be restructured toward cautious systemic cancer treatment escalation, in order to guarantee optimal efficacy and sustainability. METHODS In this manuscript we discuss opportunities to produce the information needed for cautious escalation, based on models of cancer growth and cancer kill kinetics as well as exploratory biomarkers, for the purpose of designing the optimal phase 3 superiority trial. Subsequently, we compare the sample size needed for a phase 3 superiority trial, followed by a necessary de-escalation trial with the sample size needed for a multi-arm phase 3 trial with intervention arms of differing intensity. All essential items are structured within a Framework for Cautious Escalation (FCE). The discussion uses illustrations from the breast cancer setting, but aims to be applicable for all cancers. RESULTS The FCE is a promising model of clinical development in oncology to prevent overtreatment and associated issues, especially with regard to the number of repetitive treatment cycles. It will hopefully increase the relevance and success rate of clinical trials, to deliver improved patient-centric outcomes.
Collapse
Affiliation(s)
- I Pourmir
- Department of Thoracic Oncology, European Hospital Georges Pompidou, Paris, France; INSERM U970, Paris Research Cardiovascular Center, Paris, France
| | - H K Van Halteren
- Department of Medical Oncology, Adrz Hospital, Goes, the Netherlands.
| | - R Elaidi
- Consultant/advisor in Clinical Trials Methodology and Biostatistic, Paris, France
| | - D Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy; Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - F Strasser
- Center for Integrative Medicine, Cantonal Hospital Gallen, St. Gallen University of Bern, Switzerland
| | - G Vreugdenhil
- Department of Medical Oncology, Maxima Medical Center, Veldhoven, the Netherlands
| | - M Clarke
- Professor and Director of Northern Ireland Methodology Hub, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
80
|
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P, Jayachandran A. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci 2024; 31:23. [PMID: 38395880 PMCID: PMC10885503 DOI: 10.1186/s12929-024-01012-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Pregnancy associated plasma protein-A (PAPP-A) plays an integral role in breast cancer (BC), especially triple negative breast cancer (TNBC). This subtype accounts for the most aggressive BC, possesses high tumor heterogeneity, is least responsive to standard treatments and has the poorest clinical outcomes. There is a critical need to address the lack of effective targeted therapeutic options available. PAPP-A is a protein that is highly elevated during pregnancy. Frequently, higher PAPP-A expression is detected in tumors than in healthy tissues. The increase in expression coincides with increased rates of aggressive cancers. In BC, PAPP-A has been demonstrated to play a role in tumor initiation, progression, metastasis including epithelial-mesenchymal transition (EMT), as well as acting as a biomarker for predicting patient outcomes. In this review, we present the role of PAPP-A, with specific focus on TNBC. The structure and function of PAPP-A, belonging to the pappalysin subfamily, and its proteolytic activity are assessed. We highlight the link of BC and PAPP-A with respect to the IGFBP/IGF axis, EMT, the window of susceptibility and the impact of pregnancy. Importantly, the relevance of PAPP-A as a TNBC clinical marker is reviewed and its influence on immune-related pathways are explored. The relationship and mechanisms involving PAPP-A reveal the potential for more treatment options that can lead to successful immunotherapeutic targets and the ability to assist with better predicting clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
- RMIT University, Victoria, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Sushma R Rao
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Victoria, Australia.
- Federation University, Victoria, Australia.
| |
Collapse
|
81
|
Malih S, Lin W, Tang Z, DeLuca MC, Engle JW, Alirezapour B, Cai W, Rasaee MJ. Noninvasive PET imaging of tumor PD-L1 expression with 64Cu-labeled Durvalumab. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:31-40. [PMID: 38500749 PMCID: PMC10944374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Breast cancer (BrCa) ranks as the most prevalent malignant neoplasm affecting women worldwide. The expression of programmed death-ligand 1 (PD-L1) in BrCa has recently emerged as a biomarker for immunotherapy response, but traditional immunohistochemistry (IHC)-based methods are hindered by spatial and temporal heterogeneity. Noninvasive and quantitative PD-L1 imaging using appropriate radiotracers can serve to determine PD-L1 expression in tumors. This study aims to demonstrate the viability of PET imaging with 64Cu-labeled Durvalumab (abbreviated as Durva) to assess PD-L1 expression using a murine xenograft model of breast cancer. Durvalumab, a human IgG1 monoclonal antibody against PD-L1, was assessed for specificity in vitro in two cancer cell lines (MDA-MB-231 triple-negative breast cancer cell line and AsPC-1 pancreatic cancer cell line) with positive and negative PD-L1 expression by flow cytometry. Next, we performed the in vivo evaluation of 64Cu-NOTA-Durva in murine models of human breast cancer by PET imaging and ex vivo biodistribution. Additionally, mice bearing AsPC-1 tumors were employed as a negative control. Tumor uptake was quantified based on a 3D region-of-interest (ROI) analysis of the PET images and ex vivo biodistribution measurements, and the results were compared against conventional IHC testing. The radiotracer uptake was evident in MDA-MB-231 tumors and showed minimal nonspecific binding, corroborating IHC-derived results. The results of the biodistribution showed that the MDA-MB-231 tumor uptake of 64Cu-NOTA-Durva was much higher than 64Cu-NOTA-IgG (a nonspecific radiolabeled IgG). In Conclusion, 64Cu-labeled Durvalumab PET/CT imaging offers a promising, noninvasive approach to evaluate tumor PD-L1 expression.
Collapse
Affiliation(s)
- Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Wilson Lin
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Zhongmin Tang
- Department of Radiology, University of Wisconsin-MadisonMadison, WI, USA
| | - Molly C DeLuca
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI)Tehran, Iran
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
- Department of Radiology, University of Wisconsin-MadisonMadison, WI, USA
| | - Mohammad J Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| |
Collapse
|
82
|
Scheffges C, Devy J, Giustiniani J, Francois S, Cartier L, Merrouche Y, Foussat A, Potteaux S, Bensussan A, Marie-Cardine A. Identification of CD160-TM as a tumor target on triple negative breast cancers: possible therapeutic applications. Breast Cancer Res 2024; 26:28. [PMID: 38360636 PMCID: PMC10870674 DOI: 10.1186/s13058-024-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Despite major therapeutic advances, triple-negative breast cancer (TNBC) still presents a worth prognosis than hormone receptors-positive breast cancers. One major issue relies in the molecular and mutational heterogeneity of TNBC subtypes that is reinforced by the absence of reliable tumor-antigen that could serve as a specific target to further promote efficient tumor cell recognition and depletion. CD160 is a receptor mainly expressed by NK lymphocytes and presenting two isoforms, namely the GPI-anchored form (CD160-GPI) and the transmembrane isoform (CD160-TM). While CD160-GPI is constitutively expressed on resting cells and involved in the generation of NK cells' cytotoxic activity, CD160-TM is neo-synthesized upon activation and promotes the amplification of NK cells' killing ability. METHODS CD160 expression was assessed by immunohistochemistry (IHC) and flow cytometry on TNBC patient biopsies or cell lines, respectively. Antibody (Ab)-mediated tumor depletion was tested in vitro by performing antibody-dependent cell cytotoxicity (ADCC) and phagocytosis (ADCP) assays, and in vivo on a TNBC mouse model. RESULTS Preliminary data obtained by IHC on TNBC patients' tumor biopsies revealed an unconventional expression of CD160 by TNBC tumor cells. By using a specific but conformation-dependent anti-CD160-TM Ab, we established that CD160-TM, but not CD160-GPI, was expressed by TNBC tumor cells. A conformation-independent anti-CD160-TM mAb (22B12; muIgG2a isotype) was generated and selected according to pre-defined specificity and functional criterions. In vitro functional assays demonstrated that ADCC and ADCP could be induced in the presence of 22B12, resulting in TNBC cell line apoptosis. The ability of 22B12 to exert an in vivo anti-tumor activity was also demonstrated on a TNBC murine model. CONCLUSIONS Our data identify CD160-TM as a tumor marker for TNBC and provide a rational for the use of anti-CD160-TM antibodies as therapeutic tools in this tumor context.
Collapse
Affiliation(s)
- Claire Scheffges
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
- Alderaan Biotechnology, 75005, Paris, France
| | - Jérôme Devy
- UMR CNRS/URCA 7369, MEDyC, Université de Reims-Champagne-Ardennes, 51100, Reims, France
| | | | | | - Lucille Cartier
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Yacine Merrouche
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | | | - Stéphane Potteaux
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Armand Bensussan
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
| | - Anne Marie-Cardine
- INSERM U976, HIPI, Team 1, 75010, Paris, France.
- Université Paris Cité, IRSL, 75010, Paris, France.
| |
Collapse
|
83
|
Yang J, Liu C, Guo Y, Guo W, Wu X. Addition of PD-1/PD-L1 inhibitors to chemotherapy for triple-negative breast cancer: a meta-analysis. Front Oncol 2024; 14:1309677. [PMID: 38406799 PMCID: PMC10884307 DOI: 10.3389/fonc.2024.1309677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Background In recent years, the addition of immune checkpoint inhibitors (ICI) to chemotherapy (CT) has become a research hotspot in the therapy of metastatic triple-negative breast cancer. Nevertheless, controversial results have been revealed among the published randomized controlled trials. Hence, a meta-analysis was performed to assess the therapeutic effect of this treatment regimen. Methods Five English databases (PubMed, WOS, CENTRAL, Scopus, and Embase), and four Chinese databases (CBM, CNKI, VIP, and Wanfang), as well as oncological meetings, were systematically searched to identify eligible studies that assessed the addition of ICI to CT versus CT alone in metastatic triple-negative breast cancer. The pooled hazard ratios (HR) of progression-free survival (PFS) and overall survival (OS) were estimated using fixed- or random-effect model. Subgroup analyses were also performed in the intention-to-treat (ITT) and PD-L1-positive individuals. Results All told there are five eligible randomized controlled trials involving 3,000 patients were enrolled in this meta-analysis. Compared with CT alone, the ICI plus CT regimen significantly increased PFS in the ITT (HR = 0.80, 95% CI: 0.73-0.88) and PD-L1-positive (HR = 0.70, 95% CI: 0.62-0.79) populations, as well as OS in the ITT (HR = 0.89, 95% CI: 0.81-0.97) and PD-L1-positive populations (HR = 0.80, 95% CI: 0.71-0.91). Moreover, the PFS of sufferers treated with the combination strategy of ICI with CT increased alongside PD-L1 enrichment. A clinical benefit in terms of objective response rate was also distinctly observed in both populations treated with ICI plus CT. In the subgroup analysis, patients in the no prior CT subgroup experienced a striking increase in PFS in both populations; however, a difference was not observed in other subgroups. Conclusions The combination strategy striking improves PFS and OS in both ITT and PD-L1-positive populations, and PFS is prolonged with PD-L1 enrichment. Patients who do not receive CT prior to this treatment are associated with longer PFS in both populations. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42021289817.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojin Wu
- Department of Radiation Oncology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
84
|
Li Q, Liu J, Zhang Q, Ouyang Q, Zhang Y, Liu Q, Sun T, Ye F, Zhang B, Xia S, Zhang B, Xu B. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: a multicenter phase II trial. Nat Commun 2024; 15:1015. [PMID: 38310192 PMCID: PMC10838317 DOI: 10.1038/s41467-024-45160-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
This multicenter, phase II study (NCT03872791) aims to evaluate the efficacy and safety of the anti-PD-L1/CTLA-4 bispecific antibody KN046 combined with nab-paclitaxel in the first-line treatment of patients with metastatic triple-negative breast cancer (TNBC). The primary endpoints included objective response rate (ORR) and duration of response (DoR), and secondary endpoints included progression-free survival (PFS), overall survival (OS) rate, safety, and the correlation of PD-L1 status with clinical efficacy. This trial met pre-specified endpoints. 27 female patients were enrolled sequentially to receive KN046 in two dose levels (3 mg/kg or 5 mg/kg). Among the 25 evaluable patients, the ORR achieved 44.0% (95% CI, 24.4% - 65.1%), and the median DoR was not mature. The median PFS reached 7.33 months (95%CI, 3.68 - 11.07 months), and the median OS was 30.92 months (95%CI, 14.75 - NE months). In PD-L1 positive patients, PFS was 8.61 months (versus 4.73 months) and the 2-year OS rate was 62.5% (versus 57.1%) compared to PD-L1 negative patients. Patients tolerated well the combination therapy. In general, KN046 combined with nab-paclitaxel showed favorable efficacy and survival benefits with tolerable toxicity in the first-line treatment of metastatic TNBC, especially PD-L1 positive, which is worth further investigation.
Collapse
Affiliation(s)
- Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiaxuan Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingyuan Zhang
- Harbin Medical University Cancer Hospital/Oncology Department, Harbin, Heilongjiang, 150076, China
| | | | - Yang Zhang
- Liaocheng People's Hospital, Liaocheng, Shandong, 252004, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Tao Sun
- Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, 110801, China
| | - Feng Ye
- The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361003, China
| | - Baochun Zhang
- Nantong Tumor Hospital, Nantong, Jiangsu, 226006, China
| | - Summer Xia
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, Jiangsu, 215127, China
| | - Bangyong Zhang
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, Jiangsu, 215127, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
85
|
Guo X, Yu K, Huang R. The ways Fusobacterium nucleatum translocate to breast tissue and contribute to breast cancer development. Mol Oral Microbiol 2024; 39:1-11. [PMID: 38171827 DOI: 10.1111/omi.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer is among the most prevalent malignancies in women worldwide. Epidemiological findings suggested that periodontal diseases may be associated with breast cancer, among which Fusobacterium nucleatum is considered an important cross-participant. In this work, we comprehensively summarize the known mechanisms of how F. nucleatum translocates to, colonizes in mammary tumors, and promotes the carcinogenesis. Specifically, F. nucleatum translocates to mammary tissue through the mammary-intestinal axis, direct nipple contact, and hematogenous transmission. Subsequently, F. nucleatum takes advantage of fusobacterium autotransporter protein 2 to colonize breast cancer and uses virulence factors fusobacterium adhesin A and lipopolysaccharide to promote proliferation. Moreover, the upregulated matrix metalloproteinase-9 induced by F. nucleatum does not only trigger the inflammatory response but also facilitates the tumor-promoting microenvironment. Aside from the pro-inflammatory effect, F. nucleatum may also be engaged in tumor immune evasion, which is achieved through the action of virulence factors on immune checkpoint receptors highly expressed on T cells, natural killer cells, and tumor-infiltrating lymphocytes. Taking breast cancer as an example, more relevant research studies may expand our current knowledge of how oral microbes affect systemic health. Hopefully, exploring these mechanisms in depth could provide new strategies for safer and more effective biologic and targeted therapies targeted at breast cancer.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Salih SS, Abdelaziz MS, Abdelhag IM, Mosad AS. Expression of programmed death-ligand 1, IRF1 and CD8 T lymphocyte infiltration in a primary subset of breast cancer patients in Sudan. J Taibah Univ Med Sci 2024; 19:99-105. [PMID: 37876597 PMCID: PMC10590852 DOI: 10.1016/j.jtumed.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Objectives This study aimed to investigate the protein expression of programmed death ligand 1 (PD-L1) in breast cancer (BC) tissues and link this data with estrogen status, the expression of interferon regulatory factor1 (IRF-1), and CD8+T lymphocyte infiltration by immunohistochemistry (IHC). We also attempted to identify the association between PD-L1 expression, the cell proliferation index marker (Ki67), and lymph node involvement. Methods One hundred and fifty formalin-fixed and paraffin-embedded (FFPE) blocks of breast tissue were acquired from Sudanese females via The National Public Health Laboratory. FFPE blocks were subjected to antigen/antibody detection by IHC with antibodies raised against PD-L1, IRF1, and CD8. These data were analyzed alongside data extracted from medical records relating to estrogen receptor (ER) status, Ki67 index, and lymph node (LN) status. Results IHC analysis revealed a significant association between PD-L1 and CD8 (p = 0.010). In addition, regression analysis indicated the ability of IRF1 to induce PD-L1 expression levels in IRF1-positive cases that were two-fold higher than IRF1-deficient cases (odds ratio [OR]: 2.441 p = 0.035). Analysis also suggested that PD-L1 exerts impact on cell proliferation, as reflected by the Ki67 index. An independent t test showed that higher Ki67 scores were more frequent among PD-L1-positive patients than in PD-L1-negative patients (t = 2.608 p = 0.014). There was an inverse association between PD-L1 and ER status; ER-positive tumors exhibited negative PD-L1 expression and vice versa (p = 0.04). Furthermore, we investigated the prognostic value of PD-L1 by evaluating the association between PD-L1 and LNs dispersed variably with tumor cells; there was no statistically significant relationship between these factors (p > 0.05). Conclusion The expression of PD-L1 and IRF-1, along with the infiltration of CD8, represents a potent panel of biomarkers with which to identify BC patients with the highest probabilities of achieving an excellent response to immune therapy, particularly when taking ER status into account, as ER expression levels are known to be high when immune checkpoint blockers (ICBs) generate a poor response.
Collapse
Affiliation(s)
- Shahenaz S. Salih
- Department of Histopathology and Cytology, Sudan University of Science and Technology, Khartoum, Sudan
| | - Mohammed S. Abdelaziz
- Department of Histopathology and Cytology, Sudan University of Science and Technology, Khartoum, Sudan
| | - Ibtehal M. Abdelhag
- Department of Histopathology & Cytology, Omdurman Islamic University, Khartoum, Sudan
| | - Altaf S. Mosad
- Department of Histopathology and Cytology, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
87
|
Lehmann BD, Abramson VG, Dees EC, Shah PD, Ballinger TJ, Isaacs C, Santa-Maria CA, An H, Gonzalez-Ericsson PI, Sanders ME, Newsom KC, Abramson RG, Sheng Q, Hsu CY, Shyr Y, Wolff AC, Pietenpol JA. Atezolizumab in Combination With Carboplatin and Survival Outcomes in Patients With Metastatic Triple-Negative Breast Cancer: The TBCRC 043 Phase 2 Randomized Clinical Trial. JAMA Oncol 2024; 10:193-201. [PMID: 38095878 PMCID: PMC10722391 DOI: 10.1001/jamaoncol.2023.5424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 12/17/2023]
Abstract
Importance Agents targeting programmed death ligand 1 (PD-L1) have demonstrated efficacy in triple-negative breast cancer (TNBC) when combined with chemotherapy and are now the standard of care in patients with PD-L1-positive metastatic disease. In contrast to microtubule-targeting agents, the effect of combining platinum compounds with programmed cell death 1 (PD-1)/PD-L1 immunotherapy has not been extensively determined. Objective To evaluate the efficacy of atezolizumab with carboplatin in patients with metastatic TNBC. Design, Setting, and Participants This phase 2 randomized clinical trial was conducted in 6 centers from August 2017 to June 2021. Interventions Patients with metastatic TNBC were randomized to receive carboplatin area under the curve (AUC) 6 alone or with atezolizumab, 1200 mg, every 3 weeks until disease progression or unacceptable toxic effects with a 3-year duration of follow-up. Main Outcome and Measures The primary end point was investigator-assessed progression-free survival (PFS). Secondary end points included overall response rate (ORR), clinical benefit rate (CBR), and overall survival (OS). Other objectives included correlation of response with tumor PD-L1 levels, tumor-infiltrating lymphocytes (TILs), tumor DNA- and RNA-sequenced biomarkers, TNBC subtyping, and multiplex analyses of immune markers. Results All 106 patients with metastatic TNBC who were enrolled were female with a mean (range) age of 55 (27-79) years, of which 12 (19%) identified as African American/Black, 1 (1%) as Asian, 73 (69%) as White, and 11 (10%) as unknown. Patients were randomized and received either carboplatin (n = 50) or carboplatin and atezolizumab (n = 56). The combination improved PFS (hazard ratio [HR], 0.66; 95% CI, 0.44-1.01; P = .05) from a median of 2.2 to 4.1 months, increased ORR from 8.0% (95% CI, 3.2%-18.8%) to 30.4% (95% CI, 19.9%-43.3%), increased CBR at 6 months from 18.0% (95% CI, 9.8%-30.1%) to 37.5% (95% CI, 26.0%-50.6%), and improved OS (HR, 0.60; 95% CI, 0.37-0.96; P = .03) from a median of 8.6 to 12.6 months. Subgroup analysis showed PD-L1-positive tumors did not benefit more from adding atezolizumab (HR, 0.62; 95% CI, 0.23-1.65; P = .35). Patients with high TILs (HR, 0.12; 95% CI, 0.30-0.50), high mutation burden (HR, 0.50; 95% CI, 0.23-1.06), and prior chemotherapy (HR, 0.59; 95% CI, 0.36-0.95) received greater benefit on the combination. Patients with obesity and patients with more than 125 mg/dL on-treatment blood glucose levels were associated with better PFS (HR, 0.35; 95% CI, 0.10-1.80) on the combination. TNBC subtypes benefited from adding atezolizumab, except the luminal androgen receptor subtype. Conclusions and Relevance In this randomized clinical trial, the addition of atezolizumab to carboplatin significantly improved survival of patients with metastatic TNBC regardless of PD-L1 status. Further, lower risk of disease progression was associated with increased TILs, higher mutation burden, obesity, and uncontrolled blood glucose levels. Trial Registration ClinicalTrials.gov Identifier: NCT03206203.
Collapse
Affiliation(s)
- Brian D Lehmann
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
| | - Vandana G Abramson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
| | - E Claire Dees
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - Payal D Shah
- Department of Medicine, University of Pennsylvania, Philadelphia
| | | | - Claudine Isaacs
- Department of Medical Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC
| | - Cesar A Santa-Maria
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hanbing An
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula I Gonzalez-Ericsson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Kimberly C Newsom
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
| | - Richard G Abramson
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Antonio C Wolff
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Tennessee
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
88
|
He KJ, Gong G, Liang E, Lv Y, Lin S, Xu J. Pan-cancer analysis of 60S Ribosomal Protein L7-Like 1 (RPL7L1) and validation in liver hepatocellular carcinoma. Transl Oncol 2024; 40:101844. [PMID: 38042135 PMCID: PMC10701367 DOI: 10.1016/j.tranon.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND AND AIMS There is an association between cancer and increased ribosome biogenesis. At present, the RPL7L1 (60S Ribosomal Protein L7-Like 1) were less reported by literature search. Study reports that RPL7L1 is associated with mouse embryonic and skeletal muscle. The study of RPL7L1 on tumors has not been reported. METHODS Our team downloaded the pan-cancer dataset that is uniformly normalized from the UCSC database (N=19131). Our study examined the relationship between RPL7L1 expression level and clinical prognosis with methylation, anti-tumour immunity, functional states, MSI, TMB, DNSss, LOH and chemotherapeutic responses in 43 cancer types and subtypes. RESULTS AND CONCLUSIONS RPL7L1 was overexpressed in nine tumor types. Gene mutation, tumor microenvironment and methylation modification of RPL7L1 plays a key role in patient prognosis. And the high expression of RPL7L1 was associated with TMB, MSI, LOH especially LIHC and HNSC. We experimentally verified that genes can promote the proliferation and migration of tumor cells. Our study suggested that RPL7L1 biomarker can be used for treating cancer, detecting it, and predicting its prognosis.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen China
| | - E Liang
- Xiamen Xianyue Hospital, Xiamen China
| | - Yangbo Lv
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Shuiquan Lin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China
| | - Jianguang Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| |
Collapse
|
89
|
Han X, Guo Y, Ye H, Chen Z, Hu Q, Wei X, Liu Z, Liang C. Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response. Breast Cancer Res 2024; 26:18. [PMID: 38287356 PMCID: PMC10823720 DOI: 10.1186/s13058-024-01776-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUNDS Since breast cancer patients respond diversely to immunotherapy, there is an urgent need to explore novel biomarkers to precisely predict clinical responses and enhance therapeutic efficacy. The purpose of our present research was to construct and independently validate a biomarker of tumor microenvironment (TME) phenotypes via a machine learning-based radiomics way. The interrelationship between the biomarker, TME phenotypes and recipients' clinical response was also revealed. METHODS In this retrospective multi-cohort investigation, five separate cohorts of breast cancer patients were recruited to measure breast cancer TME phenotypes via a radiomics signature, which was constructed and validated by integrating RNA-seq data with DCE-MRI images for predicting immunotherapy response. Initially, we constructed TME phenotypes using RNA-seq of 1089 breast cancer patients in the TCGA database. Then, parallel DCE-MRI images and RNA-seq of 94 breast cancer patients obtained from TCIA were applied to develop a radiomics-based TME phenotypes signature using random forest in machine learning. The repeatability of the radiomics signature was then validated in an internal validation set. Two additional independent external validation sets were analyzed to reassess this signature. The Immune phenotype cohort (n = 158) was divided based on CD8 cell infiltration into immune-inflamed and immune-desert phenotypes; these data were utilized to examine the relationship between the immune phenotypes and this signature. Finally, we utilized an Immunotherapy-treated cohort with 77 cases who received anti-PD-1/PD-L1 treatment to evaluate the predictive efficiency of this signature in terms of clinical outcomes. RESULTS The TME phenotypes of breast cancer were separated into two heterogeneous clusters: Cluster A, an "immune-inflamed" cluster, containing substantial innate and adaptive immune cell infiltration, and Cluster B, an "immune-desert" cluster, with modest TME cell infiltration. We constructed a radiomics signature for the TME phenotypes ([AUC] = 0.855; 95% CI 0.777-0.932; p < 0.05) and verified it in an internal validation set (0.844; 0.606-1; p < 0.05). In the known immune phenotypes cohort, the signature can identify either immune-inflamed or immune-desert tumor (0.814; 0.717-0.911; p < 0.05). In the Immunotherapy-treated cohort, patients with objective response had higher baseline radiomics scores than those with stable or progressing disease (p < 0.05); moreover, the radiomics signature achieved an AUC of 0.784 (0.643-0.926; p < 0.05) for predicting immunotherapy response. CONCLUSIONS Our imaging biomarker, a practicable radiomics signature, is beneficial for predicting the TME phenotypes and clinical response in anti-PD-1/PD-L1-treated breast cancer patients. It is particularly effective in identifying the "immune-desert" phenotype and may aid in its transformation into an "immune-inflamed" phenotype.
Collapse
Affiliation(s)
- Xiaorui Han
- School of Medicine South, China University of Technology, Guangzhou, 510006, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Huifen Ye
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zhihong Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Qingru Hu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Zaiyi Liu
- School of Medicine South, China University of Technology, Guangzhou, 510006, China.
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
| | - Changhong Liang
- School of Medicine South, China University of Technology, Guangzhou, 510006, China.
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
| |
Collapse
|
90
|
Guo J, Ma Y, Tang T, Bian Z, Li Q, Tang L, Li Z, Li M, Wang L, Zeng A, Huang S, Guo W. Modulation of immune-responses by DSF/Cu enhances the anti-tumor effects of DTX for metastasis breast cancer. J Cancer 2024; 15:1523-1535. [PMID: 38370371 PMCID: PMC10869985 DOI: 10.7150/jca.89120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 02/20/2024] Open
Abstract
Metastasis has been one of the most important causes of death from breast cancer, and chemotherapy remains the major option for metastatic breast cancer. However, drug resistance and higher toxicity from chemotherapy have been an obstacle for clinical practice, and the combination of chemotherapy with immunotherapy has emerged as a promising treatment strategy. Here, we describe a therapy based on the combination of disulfiram (DSF) and Cu2+ with widely used cytotoxic docetaxel (DTX). DSF/Cu-induced immunogenic cell death promoted the release of type I interferon and human monocyte-induced dendritic cell maturation, which established a foundation for the combination with chemotherapy. Consequently, the combination of DSF/Cu and DTX resulted in significantly more potent anti-tumor effects in 4T1-bearing mice than in single therapy. The present study has shed new light on combining DSF/Cu-induced immune responses with traditional chemotherapeutic agents to achieve greater benefits for patients with metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
91
|
García-Domínguez DJ, López-Enríquez S, Alba G, Garnacho C, Jiménez-Cortegana C, Flores-Campos R, de la Cruz-Merino L, Hajji N, Sánchez-Margalet V, Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. Int J Mol Sci 2024; 25:1195. [PMID: 38256268 PMCID: PMC10816838 DOI: 10.3390/ijms25021195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is a complex disease that, despite advances in treatment and the greater understanding of the tumor biology until today, continues to be a prevalent and lethal disease. Chemotherapy, radiotherapy, and surgery are the conventional treatments, which have increased the survival for cancer patients. However, the complexity of this disease together with the persistent problems due to tumor progression and recurrence, drug resistance, or side effects of therapy make it necessary to explore new strategies that address the challenges to obtain a positive response. One important point is that tumor cells can interact with the microenvironment, promoting proliferation, dissemination, and immune evasion. Therefore, immunotherapy has emerged as a novel therapy based on the modulation of the immune system for combating cancer, as reflected in the promising results both in preclinical studies and clinical trials obtained. In order to enhance the immune response, the combination of immunotherapy with nanoparticles has been conducted, improving the access of immune cells to the tumor, antigen presentation, as well as the induction of persistent immune responses. Therefore, nanomedicine holds an enormous potential to enhance the efficacy of cancer immunotherapy. Here, we review the most recent advances in specific molecular and cellular immunotherapy and in nano-immunotherapy against cancer in the light of the latest published preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Rocío Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - Nabil Hajji
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Cancer Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| |
Collapse
|
92
|
Li Y, Liang X, Li H, Chen X. Reconstruction of unreported subgroup survival data with PD-L1-low expression in advanced/metastatic triple-negative breast cancer using innovative KMSubtraction workflow. J Immunother Cancer 2024; 12:e007931. [PMID: 38212119 PMCID: PMC10806559 DOI: 10.1136/jitc-2023-007931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Among patients with advanced/metastatic triple-negative breast cancer (TNBC) with high/positive programmed death-ligand 1 (PD-L1) expression, a superior survival outcome has been demonstrated with immune checkpoint inhibitors (ICIs). However, it remains unclear whether ICIs are beneficial for patients with low PD-L1 levels. Here, we derived survival data for subgroups with low PD-L1-expressing and conducted a pooled analysis. METHODS After a systematic search of Embase, PubMed, MEDLINE, and CENTRAL from inception until May 18, 2023, randomized controlled trials (RCTs) reporting progression-free survival (PFS), overall survival (OS), or duration of response (DOR) for metastatic TNBC treated with ICI-based regimens were included. Kaplan-Meier curves were extracted for the intention-to-treat population and high PD-L1 subgroups. KMSubtraction was used when survival curves were not provided for subgroups with low PD-L1 expression. A pooled analysis of survival data was then conducted. RESULTS A total of 3022 patients were included in four RCTs: Impassion130, Impassion131, KEYNOTE-119, and KEYNOTE-355. Unreported low PD-L1-expressing subgroups were identified, including PD-L1 immune cell (IC)<1%, combined positive score (CPS)<1, and 1≤CPS<10. Compared with chemotherapy, ICI-chemotherapy combinations did not significantly differ in OS, PFS, or DOR in the Impassion PD-L1<1%, KEYNOTE-355 PD-L1 CPS<1, and KEYNOTE-355 1≤CPS<10 subgroups. In the KEYNOTE-119 CPS<1 subgroup, the risk of tumor progression was increased with pembrolizumab (HR, 2.23; 95% CI, 1.62 to 3.08; p<0.001), as well as in the 1≤CPS<10 subgroup (HR, 1.64; 95% CI, 1.22 to 2.20; p<0.001). A pooled analysis using a scoring system found no significant difference in OS and PFS among the subgroups with an IC of <1% between immunochemotherapy and chemotherapy. OS (HR, 1.07; 95% CI, 0.91 to 1.26), PFS (HR, 0.96; 95% CI, 0.84 to 1.10), and DOR were also not significantly different in pooled analysis of first-line trials for those with low PD-L1 expression. CONCLUSION ICI-based regimens are not associated with a survival benefit versus chemotherapy in subgroups of advanced/metastatic TNBC that express low PD-L1 levels.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyu Chen
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
93
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
94
|
Shiao SL, Gouin KH, Ing N, Ho A, Basho R, Shah A, Mebane RH, Zitser D, Martinez A, Mevises NY, Ben-Cheikh B, Henson R, Mita M, McAndrew P, Karlan S, Giuliano A, Chung A, Amersi F, Dang C, Richardson H, Shon W, Dadmanesh F, Burnison M, Mirhadi A, Zumsteg ZS, Choi R, Davis M, Lee J, Rollins D, Martin C, Khameneh NH, McArthur H, Knott SRV. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell 2024; 42:70-84.e8. [PMID: 38194915 DOI: 10.1016/j.ccell.2023.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Strategies are needed to better identify patients that will benefit from immunotherapy alone or who may require additional therapies like chemotherapy or radiotherapy to overcome resistance. Here we employ single-cell transcriptomics and spatial proteomics to profile triple negative breast cancer biopsies taken at baseline, after one cycle of pembrolizumab, and after a second cycle of pembrolizumab given with radiotherapy. Non-responders lack immune infiltrate before and after therapy and exhibit minimal therapy-induced immune changes. Responding tumors form two groups that are distinguishable by a classifier prior to therapy, with one showing high major histocompatibility complex expression, evidence of tertiary lymphoid structures, and displaying anti-tumor immunity before treatment. The other responder group resembles non-responders at baseline and mounts a maximal immune response, characterized by cytotoxic T cell and antigen presenting myeloid cell interactions, only after combination therapy, which is mirrored in a murine model of triple negative breast cancer.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Kenneth H Gouin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nathan Ing
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Ho
- Breast Cancer Clinical Research Unit, Duke University Medical Center, Raleigh, NC, USA.
| | - Reva Basho
- Ellison Institute of Technology, Los Angeles, CA, USA
| | - Aagam Shah
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard H Mebane
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Zitser
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalie-Ya Mevises
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bassem Ben-Cheikh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Regina Henson
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Monica Mita
- Department of Medicine, Division of Hematology-Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Philomena McAndrew
- Department of Medicine, Division of Hematology-Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Scott Karlan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Armando Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Chung
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Farin Amersi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Dang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heather Richardson
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wonwoo Shon
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Farnaz Dadmanesh
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michele Burnison
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amin Mirhadi
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rachel Choi
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Madison Davis
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joseph Lee
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dustin Rollins
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Martin
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Negin H Khameneh
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heather McArthur
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Simon R V Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
95
|
Lama GIG, Noél G, Márquez FCL, Galarza FFG, Hinojosa AIP, Rivera LEN, Willard-Gallo K, Astorga JRA. Concomitant Expression of CD39, CD69, and CD103 Identifies Antitumor CD8 + T Cells in Breast Cancer Implications for Adoptive Cell Therapy. Curr Pharm Biotechnol 2024; 25:1747-1757. [PMID: 37680154 DOI: 10.2174/1389201025666230901094219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND In cancer, an effective immune response involves the action of several different cell types, among which CD8 T cells play a major role as they can specifically recognize and kill cancer cells via the release of cytotoxic molecules and cytokines, being of major importance for adoptive cell transfer (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). The inflammation resulting from the tumor growth attracts both activated and bystander T cells. For an effective antitumor response, the T cell must express a specific group of chemokine receptors and integrins which include CD103, CD39, CD69, and CD25. These markers had already been analyzed in various cancers, not including breast cancer and their subsequent subtypes, until now. To analyze, the key receptors on ex vivo expanded tumor-infiltrating lymphocytes in luminal A and luminal B breast cancer (BC) subtypes. MATERIALS AND METHODS We were successful in expanding TILs ex vivo using a standard TIL culture condition from a cohort study of 15 primary luminal A and luminal B breast cancer patients. Furthermore, we examined the expression of CD103, CD39, CD69, and CD25 biomarkers after the expansion by flow cytometry. RESULTS We found that the information about the percentage of TILs obtainable after the ex vivo expansion is not associated to nor it is dependent on the heterogeneity of the TIL population before the expansion and does not differ by the molecular subtype (p>0.05). We also found that there is a major population of memory-resident antitumor CD8+CD103+CD39+ and CD8+CD103+ CD69+ TILs present in the stroma after the expansion when compared to CD4 immunosubtypes (p<0.0001). Only the CD8+CD103+CD39+ subpopulation was related to BC subtype (0.0009). CONCLUSION Evidence from our study suggests that CD8 TILs present in the stroma of luminal A and luminal B breast cancer patients can be quantified and phenotyped by flow cytometry and be further expanded ex vivo. The immuno-phenotyping of these markers may be targeted to improve the success of immunotherapeutic approaches, such as adoptive cellular therapy (ACT) in patients with BC.
Collapse
MESH Headings
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Integrin alpha Chains/metabolism
- Integrin alpha Chains/immunology
- Female
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Apyrase/metabolism
- Apyrase/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Immunotherapy, Adoptive/methods
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Middle Aged
- Aged
Collapse
Affiliation(s)
- Grace Ivonne Gattas Lama
- Universidad Iberoamericana de Torreón, Coahuila, México
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | | | - Francisco Carlos López Márquez
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | | | - Adria Imelda Prieto Hinojosa
- Universidad Iberoamericana de Torreón, Coahuila, México
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | - Lydia Enith Nava Rivera
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | - Karen Willard-Gallo
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | - Jesús Rafael Arguëllo Astorga
- Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
- Instituto de Ciencias y Medicina Genómica, Torreón, Coahuila, México
| |
Collapse
|
96
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
97
|
Ippolito A, Wang H, Zhang Y, Vakil V, Bazzazi H, Popel AS. Eliciting the antitumor immune response with a conditionally activated PD-L1 targeting antibody analyzed with a quantitative systems pharmacology model. CPT Pharmacometrics Syst Pharmacol 2024; 13:93-105. [PMID: 38058278 PMCID: PMC10787208 DOI: 10.1002/psp4.13060] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 12/08/2023] Open
Abstract
Conditionally activated molecules, such as Probody therapeutics (PbTx), have recently been investigated to improve antitumoral response while reducing systemic toxicity. PbTx are engineered to be proteolytically activated by proteases that are preferentially active locally in the tumor microenvironment (TME). Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for other drugs, to evaluate the effectiveness and targeting specificity of an anti-PD-L1 PbTx compared to the non-modified antibody. We have informed the model using the PbTx dynamics and pharmacokinetics published in the literature for anti-PD-L1 in patients with triple-negative breast cancer (TNBC). Our results suggest masking of the antibody slightly decreases its efficacy, while increasing the localization of active therapeutic component in the TME. We also perform a parameter optimization for the PbTx design and drug dosing regimens to maximize the response rate. Although our results are specific to the case of TNBC, our findings are generalizable to any conditionally activated PbTx molecule in solid tumors and suggest that design of a highly effective and selective PbTx is feasible.
Collapse
Affiliation(s)
- Alberto Ippolito
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hanwen Wang
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yu Zhang
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Vahideh Vakil
- Clinical and Quantitative PharmacologyCytomX Therapeutics, Inc.South San FranciscoCaliforniaUSA
| | - Hojjat Bazzazi
- Clinical and Quantitative PharmacologyCytomX Therapeutics, Inc.South San FranciscoCaliforniaUSA
- Present address:
Moderna TherapeuticsCambridgeMAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
98
|
Song JY, Han MG, Kim Y, Kim MJ, Kang MH, Jeon SH, Kim IA. Combination of local radiotherapy and anti-glucocorticoid-induced tumor necrosis factor receptor (GITR) therapy augments PD-L1 blockade-mediated anti-tumor effects in murine breast cancer model. Radiother Oncol 2024; 190:109981. [PMID: 37925106 DOI: 10.1016/j.radonc.2023.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE In this study, we investigated whether local radiotherapy (RT) and an anti-glucocorticoid-induced tumor necrosis factor receptor (GITR) agonist could increase the efficacy of PD-L1 blockade. METHODS AND MATERIALS We analyzed a breast cancer dataset from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) to determine the role of GITR in breast cancer. We used the 4T1 murine TNBC model (primary and secondary tumors) to investigate the efficacy of PD-L1 blockade, local RT, anti-GITR agonist, and their combinations. We assessed tumor growth by tumor volume measurements, in vivo bioluminescence imaging, and metastatic lung nodule counts to evaluate the effects of these treatments. Flow cytometry and immunohistochemistry determined the proportions and phenotypes of CD8+ T-cells and regulatory T-cells (Tregs) in the tumors and spleen. Plasma cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS In the METABRIC cohort, patients with high expression of TNFRSF18, which encodes GITR, had significantly better survival than those with low expression. Adding local RT or anti-GITR agonist to PD-L1 blockade did not significantly augment efficacy compared to PD-L1 blockade alone; however, adding both to PD-L1 blockade significantly reduced tumor growth and lung metastasis. The benefits of the triple combination were accompanied by increased CD8+ T-cells and decreased Tregs in the tumor microenvironment and spleen. CONCLUSIONS The combination of local RT and an anti-GITR agonist significantly enhanced the anti-tumor immune responses induced by PD-L1 blockade. These results provide the preclinical rationale for the combination of therapy.
Collapse
Affiliation(s)
- Jun Yeong Song
- Department of Radiation Oncology, Seoul National University School of Medicine, Republic of Korea.
| | - Min Guk Han
- Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Yoomin Kim
- Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Min Ji Kim
- Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University School of Medicine, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Republic of Korea; Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
99
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
100
|
Mo S, Wang Y, Wang Y, Chen X, Zhu H, Zou Z, Xiao W. Expanding the PD-L1 Paradigm: A Comprehensive Systematic Review and Meta-Analysis of Scoring Systems and Additional Biomarkers Influencing Immune Checkpoint Inhibitor Outcomes in Breast Cancer. Cancer Control 2024; 31:10732748241299074. [PMID: 39571079 PMCID: PMC11583497 DOI: 10.1177/10732748241299074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVES The study aimed to conduct an in-depth analysis of the influence of PD-L1 status and expression levels and other variables on the effectiveness of immune checkpoint inhibitors (ICIs) in treating breast cancer. METHODS A total of 19 articles, involving 16 trials and 7899 patients, were included in the analysis. The outcomes of interest were odds-ratio (OR) for pathological complete response (pCR) in early breast cancer, and hazard ratio (HR) for progression-free survival (PFS) and overall survival (OS) in advanced breast cancer. RESULTS In early breast cancer, individuals with PD-L1-positive tumors were more likely to benefit from ICIs than those with PD-L1-negative tumors. Furthermore, patients with PD-L1 positivity in immune cells (IC) had superior outcomes compared to those scoring positively on combined positive score (CPS), with ORs for ICIs benefit being 2.28 for IC-positive patients vs 1.78 for CPS-positive patients. Regarding the impact of breast cancer subtypes on the efficacy of ICIs, our findings indicated that triple-negative breast cancer (TNBC) exhibits the greatest therapeutic response with OR of 1.93, followed by the hormone receptor-positive (HoR+) / human epidermal growth factor receptor 2-negative (HER2-), while the HER2+ was the worst. Additionally, age was identified as a key predictive factor in responding to ICIs. In advanced breast cancer, there was an upward trend in CPS values associated with enhanced ICIs responsiveness, with the predictive value increasing from 12% at a CPS threshold of 10 to 13.6% at 20. CONCLUSION The study concluded that the PD-L1 expression scoring system effectively discriminates between patients with breast cancer in terms of the degree of benefit they may attain from ICIs. Patients with little or no PD-L1 expression experienced a diminished therapeutic benefit from ICIs.
Collapse
Affiliation(s)
- Shuangwei Mo
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yuxian Wang
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yaoling Wang
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Xinhai Chen
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Hongyi Zhu
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Zhengrong Zou
- Department of Emergency Trauma Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weikai Xiao
- Department of Breast, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|