51
|
Mahdiabadi S, Momtazmanesh S, Karimi A, Rezaei N. Immune checkpoint inhibitors in advanced cutaneous melanoma: a systematic review and meta-analysis of efficacy and review of characteristics. Expert Rev Anticancer Ther 2023; 23:1281-1293. [PMID: 37908134 DOI: 10.1080/14737140.2023.2278509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) are one of the most promising approaches toward advanced melanoma. Here, we aimed to perform a meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of all studied ICIs. METHODS We conducted a comprehensive search to identify the relevant publications (PROSPERO registration ID: CRD42023470649). Then we performed a meta-analysis to evaluate the efficacy of different ICIs for metastatic melanoma. We used Cochrane's tool to assess the quality of studies. The outcome measures were overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS). RESULTS Twenty reports of RCTs entered our systematic review, 18 of which were included in our data analysis. ICIs showed improved survival compared with control group (hazard ratio (HR) = 0.57; 95% CI: 0.43-0.71; P<0.001). Using a meta-regression, we found a significant relation between patients' mean age and their OS (P<0.001, R 2 = 100.00%). Also, our analysis revealed greater HR for CTLA-4 inhibitors than PD-1/PD-L1 inhibitors (HR = 0.71, 95%CI: 0.63-0.79, P<0.001 vs. HR = 0.63, 95%CI: 0.46-0.79, P<0.001). The effect sizes of different types of PD-1/PD-L1 inhibitors were comparable. CONCLUSION Our results suggest that ICI-based immunotherapy is associated with enhanced OS, PFS, and RFS (P < 0.001) and will assist clinicians in choosing the optimal approach toward treating metastatic melanoma.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
53
|
Galus Ł, Michalak M, Lorenz M, Stoińska-Swiniarek R, Tusień Małecka D, Galus A, Kolenda T, Leporowska E, Mackiewicz J. Vitamin D supplementation increases objective response rate and prolongs progression-free time in patients with advanced melanoma undergoing anti-PD-1 therapy. Cancer 2023; 129:2047-2055. [PMID: 37089083 DOI: 10.1002/cncr.34718] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Vitamin D3 is a prohormone with pleiotropic effects, including modulating the functions of the immune system and may affect the effectiveness of anti-PD-1 treatment in patients with cancer. According to the literature, the potential mechanism of vitamin D's influence on the effectiveness of therapy is most likely related to the amount and activity of tumor-infiltrating lymphocytes. There are data showing the effect of vitamin D on cells regulating the activity of CD8 lymphocytes. METHODS A total of 200 patients with advanced melanoma were included in the study. All patients received anti-PD-1 immunotherapy (nivolumab or pembrolizumab) as first-line treatment. Serum vitamin D levels were measured in patients both before and every 12 weeks during treatment. Part of the group had vitamin D measured retrospectively from the preserved serum. The other part of the supplementation group was tested prospectively. RESULTS The response rate in the group with low vitamin D levels and not supplemented was 36.2%, whereas in the group with normal baseline levels or a normal level obtained with supplementation was 56.0% (p = .01). Moreover, progression-free survival in these groups was 5.75 and 11.25 months, respectively (p = .03). In terms of overall survival, there was also a difference in favor of the group with normal vitamin D levels (27 vs. 31.5 months, respectively; p = .39). CONCLUSIONS In our opinion, maintaining the vitamin D level within the normal range during anti-PD-1 immunotherapy in advanced melanoma patients should be a standard procedure allowing the improvement of treatment outcomes.
Collapse
Affiliation(s)
- Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Lorenz
- Department of Diagnostic Imaging, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Renata Stoińska-Swiniarek
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Daria Tusień Małecka
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznań, Poland
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, Poznań, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
54
|
Wang J, Zheng X, Fu X, Jiang A, Yao Y, He W. A de novo dual-targeting supramolecular self-assembly peptide against pulmonary metastasis of melanoma. Theranostics 2023; 13:3844-3855. [PMID: 37441586 PMCID: PMC10334834 DOI: 10.7150/thno.83819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Despite recent advances in treatment, overall survival rates for metastatic melanoma, especially those that invade the lungs, continue to be low, with 5-year survival rates of only 3% to 5%. It was recently discovered that Wnt/β-catenin signaling pathways and MAPK/ERK signaling pathways are involved in melanoma metastasis. Methods: Herein, a bifunctional supramolecular peptide termed HBBplus@CA was constructed by a self-assembling RGD-modified MAPK/ERK peptide inhibitor (HBBplus) and a small molecule catenin inhibitor (carnosic acid (CA)). Results: Expectedly, the HBBplus@CA could internalize melanoma cells, accumulate in the tumor-bearing lung, and be biosafe. As designed, HBBplus@CA simultaneously suppressed both Wnt/β-catenin and MAPK/ERK signaling pathways and suppressed melanoma cell proliferation, migration, and invasion in more action than CA or HBBplus monotherapy. More importantly, HBBplus@CA demonstrated potent inhibition of lung metastasis in mice bearing metastatic melanoma of B16F10 and significantly prolonged their survival. Conclusion: In summary, a supramolecular peptide-based strategy was not only developed to suppress pulmonary metastasis of melanoma, but it also renewed efforts to identify cocktail drugs that act on intracellular targets in various human diseases, including cancer.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
55
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
56
|
Battistoni A, Lantier L, di Tommaso A, Ducournau C, Lajoie L, Samimi M, Coënon L, Rivière C, Epardaud M, Hertereau L, Poupée-Beaugé A, Rieu J, Mévélec MN, Lee GS, Moiré N, Germon S, Dimier-Poisson I. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J Immunother Cancer 2023; 11:jitc-2023-006683. [PMID: 37192784 DOI: 10.1136/jitc-2023-006683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Metastases are the leading cause of mortality in many cancer types and lungs are one of the most common sites of metastasis alongside the liver, brain, and bones. In melanoma, 85% of late-stage patients harbor lung metastases. A local administration could enhance the targeting of metastases while limiting the systemic cytotoxicity. Therefore, intranasal administration of immunotherapeutic agents seems to be a promising approach to preferentially target lung metastases and decrease their burden on cancer mortality. From observations that certain microorganisms induce an acute infection of the tumor microenvironment leading to a local reactivating immune response, microbial-mediated immunotherapy is a next-generation field of investigation in which immunotherapies are engineered to overcome immune surveillance and escape from microenvironmental cancer defenses. METHODS The goal of our study is to evaluate the potential of the intranasal administration of Neospora caninum in a syngeneic C57BL6 mouse model of B16F10 melanoma lung metastases. It also compares the antitumoral properties of a wild-type N. caninum versus N. caninum secreting human interleukin (IL)-15 fused to the sushi domain of the IL-15 receptor α chain, a potent activator of cellular immune responses. RESULTS The treatment of murine lung metastases by intranasal administration of an N. caninum engineered to secrete human IL-15 impairs lung metastases from further progression with only 0,08% of lung surface harboring metastases versus 4,4% in wild-type N. caninum treated mice and 36% in untreated mice. The control of tumor development is associated with a strong increase in numbers, within the lung, of natural killer cells, CD8+ T cells and macrophages, up to twofold, fivefold and sixfold, respectively. Analysis of expression levels of CD86 and CD206 on macrophages surface revealed a polarization of these macrophages towards an antitumoral M1 phenotype. CONCLUSION Administration of IL-15/IL-15Rα-secreting N. caninum through intranasal administration, a non-invasive route, lend further support to N. caninum-demonstrated clear potential as an effective and safe immunotherapeutic approach for the treatment of metastatic solid cancers, whose existing therapeutic options are scarce. Combination of this armed protozoa with an intranasal route could reinforce the existing therapeutic arsenal against cancer and narrow the spectrum of incurable cancers.
Collapse
Affiliation(s)
- Arthur Battistoni
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Louis Lantier
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
- Kymeris Santé SA, Tours, France
| | - Anne di Tommaso
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Céline Ducournau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Laurie Lajoie
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Mahtab Samimi
- Department de Dermatologie, CHRU de Tours, Tours, France
| | - Loïs Coënon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Clément Rivière
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Leslie Hertereau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Juliette Rieu
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | | | - Nathalie Moiré
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Stephanie Germon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | |
Collapse
|
57
|
Zhang T, Forde PM, Sullivan RJ, Sharon E, Barksdale E, Selig W, Ebbinghaus S, Fusaro G, Gunenc D, Battle D, Burns R, Hurlbert MS, Stewart M, Atkins MB. Addressing resistance to PD-1/PD-(L)1 pathway inhibition: considerations for combinatorial clinical trial designs. J Immunother Cancer 2023; 11:e006555. [PMID: 37137552 PMCID: PMC10163527 DOI: 10.1136/jitc-2022-006555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
With multiple PD-(L)1 inhibitors approved across dozens of indications by the US Food and Drug Administration, the number of patients exposed to these agents in adjuvant, first-line metastatic, second-line metastatic, and refractory treatment settings is increasing rapidly. Although some patients will experience durable benefit, many have either no clinical response or see their disease progress following an initial response to therapy. There is a significant need to identify therapeutic approaches to overcome resistance and confer clinical benefits for these patients. PD-1 pathway blockade has the longest history of use in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). Therefore, these settings also have the most extensive clinical experience with resistance. In 2021, six non-profit organizations representing patients with these diseases undertook a year-long effort, culminating in a 2-day workshop (including academic, industry, and regulatory participants) to understand the challenges associated with developing effective therapies for patients previously exposed to anti-PD-(L)1 agents and outline recommendations for designing clinical trials in this setting. This manuscript presents key discussion themes and positions reached through this effort, with a specific focus on the topics of eligibility criteria, comparators, and endpoints, as well as tumor-specific trial design options for combination therapies designed to treat patients with melanoma, NSCLC, or RCC after prior PD-(L)1 pathway blockade.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern, Dallas, Texas, USA
| | - Patrick M Forde
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Gina Fusaro
- Bristol-Myers Squibb Co Summit, Summit, New Jersey, USA
| | - Damla Gunenc
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern, Dallas, Texas, USA
| | - Dena Battle
- Kidney Cancer Research Alliance, Alexandria, Virginia, USA
| | - Robyn Burns
- Melanoma Research Foundation, Washington, District of Columbia, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, Washington, District of Columbia, USA
| | - Mark Stewart
- Friends of Cancer Research, Washington, District of Columbia, USA
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| |
Collapse
|
58
|
Creemers JHA, Ankan A, Roes KCB, Schröder G, Mehra N, Figdor CG, de Vries IJM, Textor J. In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome. Nat Commun 2023; 14:2348. [PMID: 37095077 PMCID: PMC10125995 DOI: 10.1038/s41467-023-37933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Late-stage cancer immunotherapy trials often lead to unusual survival curve shapes, like delayed curve separation or a plateauing curve in the treatment arm. It is critical for trial success to anticipate such effects in advance and adjust the design accordingly. Here, we use in silico cancer immunotherapy trials - simulated trials based on three different mathematical models - to assemble virtual patient cohorts undergoing late-stage immunotherapy, chemotherapy, or combination therapies. We find that all three simulation models predict the distinctive survival curve shapes commonly associated with immunotherapies. Considering four aspects of clinical trial design - sample size, endpoint, randomization rate, and interim analyses - we demonstrate how, by simulating various possible scenarios, the robustness of trial design choices can be scrutinized, and possible pitfalls can be identified in advance. We provide readily usable, web-based implementations of our three trial simulation models to facilitate their use by biomedical researchers, doctors, and trialists.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Ankur Ankan
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen, The Netherlands
| | - Gijs Schröder
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes Textor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands.
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
59
|
Cybulska-Stopa B, Piejko K, Ostaszewski K, Dziura R, Galus Ł, Ziółkowska B, Kempa-Kamińska N, Ziętek M, Bal W, Kamycka A, Dudzisz-Śledź M, Kubiatowski T, Kamińska-Winciorek G, Suwiński R, Mackiewicz J, Czarnecka AM, Rutkowski P. Long-term clinical evidence of comparable efficacy and toxicity of nivolumab and pembrolizumab in advanced melanoma treatment. Melanoma Res 2023; 33:208-217. [PMID: 37015054 DOI: 10.1097/cmr.0000000000000885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Pembrolizumab and nivolumab (anty-PD-1 antibody) are commonly used for the treatment of melanoma patients. However, their efficacy and safety have never been directly compared, leaving little guidance for clinicians to select the best therapy. The study included patients with inoperable or metastatic melanoma treated in first line with anti-PD-1 immunotherapy (nivolumab or pembrolizumab). In total 1037 patients were enrolled in the study, 455 (44%) patients were treated with pembrolizumab and 582 (56%) with nivolumab. The estimated median overall survival (OS) in the pembrolizumab and nivolumab groups was 17.4 and 20.0 months [P = 0.2323; hazard ratio (HR), 1.1; 95% confidence interval (CI), 0.94-1.28], respectively, whereas the median progression-free survival (PFS) was 5.6 and 7.5 months (P = 0.0941; HR, 1.13; 95% CI, 0.98-1.29), respectively. The estimated 2- and 3-year OS in the pembrolizumab and nivolumab groups were 42/34% and 47/37%, respectively, and the PFS was 25/21% and 29/23%, respectively. There were 391 (49%) immune-related adverse events (irAEs) of any grade during treatment, including 133 (42%) related to pembrolizumab treatment and 258 (53%) to nivolumab treatment. A total of 72 (9.6%) irAEs were in G3 or G4, including during pembrolizumab 29 (9%) and nivolumab 48 (11%). There were no differences in OS, PFS and overall response rates between nivolumab and pembrolizumab therapy in previously untreated patients with advanced/metastatic melanoma. There were no differences in the frequency of G1/G2 or G3/G4 irAEs. The choice of treatment should be based on the preferences of the patient and the clinician.
Collapse
Affiliation(s)
- Bożena Cybulska-Stopa
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Karolina Piejko
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Krzysztof Ostaszewski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | - Robert Dziura
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
| | - Barbara Ziółkowska
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Natasza Kempa-Kamińska
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
| | - Marcin Ziętek
- Department of Surgical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Oncology, Wroclaw Medical University, Wroclaw
| | - Wiesław Bal
- Department of Chemotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | | | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | | | - Grażyna Kamińska-Winciorek
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Rafał Suwiński
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan
| | - Anna Małgorzata Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| |
Collapse
|
60
|
Santamaria-Barria JA, Matsuba C, Khader A, Scholar AJ, Garland-Kledzik M, Fischer TD, Essner R, Salomon MP, Mammen JMV, Goldfarb M. Age-related next-generation sequencing mutational analysis in 1196 melanomas. J Surg Oncol 2023; 127:1187-1195. [PMID: 36938777 DOI: 10.1002/jso.27239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Melanoma mutational burden is high and approximately 50% have oncogenic mutations in BRAF. We sought to evaluate age-related mutational differences in melanoma. METHODS We analyzed melanoma samples in the Genomics Evidence Neoplasia Information Exchange database. Targetable mutations were identified using the Precision Oncology Knowledge Base (OncoKB). RESULTS We found 1194 patients with a common set of 30 genes. The top mutated genes in patients <40 years old (y/o) (n = 98) were BRAF (59%), TP53 (31%), NRAS (17%), and PTEN (14%); in 40-59 y/o (n = 354) were BRAF (51%), NRAS (30%), TP53 (26%), and APC (13%); and in ≥60 y/o (n = 742) were BRAF (38%), NRAS (33%), TP53 (26%), and KDR (19%). BRAF mutations were almost mutually exclusive from NRAS mutations in <40 y/o (58/59). Mutational burden increased with age, with means of 2.39, 2.92, and 3.67 mutations per sample in patients <40, 40-59, and ≥60 y/o, respectively (p < 0.0001). There were 10 targetable mutations meeting OncoKB criteria for melanoma: BRAF (level 1), RET (level 1), KIT (level 2), NRAS (level 3A), TP53 (level 3A), and FGFR2, MET, PTEN, PIK3CA, and KRAS (level 4). CONCLUSIONS Mutations in melanoma have age-related differences and demonstrates potential targetable mutations for personalized therapies.
Collapse
Affiliation(s)
- Juan A Santamaria-Barria
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chikako Matsuba
- Computational Biology Division, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Adam Khader
- Division of Surgical Oncology, Department of Surgery, Hunter Holmes McGuire Veterans Affair Medical Center, Richmond, Virginia, USA
| | - Anthony J Scholar
- Division of Surgical Oncology, University of South Carolina School of Medicine, Greenville, South Carolina, USA
| | - Mary Garland-Kledzik
- Division of Surgical Oncology, West Virginia University, Morgantown, West Virginia, USA
| | - Trevan D Fischer
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Richard Essner
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| | - Matthew P Salomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua M V Mammen
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melanie Goldfarb
- Department of Surgery, Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, California, USA
| |
Collapse
|
61
|
Mori T, Izumi T, Doi R, Kamimura A, Takai S, Teramoto Y, Nakamura Y. Immune checkpoint inhibitor-based therapy for advanced acral and mucosal melanoma. Exp Dermatol 2023; 32:276-289. [PMID: 36477933 DOI: 10.1111/exd.14725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Acral melanoma (AM) and mucosal melanomas (MM) are rare clinical subtypes of melanoma. AM and MM are etiologically, biologically, and molecularly distinct from cutaneous melanoma (CM). Despite the recent development of immune checkpoint inhibitors (ICIs) for the treatment of advanced CMs, the true therapeutic efficacy of ICIs for these rare subtypes remains unclear. Since these subtypes are rare, especially in the Caucasian population, their biological features and corresponding novel therapies are underexplored than those of CM. Even in the larger phase III clinical trials for ICIs, the sample size of patients with AM and MM is limited. Consequently, establishment of standard of care for advanced AM and MM has been challenging. This review covers current update and overview on clinical efficacy of ICIs and ICI-based therapy for advanced AM and MM, based mainly on the reported clinical trials, prospective observational studies, and retrospective studies, to provide a better understanding of the current landscape of this field. In addition, we discuss the future direction of treatment for those rare clinical subtypes, focusing on issues relevant to dermatology and medical oncology.
Collapse
Affiliation(s)
- Tatsuhiko Mori
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Teruaki Izumi
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Reiichi Doi
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Anna Kamimura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Sayaka Takai
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yukiko Teramoto
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
62
|
Carroll CE, Landrum MB, Wright AA, Keating NL. Adoption of Innovative Therapies Across Oncology Practices-Evidence From Immunotherapy. JAMA Oncol 2023; 9:324-333. [PMID: 36602811 PMCID: PMC9857528 DOI: 10.1001/jamaoncol.2022.6296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
Importance Immunotherapies reflect an important breakthrough in cancer treatment, substantially improving outcomes for patients with a variety of cancer types, yet little is known about which practices have adopted this novel therapy or the pace of adoption. Objective To assess adoption of immunotherapies across US oncology practices and examine variation in adoption by practice type. Design, Setting, and Participants This cohort study used data from Medicare fee-for-service beneficiaries undergoing 6-month chemotherapy episodes between 2010 and 2017. Data were analyzed January 19, 2021, to September 28, 2022, for patients with cancer types for which immunotherapy was approved by the US Food and Drug Administration (FDA) during the study period: melanoma, kidney cancer, lung cancer, and head and neck cancer. Exposures Oncology practice location (rural vs urban), affiliation type (academic system, nonacademic system, independent), and size (1 to 5 physicians vs 6 or more physicians). Main Outcomes and Measures The primary outcome was whether a practice adopted immunotherapy. Adoption rates for each practice type were estimated using multivariate linear models that adjusted for patient characteristics (age, sex, race and ethnicity, cancer type, Charlson Comorbidity Index, and median household income). Results Data included 71 659 episodes at 1732 oncology practices. Of these, 264 practices (15%) were rural, 900 (52%) were independent, and 492 (28%) had 1 to 5 physicians. Most practices adopted immunotherapy within 2 years of FDA approval, but there was substantial variation in adoption rates across practice types. After FDA approval, adoption of immunotherapy was 11 (95% CI, -16 to -6) percentage points lower at rural practices than urban practices and 27 (95% CI, -32 to -22) percentage points lower at practices with 1 to 5 physicians than practices with 6 or more physicians. Adoption rates were similar at independent practices and nonacademic systems; however, both practice types had lower adoption than academic systems (independent practice difference, -6 [95% CI, -9 to -3] percentage points; nonacademic systems difference, -9 [95% CI, -11 to -6] percentage points). Conclusions and Relevance In this cohort study of Medicare claims, practice characteristics, especially practice size and rural location, were associated with adoption of immunotherapy. These findings suggest that there may be geographic disparities in access to important innovations for treating patients with cancer.
Collapse
Affiliation(s)
- Caitlin E. Carroll
- Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis
| | - Mary Beth Landrum
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Alexi A. Wright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Nancy L. Keating
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
63
|
Egeler MD, van Leeuwen M, Fraterman I, van den Heuvel NMJ, Boekhout AH, Lai-Kwon J, Wilthagen EA, Eriksson H, Haanen JB, Wilgenhof S, Ascierto PA, van Akkooi ACJ, van de Poll-Franse LV. Common toxicities associated with immune checkpoint inhibitors and targeted therapy in the treatment of melanoma: A systematic scoping review. Crit Rev Oncol Hematol 2023; 183:103919. [PMID: 36736511 DOI: 10.1016/j.critrevonc.2023.103919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION This systematic scoping review compares the toxicities experienced by patients receiving immune checkpoint inhibitors (ICIs) or targeted therapy (TT) for stage III (resected and unresectable) and stage IV melanoma. METHODS OVID Medline, Embase, and PsycInfo were searched to identify Phase III trials reporting toxicities of FDA-approved ICIs and TT for advanced melanoma. AEs that were reported by ≥ 10% of patients in the evaluated trials were included. RESULTS Toxicity profiles of 11208 patients from 24 studies were reviewed. The rate of AEs was lower with ICIs compared to TT. However, ICIs were associated with higher rates of long-term or permanent AEs compared to TT, where toxicities generally were shortterm and reversible with treatment discontinuation. CONCLUSION The toxicity profiles of ICIs and TT vary substantially. Whilst the rate of AEs was lower with ICIs than during TT, it was also associated with higher rates of potentially chronic AEs.
Collapse
Affiliation(s)
- Mees D Egeler
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marieke van Leeuwen
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Itske Fraterman
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noelle M J van den Heuvel
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annelies H Boekhout
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julia Lai-Kwon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erica A Wilthagen
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head-Neck-, Lung-, Skin Cancer, Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - John B Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Alexander C J van Akkooi
- Melanoma Institute Australia, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands; Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic diseases (CoRPS), Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
64
|
Visconti A, Rossi N, Deriš H, Lee KA, Hanić M, Trbojević-Akmačić I, Thomas AM, Bolte LA, Björk JR, Hooiveld-Noeken JS, Board R, Harland M, Newton-Bishop J, Harries M, Sacco JJ, Lorigan P, Shaw HM, de Vries EGE, Fehrmann RSN, Weersma RK, Spector TD, Nathan P, Hospers GAP, Sasieni P, Bataille V, Lauc G, Falchi M. Total serum N-glycans associate with response to immune checkpoint inhibition therapy and survival in patients with advanced melanoma. BMC Cancer 2023; 23:166. [PMID: 36805683 PMCID: PMC9938582 DOI: 10.1186/s12885-023-10511-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Niccolò Rossi
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Karla A Lee
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | | | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | | | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust, Chorley, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St. James', University of Leeds, Leeds, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St. James', University of Leeds, Leeds, UK
| | - Mark Harries
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph J Sacco
- Liverpool Clatterbridge Cancer Centre, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
| | - Heather M Shaw
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK
| | - Paul Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Sasieni
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Veronique Bataille
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK.
- Department of Dermatology, Mount Vernon Cancer Centre, Northwood, UK.
- Department of Dermatology, West Herts NHS Trust, Herts, UK.
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mario Falchi
- Department of Twins Research & Genetics Epidemiology, King's College London, London, UK.
| |
Collapse
|
65
|
Li Y, Liang X, Li H, Chen X. Comparative efficacy and safety of immune checkpoint inhibitors for unresectable advanced melanoma: A systematic review and network meta-analysis. Int Immunopharmacol 2023; 115:109657. [PMID: 36608446 DOI: 10.1016/j.intimp.2022.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have entered the treatment paradigm for unresectable advanced melanoma, but there is a lack of evidence regarding its relative efficacy and safety. This study aim to compare the efficacy and safety of ICIs in patients with advanced unresectable melanoma. METHODS Studies included randomized clinical trials (RCTs) that compared ICIs, or combination therapy of ICIs, or with chemotherapy drugs, different ICIs, or one of the ICIs at different dosing schedules. Random-effects models of Bayesian network meta-analysis were performed following the PRISMA reporting guideline. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Secondary outcomes included objective response rate (ORR), disease control rate (DCR), and adverse events. PROSPERO CRD42021229086. RESULTS Twenty-four RCTs with 18 different treatment regimens for advanced melanoma involving 10,090 patients were included. Overall, nivolumab 1 mg/kg plus ipilimumab 3 mg/kg treatment regimen were associated with the highest beneficial effect on OS, PFS, and DCR. Closely followed by nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, and nivolumab plus relatlimab treatment regimens. However, three regimens had less favorable safety profiles. Although ipilimumab 0.3 mg/kg was ranked as the best options with the lowest risk of grade ≥ 3 treatment or immune-related adverse events, less therapeutic benefit was performed. The pembrolizumab 10 mg/kg regimen may be the preferred treatment with relative higher efficiency and safety among the ICIs regimens reported, as well as the nivolumab 3 mg/kg regimen. Head-to-head trials showed similar results. CONCLUSIONS This study shown the preferred treatment regimens with relatively higher efficiency and safety among the reported ICI regimens. Our results may complement the current standard of care, while its direct drug comparisons will aid future trials.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China; Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
66
|
Bottoni U, Clerico R, Richetta AG, Panasiti V, Corsetti P, Roberti V, Paolino G, Moliterni E, Grassi S, Calvieri S. Melanoma and immunotherapy: the experience of Sapienza University of Rome. Ital J Dermatol Venerol 2023; 158:1-3. [PMID: 36939498 DOI: 10.23736/s2784-8671.23.07424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- Ugo Bottoni
- Unit of Dermatology, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rita Clerico
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | | | | | | | | - Giovanni Paolino
- Unit of Dermatology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Sara Grassi
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | |
Collapse
|
67
|
Vihinen H, Jokinen A, Laajala TD, Wahid N, Peltola L, Kettunen T, Rönkä A, Tiainen L, Skyttä T, Kohtamäki L, Tulokas S, Karhapää H, Hernberg M, Silvoniemi M, Mattila KE. Antibiotic Treatment is an Independent Poor Risk Factor in NSCLC But Not in Melanoma Patients Who had Received Anti-PD-1/L1 Monotherapy. Clin Lung Cancer 2023; 24:295-304. [PMID: 36774235 DOI: 10.1016/j.cllc.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Antibiotic treatment may reduce the efficacy of cancer immunotherapy by disrupting gut microbiome. We aimed to study the association of antibiotics and survival outcomes in advanced cutaneous melanoma and non-small-cell lung cancer (NSCLC) patients who had received anti-PD-1/L1 monotherapy. PATIENTS AND METHODS A total of 222 melanoma and 199 NSCLC patients had received anti-PD-1/L1 monotherapy in 5 Finnish hospitals between January 2014 and December 2020. Clinical characteristics, antibiotic and corticosteroid treatment, and survival outcomes were retrospectively collected from hospital and national medical records. RESULTS There were 32% of melanoma and 31% of NSCLC patients who had received antibiotic treatment (ABT) 3 months before to 1 month after the first anti-PD-1/L1 antibody infusion. In survival analyses, early antibiotic treatment was associated with inferior overall survival (OS) (ABT 19.2 [17.6-43.7] vs. no ABT 35.6 [29.3-NA] months, P = .033) but not with inferior progression-free survival (PFS) (ABT 5.8 [3.0-12.6] vs. no ABT 10.2 [7.7-15.3] months, P = .3) in melanoma patients and with inferior OS (ABT 8.6 [6.4-12.3] vs. no ABT 18.5 [15.1-21.6] months, P < .001) and PFS (ABT 2.8 [2.1-4.5] vs. no ABT 5.6 [4.4-8.0] months, P = .0081) in NSCLC patients. In multivariable analyses, ABT was not an independent risk-factor for inferior OS and PFS in melanoma but was associated with inferior OS (hazard ratio [HR] 2.12 [1.37-3.28]) and PFS (HR 1.65 [1.10-2.47]) in NSCLC after adjusted for other risk factors. CONCLUSIONS Early ABT was an independent poor risk factor in NSCLC patients who had received anti-PD-1/L1 monotherapy but not in melanoma patients. The weight of ABT as a poor risk factor might depend on other prognostic factors in different cancers.
Collapse
Affiliation(s)
- Hannes Vihinen
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland
| | - Artturi Jokinen
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Nesna Wahid
- Department of Oncology and Radiotherapy Vaasa Central Hospital, Vaasa Finland
| | - Lotta Peltola
- Department of Oncology and Radiotherapy Vaasa Central Hospital, Vaasa Finland
| | - Tiia Kettunen
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Rönkä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Leena Tiainen
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tanja Skyttä
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Kohtamäki
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanni Tulokas
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Karhapää
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Micaela Hernberg
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Maria Silvoniemi
- Department of Respiratory Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Kalle E Mattila
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland; InFLAMES Research Flagship Center, University of Turku.
| |
Collapse
|
68
|
Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, Zheng L, Pan CX. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol 2023; 12:10. [PMID: 36647169 PMCID: PMC9843946 DOI: 10.1186/s40164-023-00372-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has become the central pillar of cancer therapy. Immune checkpoint inhibitors (ICIs), a major category of tumor immunotherapy, reactivate preexisting anticancer immunity. Initially, ICIs were approved only for advanced and metastatic cancers in the salvage setting after or concurrent with chemotherapy at a response rate of around 20-30% with a few exceptions. With significant progress over the decade, advances in immunotherapy have led to numerous clinical trials investigating ICIs as neoadjuvant and/or adjuvant therapies for resectable solid tumors. The promising results of these trials have led to the United States Food and Drug Administration (FDA) approvals of ICIs as neoadjuvant or adjuvant therapies for non-small cell lung cancer, melanoma, triple-negative breast cancer, and bladder cancer, and the list continues to grow. This therapy represents a paradigm shift in cancer treatment, as many early-stage cancer patients could be cured with the introduction of immunotherapy in the early stages of cancer. Therefore, this topic became one of the main themes at the 2021 China Cancer Immunotherapy Workshop co-organized by the Chinese American Hematologist and Oncologist Network, the China National Medical Products Administration and the Tsinghua University School of Medicine. This review article summarizes the current landscape of ICI-based immunotherapy, emphasizing the new clinical developments of ICIs as curative neoadjuvant and adjuvant therapies for early-stage disease.
Collapse
Affiliation(s)
- Weijie Ma
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Ruobing Xue
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Ellis Fischel Cancer Center, University of Missouri, 1 Hospital Dr, Columbia, MO, 65201, USA
| | - Zheng Zhu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hizra Farrukh
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Kira Pharmaceuticals, Cambridge, MA, USA
| | - Tianhong Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Department of Medicine, Division of Hematology & Oncology, University of California Davis, Sacramento, CA, 95817, USA. .,Department of Medicine, VA Northern California Health Care System, Mather, CA, USA.
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Chong-Xian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,VA Boston Healthcare System, Boston, MA, 02132, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
69
|
Blankenstein SA, Bonenkamp JJ, Aarts MJB, van den Berkmortel FWPJ, Blank CU, Blokx WAM, Boers-Sonderen MJ, van den Eertwegh AJM, Franken MG, de Groot JWB, Haanen JBAG, Hospers GAP, Kapiteijn EW, van Not OJ, Piersma D, van Rijn RS, Suijkerbuijk KPM, van der Veldt AAM, Vreugdenhil G, Westgeest HM, Wouters MWJM, van Akkooi ACJ. Is a History of Optimal Staging by Sentinel Lymph Node Biopsy in the Era Prior to Adjuvant Therapy Associated with Improved Outcome Once Melanoma Patients have Progressed to Advanced Disease? Ann Surg Oncol 2023; 30:573-586. [PMID: 36203067 DOI: 10.1245/s10434-022-12600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/07/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sentinel lymph node biopsy (SLNB) is important for staging in patients with primary cutaneous melanoma. Did having previously undergone SLNB also affect outcomes in patients once they have progressed to metastatic melanoma in the era prior to adjuvant therapy? METHODS Data were retrieved from the Dutch Melanoma Treatment Registry, a prospectively collected, nationwide database of patients with unresectable stage IIIC or IV (advanced) melanoma between 2012 and 2018. Melanoma-specific survival (MSS) was compared between patients with advanced cutaneous melanoma, previously treated with a wide local excision (WLE) or WLE combined with SLNB as initial treatment of their primary tumor. Cox regression analyses were used to analyze the influence of different variables on MSS. RESULTS In total, 2581 patients were included, of whom 1412 were treated with a WLE of the primary tumor alone and 1169 in whom this was combined with SLNB. At a median follow-up of 44 months from diagnosis of advanced melanoma, MSS was significantly longer in patients who had previously undergone SLNB {median 23 months (95% confidence interval [CI] 19-29) vs. 18 months (95% CI 15-20) for patients treated with WLE alone; p = 0.002}. However, multivariate Cox regression did not identify SLNB as an independent favorable prognostic factor for MSS after diagnosis of advanced melanoma. CONCLUSION Prior to the availability of adjuvant systemic therapy, once patients have unresectable stage IIIC or IV (advanced) melanoma, there was no difference in disease outcome for patients who were or were not previously staged with SLNB.
Collapse
Affiliation(s)
- Stephanie A Blankenstein
- Department of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
| | - Johannes J Bonenkamp
- Department of Surgical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Willeke A M Blokx
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Location VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Margreet G Franken
- Institute for Medical Technology Assessment, Erasmus School of Health Policy & Management, Erasmus University, Rotterdam, The Netherlands
| | | | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen W Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olivier J van Not
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, The Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Rozemarijn S van Rijn
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | | | - Astrid A M van der Veldt
- Departments of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Center, Veldhoven, The Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Michel W J M Wouters
- Department of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, The Netherlands.,Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander C J van Akkooi
- Department of Surgical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
70
|
The Association between Baseline Proton Pump Inhibitors, Immune Checkpoint Inhibitors, and Chemotherapy: A Systematic Review with Network Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010284. [PMID: 36612290 PMCID: PMC9818995 DOI: 10.3390/cancers15010284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
(1) Although emerging evidence suggests that proton pump inhibitor (PPI)-induced dysbiosis negatively alters treatment response to immune checkpoint inhibitors (ICIs) in cancer patients, no study systematically investigates the association between PPIs, ICIs, and chemotherapy; (2) Cochrane Library, Embase, Medline, and PubMed were searched from inception to 20 May 2022, to identify relevant studies involving patients receiving ICIs or chemotherapy and reporting survival outcome between PPI users and non-users. Survival outcomes included overall survival (OS) and progression-free survival (PFS). Network meta-analyses were performed using random-effects models. p-scores, with a value between 0 and 1, were calculated to quantify the treatment ranking, with a higher score suggesting a higher probability of greater effectiveness. We also conducted pairwise meta-analyses of observational studies to complement our network meta-analysis; (3) We identified 62 studies involving 26,484 patients (PPI = 8834; non-PPI = 17,650), including non-small cell lung cancer (NSCLC), urothelial carcinoma (UC), melanoma, renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), and squamous cell carcinoma (SCC) of the neck and head. Eight post-hoc analyses from 18 randomized-controlled trials were included in our network, which demonstrated that, in advanced NSCLC and UC, patients under ICI treatment with concomitant PPI (p-score: 0.2016) are associated with both poorer OS (HR, 1.49; 95% CI, 1.37 to 1.67) and poorer PFS (HR, 1.41; 95% CI, 1.25 to 1.61) than those without PPIs (p-score: 1.000). Patients under ICI treatment with concomitant PPI also had poorer OS (HR, 1.18; 95% CI, 1.07 to 1.31) and poorer PFS (HR, 1.30; 95% CI, 1.14 to 1.48) in comparison with those receiving chemotherapy (p-score: 0.6664), implying that PPIs may compromise ICI's effectiveness, making it less effective than chemotherapy. Our pairwise meta-analyses also supported this association. Conversely, PPI has little effect on patients with advanced melanoma, RCC, HCC, and SCC of the neck and head who were treated with ICIs; (4) "PPI-induced dysbiosis" serves as a significant modifier of treatment response in both advanced NSCLC and UC that are treated with ICIs, compromising the effectiveness of ICIs to be less than that of chemotherapy. Thus, clinicians should avoid unnecessary PPI prescription in these patients. "PPI-induced dysbiosis", on the other hand, does not alter the treatment response to ICIs in advanced melanoma, RCC, HCC, and SCC of the head and neck.
Collapse
|
71
|
SERRA-GARCÍA L, ELIANA-RADONICH J, MARTI-MARTI I, VILANA R, RIPOLL E, SÁNCHEZ M, ALÓS L, CARRERA C, PUIG S, MALVEHY J, PODLIPNIK S. Diagnostic Accuracy of Image-guided Biopsies for Diagnosis of Metastatic Melanoma in a Real-life Setting. Acta Derm Venereol 2022; 102:adv00833. [PMID: 36511331 PMCID: PMC9811304 DOI: 10.2340/actadv.v102.3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Early detection of melanoma metastasis is essential in order to initiate treatment and improve patient prognosis. The aim of this study was to determine the diagnostic accuracy of different image-guided biopsy techniques in patients with melanoma. A cohort study of patients diagnosed with melanoma who had undergone image-guided biopsies (ultrasound-guided fine-needle aspiration cytology, ultrasound-guided core-needle biopsy, computerized tomography--guided fine-needle aspiration cytology and computerized tomography-guided core-needle biopsy) to detect melanoma metastasis between 2004 and 2021 was conducted. The reference standard was histological confirmation and/or clinical-radiological follow-up. Sensitivity, specificity, positive and negative predictive values were calculated. A total of 600 image--guided biopsies performed on 460 patients were included for analysis. Locoregional lesions represented 459 (76.5%) biopsies, and 141 (23.5%) were distant lesions. Of the included biopsies, 49 (8.2%) were insufficient for diagnosis. Overall, sensitivity and specificity were 92% (95% confidence interval 89-94) and 96% (95% confidence interval 91-99), respectively. Sensitivity sub-analyses revealed lower diagnostic accuracy values in the lung, inguinal lymph nodes, and computerized tomography-guided lesions under 1 cm. Limitations include spontaneous metastasis regression and arbitrary minimum follow-up period. Image-guided biopsies in patients with melanoma have high sensitivity and specificity for detection of regional or distant metastasis. Tissue type, location and tumour burden may influence the diagnostic accuracy of the test.
Collapse
Affiliation(s)
- Laura SERRA-GARCÍA
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona
| | | | - Ignasi MARTI-MARTI
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona
| | - Ramon VILANA
- Department of Radiology, Hospital Clínic Barcelona, University of Barcelona
| | - Enric RIPOLL
- Department of Radiology, Hospital Clínic Barcelona, University of Barcelona
| | - Marcelo SÁNCHEZ
- Department of Radiology, Hospital Clínic Barcelona, University of Barcelona
| | - Llúcia ALÓS
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS),Department of Pathology, Hospital Clínic Barcelona, University of Barcelona
| | - Cristina CARRERA
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona,Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS),Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana PUIG
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona,Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS),Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep MALVEHY
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona,Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS),Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sebastian PODLIPNIK
- Department of Dermatology, Hospital Clínic Barcelona, University of Barcelona,Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)
| |
Collapse
|
72
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
73
|
Shui IM, Scherrer E, Frederickson A, Li JW, Mynzhassarova A, Druyts E, Tawbi H. Resistance to anti-PD1 therapies in patients with advanced melanoma: systematic literature review and application of the Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce anti-PD1 resistance definitions. Melanoma Res 2022; 32:393-404. [PMID: 36223314 DOI: 10.1097/cmr.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly half of advanced melanoma patients do not achieve a clinical response with anti-programmed cell death 1 protein (PD1) therapy (i.e. primary resistance) or initially achieve a clinical response but eventually progress during or following further treatment (i.e. secondary resistance). A consensus definition for tumor resistance to anti-PD1 monotherapy was published by Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce (SITC) in 2020. A systematic literature review (SLR) of clinical trials and observational studies was conducted to characterize the proportions of advanced melanoma patients who have progressed on anti-PD1 therapies. The SLR included 55 unique studies and the SITC definition of primary resistance was applied to 37 studies that specified disease progression by best overall response. Median and range of patients with primary resistance in studies that specified first-line and second-line or higher anti-PD1 monotherapy was 35.50% (21.19-39.13%; n = 4 studies) and 41.54% (30.00-56.41%, n = 3 studies); median and range of patients with primary resistance in studies that specified first-line and second-line or higher combination therapy was 30.23% (15.79-33.33%; n = 6 studies), and 70.00% (61.10-73.33%; n = 3 studies). Primary resistance to anti-PD1 monotherapies and when in combination with ipilimumab are higher in patients receiving second-line or higher therapies, in patients with acral, mucosal, and uveal melanoma, and in patients with active brain metastases. The percentage of patients with primary resistance was generally consistent across clinical trials, with variability in resistance noted for observational studies. Limitations include applying the SITC definitions to combination therapies, where consensus definitions are not yet available. Future studies should highly consider utilizing the SITC definitions to harmonize how resistance is classified and facilitate meaningful context for clinical activity.
Collapse
Affiliation(s)
| | | | | | - Joyce W Li
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
74
|
Corrie P, Meyer N, Berardi R, Guidoboni M, Schlueter M, Kolovos S, Macabeo B, Trouiller JB, Laramée P. Comparative efficacy and safety of targeted therapies for BRAF-mutant unresectable or metastatic melanoma: Results from a systematic literature review and a network meta-analysis. Cancer Treat Rev 2022; 110:102463. [PMID: 36099854 DOI: 10.1016/j.ctrv.2022.102463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The objective of this study was to estimate the relative efficacy and safety of targeted therapies for the treatment of metastatic melanoma using a network meta-analysis (NMA). METHODS A systematic literature review (SLR) identified studies in Medline, Embase and Cochrane published until November 2020. Screening used prespecified eligibility criteria. Following a transitivity assessment across included studies, Bayesian NMA was conducted. RESULTS A total of 43 publications reporting 15 targeted therapy trials and 42 reporting 18 immunotherapy trials were retained from the SLR and considered for the NMA. Due to substantial between-study heterogeneity with immunotherapy trials, the analysis considered a network restricted to targeted therapies. Among combination therapies, encorafenib + binimetinib was superior to dabrafenib + trametinib for overall response rate (OR = 1.86; 95 % credible interval [CrI] 1.10, 3.17), superior to vemurafenib + cobimetinib with fewer serious adverse events (SAEs) (OR = 0.51; 95 % CrI 0.29, 0.91) and fewer discontinuations due to AEs (OR = 0.45; 95 % CrI 0.21, 0.96), and superior to atezolizumab + vemurafenib + cobimetinib with fewer SAEs (OR = 0.41; 95 % CrI 0.21, 0.82). Atezolizumab + vemurafenib + cobimetinib and encorafenib + binimetinib were generally comparable for efficacy endpoints. Among double combination therapies, encorafenib + binimetinib showed high probabilities of being better for all efficacy and safety endpoints. CONCLUSIONS This NMA confirms that combination therapies are more efficacious than monotherapies. Encorafenib + binimetinib has a favourable efficacy profile compared to other double combination therapies and a favourable safety profile compared to both double and triple combination therapies.
Collapse
Affiliation(s)
- Pippa Corrie
- Oncology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Nicolas Meyer
- Institut Universitaire du Cancer et CHU de Toulouse, Toulouse, France; Inserm UMR 1037 - CRCT, Toulouse, France
| | - Rossana Berardi
- Clinica Oncologica, AOU Ospedali Riuniti, Ancona, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Guidoboni
- Experimental and Clinical Oncology of Immunotherapy and Rare Tumors, IRCCS IRST "Dino Amadori", Meldola, FC, Italy
| | | | | | - Bérengère Macabeo
- Aix-Marseille Université, Marseille, France; Pierre Fabre Laboratories, Paris, France
| | | | - Philippe Laramée
- Aix-Marseille Université, Marseille, France; Pierre Fabre Laboratories, Paris, France.
| |
Collapse
|
75
|
Nakamura Y, Namikawa K, Kiniwa Y, Kato H, Yamasaki O, Yoshikawa S, Maekawa T, Matsushita S, Takenouchi T, Inozume T, Nakai Y, Fukushima S, Saito S, Otsuka A, Fujimoto N, Isei T, Baba N, Matsuya T, Tanaka R, Kaneko T, Onishi M, Kuwatsuka Y, Nagase K, Onuma T, Nomura M, Umeda Y, Yamazaki N. Efficacy comparison between anti-PD-1 antibody monotherapy and anti-PD-1 plus anti-CTLA-4 combination therapy as first-line immunotherapy for advanced acral melanoma: A retrospective, multicenter study of 254 Japanese patients. Eur J Cancer 2022; 176:78-87. [PMID: 36194906 DOI: 10.1016/j.ejca.2022.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although anti-PD-1 antibody monotherapy (PD-1) is commonly used to treat advanced acral melanoma (AM), its efficacy is limited. Further, data on the efficacy of PD-1 plus anti-CTLA-4 antibody (PD-1+CTLA-4) for the treatment of AM are limited. Therefore, we compared the efficacy of PD-1+CTLA-4 and PD-1 in the treatment of Japanese patients with advanced AM. METHODS This retrospective study evaluated patients with advanced AM who were treated with PD-1 or PD-1+CTLA-4 as first-line immunotherapy in 24 Japanese institutions between 2014 and 2020. Treatment efficacy focussing on the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) was compared between the two groups. RESULTS In total, 254 patients (palm and sole melanoma [PSM], n = 180; nail apparatus melanoma [NAM], n = 74) were included. Among the patients with PSM, the ORR (19% vs. 31%; P = 0.44), PFS (5.9 vs. 3.2 months; P = 0.74), and OS (23.1 vs. not reached; P = 0.55) did not differ significantly between the PD-1 and PD-1+CTLA-4 groups. Among the patients with NAM, the ORR (61% vs. 10%; P < 0.001) was significantly higher and PFS was longer (6.4 vs. 3.8 months; P = 0.10) in the PD-1+CTLA-4 group than in the PD-1 group. Cox multivariate analysis demonstrated that PD-1+CTLA-4 is an independent predictor of a favourable PFS in patients with NAM (P = 0.002). CONCLUSIONS The efficacy of PD-1+CTLA-4 is not superior to that of PD-1 for the treatment of advanced PSM. However, PD-1+CTLA-4 may be more efficacious than PD-1 for the treatment of advanced NAM.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan.
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University, Matsumoto, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Takeo Maekawa
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Tatsuya Takenouchi
- Department of Dermatology, Niigata Cancer Center Hospital, Niigata, Japan
| | | | - Yasuo Nakai
- Department of Dermatology, Mie University, Mie, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shintaro Saito
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University, Kyoto, Japan; Department of Dermatology, Kindai University Hospital, Osaka, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Taiki Isei
- Department of Dermatological Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Natsuki Baba
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Taisuke Matsuya
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takahide Kaneko
- Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Masazumi Onishi
- Department of Dermatology, Iwate Medical University, Iwate, Japan
| | | | - Kotaro Nagase
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takehiro Onuma
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | - Motoo Nomura
- Department of Clinical Oncology, Kyoto University, Kyoto, Japan
| | - Yoshiyasu Umeda
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan; Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
76
|
Schulz A, Raetz J, Karitzky PC, Dinter L, Tietze JK, Kolbe I, Käubler T, Renner B, Beissert S, Meier F, Westphal D. Head-to-Head Comparison of BRAF/MEK Inhibitor Combinations Proposes Superiority of Encorafenib Plus Trametinib in Melanoma. Cancers (Basel) 2022; 14:cancers14194930. [PMID: 36230853 PMCID: PMC9564158 DOI: 10.3390/cancers14194930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A decade ago, the diagnosis of metastatic melanoma was mostly a death sentence. This has changed since new therapies became widely available in the clinical setting. In addition to checkpoint inhibitors, targeted therapy with BRAF and MEK inhibitors is standard care for BRAF-mutated melanoma, which accounts for almost half of all melanoma cases. The second largest group of melanoma patients, whose tumors harbor a mutation in the NRAS gene, demonstrates only a limited response to targeted therapy with MEK inhibitors. The aim of this investigation was to directly compare all possible BRAF/MEK inhibitor combinations in addition to the currently applied regimens. The analyzed data suggested that the combination of the BRAF inhibitor encorafenib and the MEK inhibitor trametinib demonstrated the highest anti-tumor activity in both, BRAF- and NRAS-mutated melanoma. This combination is not presently used in patient treatment, and therefore, deserves an opportunity to become part of clinical trials. Abstract BRAFV600 mutations in melanoma are targeted with mutation-specific BRAF inhibitors in combination with MEK inhibitors, which have significantly increased overall survival, but eventually lead to resistance in most cases. Additionally, targeted therapy for patients with NRASmutant melanoma is difficult. Our own studies showed that BRAF inhibitors amplify the effects of MEK inhibitors in NRASmutant melanoma. This study aimed at identifying a BRAF and MEK inhibitor combination with superior anti-tumor activity to the three currently approved combinations. We, thus, assessed anti-proliferative and pro-apoptotic activities of all nine as well as resistance-delaying capabilities of the three approved inhibitor combinations in a head-to-head comparison in vitro. The unconventional combination encorafenib/trametinib displayed the highest activity to suppress proliferation and induce apoptosis, acting in an additive manner in BRAFmutant and in a synergistic manner in NRASmutant melanoma cells. Correlating with current clinical studies of approved inhibitor combinations, encorafenib/binimetinib prolonged the time to resistance most efficiently in BRAFmutant cells. Conversely, NRASmutant cells needed the longest time to establish resistance when treated with dabrafenib/trametinib. Together, our data indicate that the most effective combination might not be currently used in clinical settings and could lead to improved overall responses.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Jennifer Raetz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Paula C. Karitzky
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Dinter
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Julia K. Tietze
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18055 Rostock, Germany
| | - Isabell Kolbe
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Theresa Käubler
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-82274
| |
Collapse
|
77
|
Zhang X, Ding C, Zhao Z. Exploring a 7-gene prognostic model based on ferroptosis for efficiently guiding immunotherapy in melanoma patients. Adv Med Sci 2022; 67:364-378. [PMID: 36155341 DOI: 10.1016/j.advms.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Although skin cutaneous melanoma (SKCM) is a relatively immunotherapy-sensitive tumor type, there is still a certain fraction that benefits less from treatment. Ferroptosis has been demonstrated to modulate tumor progression in many cancer types. This study focused on ferroptosis-related genes to construct a prognostic model for SKCM patients. MATERIALS AND METHODS Gene expression profiles of SKCM samples were obtained from public databases. Unsupervised consensus clustering was used to determine molecular subtypes related to ferroptosis. Least absolute shrinkage and selection operator (LASSO) and stepwise Akaike information criterion (stepAIC) were applied to construct a prognostic model based on differentially expressed genes between two molecular subtypes. RESULTS C1 and C2 subtypes were identified with differential prognosis and immune infiltration. A 7-gene prognostic model was constructed to classify samples into high-FPRS and low-FPRS groups. Low-FPRS group with favorable prognosis had higher immune infiltration and more enriched immune-related pathways than the high-FPRS group. The two groups showed distinct sensitivity to immunotherapy, with the low-FPRS group predicted to have more positive response to immunotherapy than the high-FPRS group. A nomogram based on the FPRS score and clinical features was built for more convenient use. CONCLUSIONS The critical role of ferroptosis involved in SKCM development was further validated in this study. The prognostic model was efficient and stable to be applied in clinical conditions to support clinicians in determining personalized therapy for SKCM patients especially those with metastasis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Changrui Ding
- Department of Dermatology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar City, Heilongjiang Province, China
| | - Zigang Zhao
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya City, Hainan Province, China.
| |
Collapse
|
78
|
Almohideb M. Safety and efficacy of nivolumab compared with other regimens in patients with melanoma: A network meta-analysis. Medicine (Baltimore) 2022; 101:e29390. [PMID: 36107612 PMCID: PMC9439759 DOI: 10.1097/md.0000000000029390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Melanoma is a cancerous tumor that develops from melanocytes in the epidermal basal layer of the skin. It is a fatal skin cancer and the third most common kind of cutaneous tumor. We aim to evaluate the effect of nivolumab in melanoma patients compared with other regimens. METHODS This meta-analysis included only clinical trials, both randomized and nonrandomized. The main outcomes of interest were the response to treatment, overall survival (OS), progression-free survival, and adverse events. RESULTS The overall effect estimates favored nivolumab group over the combination of nivolumab plus ipilimumab (HR 3.06, 95% CI 1.70-5.49) and chemotherapy group (HR 3.58, 95% CI 1.63-7.84) after 1 year. Compared to chemotherapy, nivolumab had lower rates of adverse events. CONCLUSION Nivolumab monotherapy yields high progression-free survival rates and has the same efficacy when combined with ipilimumab in a 1-year OS. However, after 2 and 3 years of follow-up, the combined regimen has more OS rates.
Collapse
Affiliation(s)
- Mohammad Almohideb
- King Saud bin Abdulaziz University for Health Sciences, College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
79
|
Treatment of Metastatic Melanoma at First Diagnosis: Review of the Literature. Life (Basel) 2022; 12:life12091302. [PMID: 36143339 PMCID: PMC9505710 DOI: 10.3390/life12091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Metastatic melanoma (MM) is a pathological entity with a very poor prognosis that, until a few decades ago, had a low response rate to systemic treatments. Fortunately, in the last few years, new therapies for metastatic melanoma have emerged. Currently, targeted therapy and immunotherapy are the mainstays of the therapeutic arsenal available for patients with unresectable or metastatic melanoma. However, both clinical evolution and drug efficacy in melanoma patients are very different depending on the stage at which it is diagnosed. In fact, the aggressiveness of melanoma is different depending on whether it debuts directly as metastatic disease or if what occurs is a relapse after a first diagnosis at an early stage, although the biological determinants are largely unknown. Another key aspect in the clinical management of metastatic melanoma at first diagnosis strives in the different prognosis of melanoma of unknown primary (MUP) compared to melanoma of known primary (MPK). Understanding the mechanisms behind this, and the repercussion of implementing targeted and immune therapies in this specific form is crucial for designing diagnosis and treatment decision algorithms that optimize the current strategies. In this review article, we recapitulate the information available thus far regarding the epidemiology and response to immunotherapy treatments or targeted therapy in patients diagnosed with metastatic melanoma as a first diagnosis, with especial emphasis on the emerging specific information of the subpopulation formed by MUP patients.
Collapse
|
80
|
Saiag P, Molinier R, Roger A, Boru B, Otmezguine Y, Otz J, Valery CA, Blom A, Longvert C, Beauchet A, Funck-Brentano E. Efficacy of Large Use of Combined Hypofractionated Radiotherapy in a Cohort of Anti-PD-1 Monotherapy-Treated Melanoma Patients. Cancers (Basel) 2022; 14:cancers14174069. [PMID: 36077606 PMCID: PMC9454723 DOI: 10.3390/cancers14174069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
To assess the role of radiotherapy in anti-PD-1-treated melanoma patients, we studied retrospectively a cohort of 206 consecutive anti-PD-1 monotherapy-treated advanced melanoma patients (59% M1c/d, 50% ≥ 3 metastasis sites, 33% ECOG PS ≥ 1, 33% > 1st line, 32% elevated serum LDH) having widely (49%) received concurrent radiotherapy, with RECIST 1.1 evaluation of radiated and non-radiated lesions. Overall (OS) and progression-free (PFS) survivals were calculated using Kaplan−Meier. Radiotherapy was performed early (39 patients) or after 3 months (61 patients with confirmed anti-PD-1 failure). The first radiotherapy was hypofractionated extracranial radiotherapy to 1−2 targets (26 Gy-4 weekly sessions, 68 patients), intracranial radiosurgery (25 patients), or palliative. Globally, 67 (32.5% [95% CI: 26.1−38.9]) patients achieved complete response (CR), with 25 CR patients having been radiated. In patients failing anti-PD-1, PFS and OS from anti-PD-1 initiation were 16.8 [13.4−26.6] and 37.0 months [24.6−NA], respectively, in radiated patients, and 2.2 [1.5−2.6] and 4.3 months [2.6−7.1], respectively, in non-radiated patients (p < 0.001). Abscopal response was observed in 31.5% of evaluable patients who radiated late. No factors associated with response in radiated patients were found. No unusual adverse event was seen. High-dose radiotherapy may enhance CR rate above the 6−25% reported in anti-PD-1 monotherapy or ipilimumab + nivolumab combo studies in melanoma patients.
Collapse
Affiliation(s)
- Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
- Correspondence: ; Tel.: +33-(0)1-49-09-56-73; Fax: +33-(0)1-49-09-56-85
| | - Rafaele Molinier
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Anissa Roger
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Blandine Boru
- Department of Radiology, Ambroise Paré Hospital, APHP, 92104 Boulogne-Billancourt, France
| | - Yves Otmezguine
- Oncology Centre, Porte de Saint-Cloud Clinic, 92100 Boulogne-Billancourt, France
| | - Joelle Otz
- Department of Radiotherapy, Curie Hospital, 92210 Saint-Cloud, France
| | | | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Christine Longvert
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Alain Beauchet
- Department of Public Health, Ambroise Paré Hospital, APHP & UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| |
Collapse
|
81
|
Moss EM, Perazella MA. The role of kidney biopsy in immune checkpoint inhibitor nephrotoxicity. Front Med (Lausanne) 2022; 9:964335. [PMID: 36035427 PMCID: PMC9399765 DOI: 10.3389/fmed.2022.964335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Immune checkpoint inhibitors, medications that boost host immune response to tumor cells, are now at the forefront of anti-cancer therapy. While efficacious in the treatment of patients with advanced cancer, immune checkpoint inhibitors can lead to serious autoimmune side effects involving any organ in the body. Immune checkpoint inhibitor nephrotoxicity is an increasingly recognized cause of acute kidney injury in patients with cancer. This review discusses the clinical and histopathologic diagnosis of immune checkpoint inhibitor nephrotoxicity, highlighting the need for more reliable non-invasive diagnostic testing. We focus on the controversy surrounding the role of kidney biopsy in diagnosis and management of suspected immune checkpoint inhibitor toxicity with inclination toward pursuing kidney biopsy in certain outlined circumstances. Finally, we briefly discuss treatment of immune checkpoint inhibitor nephrotoxicity and the decision to re-challenge immunotherapy in patients who experience these adverse events.
Collapse
Affiliation(s)
- Emily M. Moss
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Emily M. Moss
| | - Mark A. Perazella
- Division of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Veterans Affairs Connecticut Healthcare System, Veterans Health Administration, West Haven, CT, United States
| |
Collapse
|
82
|
Okada M, Kato K, Cho BC, Takahashi M, Lin CY, Chin K, Kadowaki S, Ahn MJ, Hamamoto Y, Doki Y, Yen CC, Kubota Y, Kim SB, Hsu CH, Holtved E, Xynos I, Matsumura Y, Takazawa A, Kitagawa Y. Three-Year Follow-Up and Response-Survival Relationship of Nivolumab in Previously Treated Patients with Advanced Esophageal Squamous Cell Carcinoma (ATTRACTION-3). Clin Cancer Res 2022; 28:3277-3286. [PMID: 35294546 PMCID: PMC9662935 DOI: 10.1158/1078-0432.ccr-21-0985] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/03/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Limited long-term data are available on immune checkpoint inhibitor use in patients with advanced esophageal squamous cell carcinoma (ESCC). We report 3-year follow-up data from our study of nivolumab versus chemotherapy (paclitaxel or docetaxel) in patients with previously treated ESCC. PATIENTS AND METHODS ATTRACTION-3 was a randomized, multicenter, open-label, phase III trial. Overall survival (OS), time from randomization to death from any cause, was the primary endpoint. An exploratory subanalysis assessed OS according to the best overall response (BOR) with and without landmark at 4 months. RESULTS Of the enrolled patients, 210 received nivolumab and 209 received chemotherapy. With a minimum follow-up of 36.0 months, OS was longer in the nivolumab versus the chemotherapy group (median, 10.9 vs. 8.5 months; HR, 0.79; P = 0.0264), with 3-year OS rates of 15.3% and 8.7%, respectively. The median OS was longer with nivolumab versus chemotherapy irrespective of the BOR (complete response/partial response: 19.9 vs. 15.4 months; stable disease: 17.4 vs. 8.8 months; and progressive disease: 7.6 vs. 4.2 months). Grade 3 or higher treatment-related adverse events were reported in 40 patients (19.1%) in the nivolumab group and 133 patients (63.9%) in the chemotherapy group. CONCLUSIONS Nivolumab as second-line therapy demonstrated clinically meaningful long-term improvement in OS compared with chemotherapy in previously treated patients with advanced ESCC. The OS was consistently improved in the nivolumab group compared with the chemotherapy group regardless of BOR. Nivolumab was well tolerated over the 3-year follow-up. See related commentary by Yoon et al., p. 3173.
Collapse
Affiliation(s)
- Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Corresponding Author: Morihito Okada, Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Phone: 81 82 257 5869; Fax: 81 82 255 7109; E-mail:
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Chen-Yuan Lin
- Department of Hematology and Oncology, China Medical University Hospital and School of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Keisho Chin
- Gastroenterological Chemotherapy Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Myung-Ju Ahn
- Department of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yasuo Hamamoto
- Department of Internal Medicine, Keio Cancer Center, School of Medicine, Keio University, Tokyo, Japan
| | - Yuichiro Doki
- Department of Surgery, Osaka University Hospital, Osaka, Japan
| | - Chueh-Chuan Yen
- Division of Clinical Research, Department of Medical Research and Division of Medical Oncology, Center for Immuno-oncology, Department of Oncology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Yutaro Kubota
- Department of Oncology, Showa University Hospital, Tokyo, Japan
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chih-Hung Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Eva Holtved
- Department of Clinical Oncology, Odense University Hospital, Odense, Denmark
| | - Ioannis Xynos
- Oncology Clinical Development, Bristol-Myers Squibb, Princeton, New Jersey
| | - Yasuhiro Matsumura
- Oncology Clinical Development, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Akira Takazawa
- Data Science, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
83
|
Lin EPY, Hsu CY, Berry L, Bunn P, Shyr Y. Analysis of Cancer Survival Associated With Immune Checkpoint Inhibitors After Statistical Adjustment: A Systematic Review and Meta-analyses. JAMA Netw Open 2022; 5:e2227211. [PMID: 35976648 PMCID: PMC9386543 DOI: 10.1001/jamanetworkopen.2022.27211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IMPORTANCE Appropriate clinical decision-making relies on accurate data interpretation, which in turn relies on the use of suitable statistical models. Long tails and early crossover-2 features commonly observed in immune checkpoint inhibitor (ICI) survival curves-raise questions as to the suitability of Cox proportional hazards regression for ICI survival analysis. Cox proportional hazards-Taylor expansion adjustment for long-term survival data (Cox-TEL) adjustment may provide possible solutions in this setting. OBJECTIVE To estimate overall survival and progression-free survival benefits of ICI therapy vs chemotherapy using Cox-TEL adjustment. DATA SOURCES A PubMed search was performed for all cataloged publications through May 22, 2022. STUDY SELECTION The search was restricted to randomized clinical trials with search terms for ICIs and lung cancer, melanoma, or urothelial carcinoma. The publications identified were further reviewed for inclusion. DATA EXTRACTION AND SYNTHESIS Cox proportional hazards ratios (HRs) were transformed to Cox-TEL HRs for patients with short-term treatment response (ie, short-term survivor) (ST-HR) and difference in proportions for patients with long-term survival (LT-DP) by Cox-TEL. Meta-analyses were performed using a frequentist random-effects model. MAIN OUTCOMES AND MEASURES Outcomes of interest were pooled overall survival (primary outcome) and progression-free survival (secondary outcome) HRs, ST-HRs, and LT-DPs. Subgroup analyses stratified by cancer type also were performed. RESULTS A total of 1036 publications was identified. After 3 levels of review against inclusion criteria, 13 clinical trials (7 in non-small cell lung cancer, 3 in melanoma, and 3 in urothelial carcinoma) were selected for the meta-analysis. In the primary analysis, pooled findings were 0.75 (95% CI, 0.70-0.81) for HR, 0.86 (95% CI, 0.81-0.92) for ST-HR, and 0.08 (95% CI, 0.06-0.10) for LT-DP. In the secondary analysis, the pooled values for progression-free survival were 0.77 (95% CI, 0.64-0.91) for HR, 1.02 (95% CI, 0.84-1.24) for ST-HR, and 0.10 (95% CI, 0.06-0.14) for LT-DP. CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis of ICI clinical trial results noted consistently larger ST-HRs vs Cox HRs for ICI therapy, with an LT-DP of approximately 10%. These results suggest that Cox HRs may not provide a full picture of survival outcomes when the risk reduction from treatment is not constant, which may aid in the decision-making process of oncologists and patients.
Collapse
Affiliation(s)
- Emily Pei-Ying Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne Berry
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul Bunn
- Department of Medicine, University of Colorado School of Medicine, Aurora
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
84
|
Proliferation and Immune Response Gene Signatures Associated with Clinical Outcome to Immunotherapy and Targeted Therapy in Metastatic Cutaneous Malignant Melanoma. Cancers (Basel) 2022; 14:cancers14153587. [PMID: 35892846 PMCID: PMC9331037 DOI: 10.3390/cancers14153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The introduction of treatment with targeted therapies and immunotherapies has dramatically changed the outcome for patients with advanced cutaneous melanoma. However, only a subset of the patients has durable benefits from the treatment. This exploratory study aims to identify genes/gene signatures as predictive biomarkers for treatment outcomes in melanoma. Targeted transcriptomics and gene set enrichment analysis (GSEA) were applied in 28 melanoma samples collected before receiving treatment. Thirteen patients were treated with targeted therapy (TT) and 15 patients were treated with immune checkpoint inhibitors (ICI). Up-regulation of genes involved in immune processes was associated with a better outcome of TT. Down-regulation of proliferation and up-regulation of allograft rejection gene sets favored ICI patients. Further follow-up of the inverse relation between proliferation and allograft rejection gene signatures and relation to outcome is warranted. Abstract Targeted therapy (TT), together with immune checkpoint inhibitors (ICI), has significantly improved clinical outcomes for patients with advanced cutaneous malignant melanoma (CMM) during the last decade. However, the magnitude and the duration of response vary considerably. There is still a paucity of predictive biomarkers to identify patients who benefit most from treatment. To address this, we performed targeted transcriptomics of CMM tumors to identify biomarkers associated with clinical outcomes. Pre-treatment tumor samples from 28 patients with advanced CMM receiving TT (n = 13) or ICI (n = 15) were included in the study. Targeted RNA sequencing was performed using Ion AmpliSeq ™, followed by gene set enrichment analysis (GSEA) using MSigDB’s Hallmark Gene Set Collection to identify gene expression signatures correlating with treatment outcome. The GSEA demonstrated that up-regulation of allograft rejection genes, together with down-regulation of E2F and MYC targets as well as G2M checkpoint genes, significantly correlated with longer progression-free survival on ICI while IFNγ and inflammatory response genes were associated with a better clinical outcome on TT. In conclusion, we identify novel genes and their expression signatures as potential predictive biomarkers for TT and ICI in patients with metastatic CMM, paving the way for clinical use following larger validation studies.
Collapse
|
85
|
Makaranka S, Scutt F, Frixou M, Wensley KE, Sharma R, Greenhowe J. The gut microbiome and melanoma: A review. Exp Dermatol 2022; 31:1292-1301. [PMID: 35793428 DOI: 10.1111/exd.14639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/16/2022]
Abstract
Disturbances in the microbial ecosystem have been implemented in chronic inflammation, immune evasion and carcinogenesis, with certain microbes associated with the development of specific cancers. In recent times, the gut microbiome has been recognised as a potential novel player in the pathogenesis and treatment of malignant melanoma. It has been shown that the composition of gut microbiota in early-stage melanoma changes from in situ to invasive and then to metastatic disease. The gut bacterial and fungal profile has also been found to be significantly different in melanoma patients compared to controls. Multiple studies of immune checkpoint inhibitor (ICI) therapies have shown that the commensal microbiota may have an impact on anti-tumor immunity and therefore ICI response in cancer patients. When it comes to chemotherapy and radiotherapy treatments, studies demonstrate that gut microbiota are invaluable in the repair of radiation and chemotherapy-induced damage and therapeutic manipulation of gut microbiota can be an effective strategy to deal with side effects. Studies demonstrate the oncogenic and tumor-suppressive properties of the gut microbiome, which may play a role in the pathogenesis of melanoma. Despite this, investigations into specific interactions are still in its infancy, but starting to gain momentum as more significant and clinically relevant effects are emerging.
Collapse
Affiliation(s)
| | - Freya Scutt
- Department of Plastic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Mikaela Frixou
- Department of Gastroenterology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Ravi Sharma
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | |
Collapse
|
86
|
Xiang Z, Li J, Zhang Z, Cen C, Chen W, Jiang B, Meng Y, Wang Y, Berglund B, Zhai G, Wu J. Comprehensive Evaluation of Anti-PD-1, Anti-PD-L1, Anti-CTLA-4 and Their Combined Immunotherapy in Clinical Trials: A Systematic Review and Meta-analysis. Front Pharmacol 2022; 13:883655. [PMID: 35694260 PMCID: PMC9174611 DOI: 10.3389/fphar.2022.883655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitor (ICI) drugs is gradually becoming a hot topic in cancer treatment. To comprehensively evaluate the safety and efficacy of ICI drugs, we employed the Bayesian model and conducted a network meta-analysis in terms of progression-free survival (PFS), overall survival (OS) and severe adverse events (AEs). Our study found that treatment with ipilimumab was significantly worse than standard therapies in terms of PFS, whereas treatment with cemiplimab significantly improved PFS. The results also indicated that cemiplimab was the best choice for PFS. Treatment with nivolumab, pembrolizumab and nivolumab plus ipilimumab significantly improved OS compared to standard therapies. In terms of OS, cemiplimab was found to be the best choice, whereas avelumab was the worst. In terms of severe AEs, atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab all significantly reduced the risk of grade 3 or higher AEs compared to standard therapy. The least likely to be associated with severe AEs were as follows: cemiplimab, avelumab, nivolumab, atezolizumab, and camrelizumab, with nivolumab plus ipilimumab to be the worst. Therefore, different ICI drug therapies may pose different risks in terms of PFS, OS and severe AEs. Our study may provide new insights and strategies for the clinical practice of ICI drugs.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyu Zhang
- Center for Global Health, Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Cen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Yiling Meng
- Department of Laboratory Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Ying Wang
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Guanghua Zhai
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| |
Collapse
|
87
|
Navani V, Graves MC, Mandaliya H, Hong M, van der Westhuizen A, Martin J, Bowden NA. Melanoma: An immunotherapy journey from bench to bedside. Cancer Treat Res 2022; 183:49-89. [PMID: 35551656 DOI: 10.1007/978-3-030-96376-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma gave science a window into the role immune evasion plays in the development of malignancy. The entire spectrum of immune focused anti-cancer therapies has been subjected to clinical trials in this disease, with limited success until the immune checkpoint blockade era. That revolution launched first in melanoma, heralded a landscape change throughout cancer that continues to reverberate today.
Collapse
Affiliation(s)
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| | - Hiren Mandaliya
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Martin Hong
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Andre van der Westhuizen
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Jennifer Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,John Hunter Hospital, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| |
Collapse
|
88
|
Proton Pump Inhibitor Use and Efficacy of Nivolumab and Ipilimumab in Advanced Melanoma. Cancers (Basel) 2022; 14:cancers14092300. [PMID: 35565428 PMCID: PMC9103038 DOI: 10.3390/cancers14092300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune checkpoint inhibitors have been shown to improve survival in patients with advanced melanoma; however, a proportion of patients do not experience durable clinical benefit with these agents. Findings from a previous study suggested that the use of proton pump inhibitors while receiving immune checkpoint inhibitors may lead to worse clinical outcomes. To validate those results, we performed this retrospective analysis using data from three clinical trials involving patients with advanced melanoma treated with immune checkpoint inhibitors. We found that there is not enough evidence to conclude that proton pump inhibitors influence the efficacy of immune checkpoint inhibitors. Prospective studies are needed to conclusively determine if the use of proton pump inhibitors has any meaningful impact on the efficacy of immune checkpoint inhibitors in patients with advanced melanoma. Abstract The impact of proton pump inhibitors (PPIs) on clinical outcomes with first-line immune checkpoint inhibitors (ICIs) in patients with metastatic melanoma was previously analyzed in the phase II study, CheckMate 069. This retrospective analysis utilized data from three phase II/III studies of first-line ICI therapy in untreated advanced melanoma: CheckMate 066, 067, and 069. All randomized patients with PPI use ≤ 30 days before initiating study treatment were included in the PPI-use subgroup. Possible associations between baseline PPI use and efficacy were evaluated within each treatment arm of each study using multivariable modeling. Approximately 20% of 1505 randomized patients across the studies reported baseline PPI use. The median follow-up was 52.6–58.5 months. Objective response rate (ORR), progression-free survival (PFS), and overall survival analyses provided insufficient evidence of a meaningful association between PPI use and efficacy outcomes with nivolumab-plus-ipilimumab, nivolumab, or ipilimumab therapy. In five of the six ICI treatment arms, 95% confidence intervals for odds ratios or hazard ratios traversed 1. Significant associations were observed in the CheckMate 069 combination arm between PPI use and poorer ORR and PFS. This multivariable analysis found insufficient evidence to support meaningful associations between PPI use and ICI efficacy in patients with advanced melanoma.
Collapse
|
89
|
Freeman SC, Cooper NJ, Sutton AJ, Crowther MJ, Carpenter JR, Hawkins N. Challenges of modelling approaches for network meta-analysis of time-to-event outcomes in the presence of non-proportional hazards to aid decision making: Application to a melanoma network. Stat Methods Med Res 2022; 31:839-861. [PMID: 35044255 PMCID: PMC9014691 DOI: 10.1177/09622802211070253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Synthesis of clinical effectiveness from multiple trials is a well-established component of decision-making. Time-to-event outcomes are often synthesised using the Cox proportional hazards model assuming a constant hazard ratio over time. However, with an increasing proportion of trials reporting treatment effects where hazard ratios vary over time and with differing lengths of follow-up across trials, alternative synthesis methods are needed. OBJECTIVES To compare and contrast five modelling approaches for synthesis of time-to-event outcomes and provide guidance on key considerations for choosing between the modelling approaches. METHODS The Cox proportional hazards model and five other methods of estimating treatment effects from time-to-event outcomes, which relax the proportional hazards assumption, were applied to a network of melanoma trials reporting overall survival: restricted mean survival time, generalised gamma, piecewise exponential, fractional polynomial and Royston-Parmar models. RESULTS All models fitted the melanoma network acceptably well. However, there were important differences in extrapolations of the survival curve and interpretability of the modelling constraints demonstrating the potential for different conclusions from different modelling approaches. CONCLUSION The restricted mean survival time, generalised gamma, piecewise exponential, fractional polynomial and Royston-Parmar models can accommodate non-proportional hazards and differing lengths of trial follow-up within a network meta-analysis of time-to-event outcomes. We recommend that model choice is informed using available and relevant prior knowledge, model transparency, graphically comparing survival curves alongside observed data to aid consideration of the reliability of the survival estimates, and consideration of how the treatment effect estimates can be incorporated within a decision model.
Collapse
Affiliation(s)
- Suzanne C Freeman
- Department of Health Sciences, 4488University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, 4488University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, 4488University of Leicester, Leicester, UK
| | - Michael J Crowther
- Department of Health Sciences, 4488University of Leicester, Leicester, UK
| | - James R Carpenter
- 4919MRC Clinical Trials Unit at UCL, London, UK.,4906London School of Hygiene & Tropical Medicine, London, UK
| | - Neil Hawkins
- Health Economics & Health Technology Assessment, 3526University of Glasgow, Glasgow, UK
| |
Collapse
|
90
|
Aroldi F, Middleton MR. Long-Term Outcomes of Immune Checkpoint Inhibition in Metastatic Melanoma. Am J Clin Dermatol 2022; 23:331-338. [PMID: 35359259 DOI: 10.1007/s40257-022-00681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
Increasing knowledge about the biology of melanoma and of immunology has led to the development and regulatory approval of the immune checkpoint inhibitors ipilimumab, nivolumab, and pembrolizumab, which are indicated for the treatment of melanoma irrespective of the B-Raf proto-oncogene mutation status of the tumour. Only a subset of patients will respond, but those who do can expect long-lasting, previously unheard-of responses. Long-term survival results for the registration trials, including CheckMate 067, Keynote-006, and Keynote-001, have recently been published. In particular, the combination of ipilimumab and nivolumab showed an impressive 5-year overall survival of just over 50%. However, toxicity remains a significant concern, with some of the side effects being life threatening and/or life changing. In this review, we discuss the safety and efficacy data of all the agents currently approved for the first-line treatment of advanced melanoma, identifying factors that influence the choice of a single agent rather than combination therapy. We highlight the potential biomarkers of response, effects of long-term toxicity, and options after progression.
Collapse
|
91
|
Hribernik N, Huff DT, Studen A, Zevnik K, Klaneček Ž, Emamekhoo H, Škalic K, Jeraj R, Reberšek M. Quantitative imaging biomarkers of immune-related adverse events in immune-checkpoint blockade-treated metastatic melanoma patients: a pilot study. Eur J Nucl Med Mol Imaging 2022; 49:1857-1869. [PMID: 34958422 PMCID: PMC9016045 DOI: 10.1007/s00259-021-05650-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/05/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To develop quantitative molecular imaging biomarkers of immune-related adverse event (irAE) development in malignant melanoma (MM) patients receiving immune-checkpoint inhibitors (ICI) imaged with 18F-FDG PET/CT. METHODS 18F-FDG PET/CT images of 58 MM patients treated with anti-PD-1 or anti-CTLA-4 ICI were retrospectively analyzed for indication of irAE. Three target organs, most commonly affected by irAE, were considered: bowel, lung, and thyroid. Patient charts were reviewed to identify which patients experienced irAE, irAE grade, and time to irAE diagnosis. Target organs were segmented using a convolutional neural network (CNN), and novel quantitative imaging biomarkers - SUV percentiles (SUVX%) of 18F-FDG uptake within the target organs - were correlated with the clinical irAE status. Area under the receiver-operating characteristic curve (AUROC) was used to quantify irAE detection performance. Patients who did not experience irAE were used to establish normal ranges for target organ 18F-FDG uptake. RESULTS A total of 31% (18/58) patients experienced irAE in the three target organs: bowel (n=6), lung (n=5), and thyroid (n=9). Optimal percentiles for identifying irAE were bowel (SUV95%, AUROC=0.79), lung (SUV95%, AUROC=0.98), and thyroid (SUV75%, AUROC=0.88). Optimal cut-offs for irAE detection were bowel (SUV95%>2.7 g/mL), lung (SUV95%>1.7 g/mL), and thyroid (SUV75%>2.1 g/mL). Normal ranges (95% confidence interval) for the SUV percentiles in patients without irAE were bowel [1.74, 2.86 g/mL], lung [0.73, 1.46 g/mL], and thyroid [0.86, 1.99 g/mL]. CONCLUSIONS Increased 18F-FDG uptake within irAE-affected organs provides predictive information about the development of irAE in MM patients receiving ICI and represents a potential quantitative imaging biomarker for irAE. Some irAE can be detected on 18F-FDG PET/CT well before clinical symptoms appear.
Collapse
Affiliation(s)
- Nežka Hribernik
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, SI-1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel T Huff
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
| | - Andrej Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Katarina Zevnik
- Department of Nuclear Medicine, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Žan Klaneček
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Hamid Emamekhoo
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Katja Škalic
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Martina Reberšek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, SI-1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
92
|
Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH, Cesano A, Hammer C, Haymaker CL, Horak CE, McGee HM, Monette A, Rudqvist NP, Spencer CN, Sweis RF, Vincent BG, Wennerberg E, Yuan J, Zappasodi R, Lucey VMH, Wells DK, LaVallee T. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol Res 2022; 10:372-383. [PMID: 35362046 PMCID: PMC9381103 DOI: 10.1158/2326-6066.cir-20-0586] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Immune-checkpoint inhibitors (ICI), although revolutionary in improving long-term survival outcomes, are mostly effective in patients with immune-responsive tumors. Most patients with cancer either do not respond to ICIs at all or experience disease progression after an initial period of response. Treatment resistance to ICIs remains a major challenge and defines the biggest unmet medical need in oncology worldwide. In a collaborative workshop, thought leaders from academic, biopharma, and nonprofit sectors convened to outline a resistance framework to support and guide future immune-resistance research. Here, we explore the initial part of our effort by collating seminal discoveries through the lens of known biological processes. We highlight eight biological processes and refer to them as immune resistance nodes. We examine the seminal discoveries that define each immune resistance node and pose critical questions, which, if answered, would greatly expand our notion of immune resistance. Ultimately, the expansion and application of this work calls for the integration of multiomic high-dimensional analyses from patient-level data to produce a map of resistance phenotypes that can be utilized to guide effective drug development and improved patient outcomes.
Collapse
Affiliation(s)
- Maria Karasarides
- Worldwide Medical Oncology, Bristol Myers Squibb, Princeton, New Jersey.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| | - Alexandria P. Cogdill
- Immunai, New York, New York.,Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | | | - Michaela Bowden
- Translational Medicine, Bristol Myers Squibb, Cambridge, Massachusetts
| | - Elizabeth M. Burton
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California
| | | | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California.,Department of Human Genetics, Genentech, South San Francisco, California
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine E. Horak
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, New Jersey
| | - Heather M. McGee
- Department of Radiation Oncology, City of Hope National Medical Center and Department of Immuno-Oncology, Beckmann Research Institute, City of Hope, Duarte, California
| | - Anne Monette
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | - Christine N. Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois.,Committee on Immunology, University of Chicago, Chicago, Illinois.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jianda Yuan
- Translational Oncology, Early Oncology Development Department, Merck Research Laboratories, Rahway, New Jersey
| | - Roberta Zappasodi
- Weill Cornell Medicine, New York, New York.,Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Daniel K. Wells
- Immunai, New York, New York.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Theresa LaVallee
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| |
Collapse
|
93
|
Tibballs J, Clements W. Immunotherapy and Transarterial therapy of HCC: What the interventional radiologist needs to know about the changing landscape of HCC treatment? J Med Imaging Radiat Oncol 2022; 66:478-482. [PMID: 35357076 PMCID: PMC9311219 DOI: 10.1111/1754-9485.13405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cancer worldwide and its incidence is increasing in Australia. Transarterial therapy, predominantly transarterial chemoembolization (TACE) but increasingly transarterial radioembolization (TARE), plays an important role in patients with intermediate‐stage disease and preserved liver function. However, despite advances in TACE, TARE and adjunctive procedures, overall survival has only modestly increased over the last 20 years. Immunotherapy has emerged as a newer cancer treatment and uses antibodies directed at checkpoint inhibitors to upregulate T‐cell mediated tumour‐specific death. These drugs have been shown to increase survival in patients with HCC and have changed the landscape for advanced disease. Trials are now ongoing combining transarterial therapy and immunotherapy. This manuscript introduces these trials and interventional radiologists should be aware of the changing landscape so that they can partner with immunotherapy and remain relevant in the HCC multidisciplinary group as immunotherapy use increases.
Collapse
Affiliation(s)
- Jonathan Tibballs
- Department of Radiology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Warren Clements
- Department of Radiology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Monash University Central Clinical School, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
94
|
Grumberg V, Roze S, Chevalier J, Borrill J, Gaudin AF, Branchoux S. A Review of Overall Survival Extrapolations of Immune-Checkpoint Inhibitors Used in Health Technology Assessments by the French Health Authorities. Int J Technol Assess Health Care 2022; 38:e28. [PMID: 35331347 DOI: 10.1017/s0266462322000125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Extrapolation is often required to inform cost-effectiveness (CE) evaluations of immune-checkpoint inhibitors (ICIs) since survival data from pivotal clinical trials are seldom complete. The objectives of this study were to evaluate the accuracy of estimates of long-term overall survival (OS) predicted in French CE assessment reports of ICIs, and to identify models presenting the best fit to the observed long-term survival data. METHODS A systematic review of French assessment reports of ICIs in the metastatic setting since inception until May 2020 was performed. A targeted literature review was conducted to collect associated extended follow-up of randomized controlled trials (RCTs) used in the CE assessment reports. Difference between projected and observed OS was calculated. A range of standard parametric and spline-based models were applied to the extended follow-up data from the RCT to determine the best-fitting survival models. RESULTS Of the 121 CE assessment reports published, 11 reports met the inclusion criteria. OS was underestimated in 73 percent of the CE assessment reports. The mean relative difference between each source was -13 percent (median: -15 percent; IQR: -0.4 to 26 percent). Models providing the best fit were those that could reflect nonmonotonic hazards. CONCLUSIONS Based on the available data at the time of submission, longer-term survival of ICIs was not fully captured by the extrapolation models used in CE assessments. Standard and flexible parametric models which can capture nonmonotonic hazard functions provided the best fit to the extended follow-up data. However, these models may still have performed poorly if fitted to survival data available at the time of submission to the French National Authority for Health.
Collapse
Affiliation(s)
- Valentine Grumberg
- Market access department, Bristol Myers Squibb France, Rueil-Malmaison, France
| | | | | | - John Borrill
- WW HEOR, Bristol Myers Squibb, Uxbridge, United Kingdom
| | | | - Sébastien Branchoux
- Market access department, Bristol Myers Squibb France, Rueil-Malmaison, France
| |
Collapse
|
95
|
Ritter N, Peeken L, Schultz ES, Debus D. Die Systemtherapie des malignen Melanoms. AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1700-9298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungIn den vergangenen 10 Jahren wurde die Systemtherapie des malignen Melanoms durch die Zulassung neuer Substanzen revolutioniert. In der vorliegenden Übersicht werden zunächst die aktuellen adjuvanten Therapiemöglichkeiten beschrieben, anschließend werden der Kenntnisstand zur neoadjuvanten Therapie dargestellt und schließlich die Behandlungsoptionen im inoperablen Stadium beleuchtet.
Collapse
Affiliation(s)
- Nathalie Ritter
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Lucia Peeken
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Erwin S. Schultz
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Dirk Debus
- Klinikum Nürnberg, Hautklinik, Universitätsklinik für Dermatologie der Paracelsus Medizinischen Privatuniversität, Nürnberg
| |
Collapse
|
96
|
A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol 2022; 23:660-670. [PMID: 35241833 DOI: 10.1038/s41590-022-01141-1] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
Ten years since the immune checkpoint inhibitor ipilimumab was approved for advanced melanoma, it is time to reflect on the lessons learned regarding modulation of the immune system to treat cancer and on novel approaches to further extend the efficacy of current and emerging immunotherapies. Here, we review the studies that led to our current understanding of the melanoma immune microenvironment in humans and the mechanistic work supporting these observations. We discuss how this information is guiding more precise analyses of the mechanisms of action of immune checkpoint blockade and novel immunotherapeutic approaches. Lastly, we review emerging evidence supporting the negative impact of melanoma metabolic adaptation on anti-tumor immunity and discuss how to counteract such mechanisms for more successful use of immunotherapy.
Collapse
|
97
|
Lee KA, Thomas AM, Bolte LA, Björk JR, de Ruijter LK, Armanini F, Asnicar F, Blanco-Miguez A, Board R, Calbet-Llopart N, Derosa L, Dhomen N, Brooks K, Harland M, Harries M, Leeming ER, Lorigan P, Manghi P, Marais R, Newton-Bishop J, Nezi L, Pinto F, Potrony M, Puig S, Serra-Bellver P, Shaw HM, Tamburini S, Valpione S, Vijay A, Waldron L, Zitvogel L, Zolfo M, de Vries EGE, Nathan P, Fehrmann RSN, Bataille V, Hospers GAP, Spector TD, Weersma RK, Segata N. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat Med 2022; 28:535-544. [PMID: 35228751 PMCID: PMC8938272 DOI: 10.1038/s41591-022-01695-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course.
Collapse
Affiliation(s)
- Karla A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Laura Kist de Ruijter
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust, Preston, UK
| | - Neus Calbet-Llopart
- Dermatology Department, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lisa Derosa
- U1015 INSERM, University Paris Saclay, Gustave Roussy Cancer Center and Oncobiome Network, Villejuif-Grand-Paris, France
| | - Nathalie Dhomen
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Kelly Brooks
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mark Harries
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Guys Cancer Centre, Guys and St Thomas's NHS Trust, London, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Luigi Nezi
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy
| | | | - Miriam Potrony
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | | | - Heather M Shaw
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Sabrina Tamburini
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy
| | - Sara Valpione
- Molecular Oncology Group, CRUK Manchester Institute, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Amrita Vijay
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Rheumatology & Orthopaedics Division, School of Medicine, University of Nottingham, Nottingham, UK
| | - Levi Waldron
- Department CIBIO, University of Trento, Trento, Italy
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Laurence Zitvogel
- U1015 INSERM, University Paris Saclay, Gustave Roussy Cancer Center and Oncobiome Network, Villejuif-Grand-Paris, France
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Paul Nathan
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS and University of Barcelona, Barcelona, Spain
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Véronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, Mount Vernon Cancer Centre, Northwood, UK
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology (Istituto Europeo di Oncologia, IRCSS), Milan, Italy.
| |
Collapse
|
98
|
Villa-Crespo L, Podlipnik S, Anglada N, Izquierdo C, Giavedoni P, Iglesias P, Dominguez M, Aya F, Arance A, Malvehy J, Puig S, Carrera C. Timeline of Adverse Events during Immune Checkpoint Inhibitors for Advanced Melanoma and Their Impacts on Survival. Cancers (Basel) 2022; 14:cancers14051237. [PMID: 35267545 PMCID: PMC8909485 DOI: 10.3390/cancers14051237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Immune-related adverse events (irAEs) are frequent and could be associated with improved response to immune checkpoint inhibitors (ICIs). A prospective cohort of advanced melanoma patients receiving ICI as first-line therapy was retrospectively reviewed (January 2011−February 2019). A total of 116 of 153 patients presented with at least one irAE (75.8%). The most frequent irAEs were dermatological (derm irAEs, 50%), asthenia (38%), and gastrointestinal (29%). Most irAEs appeared within the first 90 days, while 11.2% appeared after discontinuation of the therapy. Mild grade 1−2 derm irAEs tended to appear within the first 2 months of therapy with a median time of 65.5 days (IQR 26-139.25), while grade 3−4 derm irAEs appeared later (median 114 days; IQR 69-218) and could be detected at any time during therapy. Only derm irAE occurrence was related to improved survival (HR 6.46). Patients presenting derm irAEs showed better 5-year overall survival compared to those with no derm irAEs (53.1% versus 24.9%; p < 0.001). However, the difference was not significant when adjusting for the duration of therapy. In conclusion: the timeline of immune-related-AEs differs according to the organ involved. The (apparent) improved survival of patients who present derm AEs during immunotherapy could be partially explained by longer times under treatment.
Collapse
Affiliation(s)
- Lorena Villa-Crespo
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
| | - Sebastian Podlipnik
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
| | - Natalia Anglada
- Medicine Department, Medicine Faculty, Campus Clínic, University of Barcelona, 08036 Barcelona, Spain; (N.A.); (C.I.)
| | - Clara Izquierdo
- Medicine Department, Medicine Faculty, Campus Clínic, University of Barcelona, 08036 Barcelona, Spain; (N.A.); (C.I.)
| | - Priscila Giavedoni
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
| | - Pablo Iglesias
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
| | - Mireia Dominguez
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
| | - Francisco Aya
- Medical Oncology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain; (F.A.); (A.A.)
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain; (F.A.); (A.A.)
| | - Josep Malvehy
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
- Medicine Department, Medicine Faculty, Campus Clínic, University of Barcelona, 08036 Barcelona, Spain; (N.A.); (C.I.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 08036 Barcelona, Spain
| | - Susana Puig
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
- Medicine Department, Medicine Faculty, Campus Clínic, University of Barcelona, 08036 Barcelona, Spain; (N.A.); (C.I.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 08036 Barcelona, Spain
| | - Cristina Carrera
- Melanoma Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.V.-C.); (S.P.); (P.G.); (P.I.); (M.D.); (J.M.); (S.P.)
- Medicine Department, Medicine Faculty, Campus Clínic, University of Barcelona, 08036 Barcelona, Spain; (N.A.); (C.I.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275400
| |
Collapse
|
99
|
Makunda N, Vallabhaneni S, Lefebvre B, Fradley MG. Cardiotoxicity of Systemic Melanoma Treatments. Curr Treat Options Oncol 2022; 23:240-253. [PMID: 35192138 DOI: 10.1007/s11864-021-00924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Melanoma is the least common but most dangerous skin cancer, accounting for 75% of all deaths from a primary cutaneous malignancy, with incidence rates rising significantly over the last decade. Traditional treatments for melanoma including interferon and cytotoxic chemotherapy had marginal efficacy. With the advent of targeted and immunotherapies, the prognosis for patients with advanced melanoma has significantly improved including those with metastatic disease to the heart. BRAF and MEK inhibitors as well as immune checkpoint inhibitors have become front line therapy for eligible patients with metastatic melanoma and have led to long-term durable response and in some cases can be curative. Despite these oncologic advances, various treatment-limiting side effects can occur. In particular, cardiovascular toxicities can contribute to overall morbidity and mortality in these patients. Toxicities range from asymptomatic QT prolongation and mild LV dysfunction to fulminant myocarditis and potentially life-threatening arrhythmias. A multidisciplinary approach to the care of these patients which includes cardio-oncology evaluation is necessary to develop both risk mitigation and treatment strategies to ensure patients continue receiving necessary and effective melanoma treatments while minimizing long-term adverse cardiovascular effects.
Collapse
Affiliation(s)
- Neha Makunda
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Srilakshmi Vallabhaneni
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Benedicte Lefebvre
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
100
|
Pires da Silva I, Ahmed T, McQuade JL, Nebhan CA, Park JJ, Versluis JM, Serra-Bellver P, Khan Y, Slattery T, Oberoi HK, Ugurel S, Haydu LE, Herbst R, Utikal J, Pföhler C, Terheyden P, Weichenthal M, Gutzmer R, Mohr P, Rai R, Smith JL, Scolyer RA, Arance AM, Pickering L, Larkin J, Lorigan P, Blank CU, Schadendorf D, Davies MA, Carlino MS, Johnson DB, Long GV, Lo SN, Menzies AM. Clinical Models to Define Response and Survival With Anti-PD-1 Antibodies Alone or Combined With Ipilimumab in Metastatic Melanoma. J Clin Oncol 2022; 40:1068-1080. [PMID: 35143285 DOI: 10.1200/jco.21.01701] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Currently, there are no robust biomarkers that predict immunotherapy outcomes in metastatic melanoma. We sought to build multivariable predictive models for response and survival to anti-programmed cell death protein 1 (anti-PD-1) monotherapy or in combination with anticytotoxic T-cell lymphocyte-4 (ipilimumab [IPI]; anti-PD-1 ± IPI) by including routine clinical data available at the point of treatment initiation. METHODS One thousand six hundred forty-four patients with metastatic melanoma treated with anti-PD-1 ± IPI at 16 centers from Australia, the United States, and Europe were included. Demographics, disease characteristics, and baseline blood parameters were analyzed. The end points of this study were objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). The final predictive models for ORR, PFS, and OS were determined through penalized regression methodology (least absolute shrinkage and selection operator method) to select the most significant predictors for all three outcomes (discovery cohort, N = 633). Each model was validated internally and externally in two independent cohorts (validation-1 [N = 419] and validation-2 [N = 592]) and nomograms were created. RESULTS The final model for predicting ORR (area under the curve [AUC] = 0.71) in immunotherapy-treated patients included the following clinical parameters: Eastern Cooperative Oncology Group Performance Status, presence/absence of liver and lung metastases, serum lactate dehydrogenase, blood neutrophil-lymphocyte ratio, therapy (monotherapy/combination), and line of treatment. The final predictive models for PFS (AUC = 0.68) and OS (AUC = 0.77) included the same variables as those in the ORR model (except for presence/absence of lung metastases), and included presence/absence of brain metastases and blood hemoglobin. Nomogram calculators were developed from the clinical models to predict outcomes for patients with metastatic melanoma treated with anti-PD-1 ± IPI. CONCLUSION Newly developed combinations of routinely collected baseline clinical factors predict the response and survival outcomes of patients with metastatic melanoma treated with immunotherapy and may serve as valuable tools for clinical decision making.
Collapse
Affiliation(s)
- Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Westmead and Blacktown Hospitals, Sydney, Australia
| | - Tasnia Ahmed
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | | | | | - John J Park
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | | | - Yasir Khan
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Tim Slattery
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Selma Ugurel
- University Hospital Essen, University of Duisburg-Essen, German Cancer Consortium, Partner Site Essen, Essen, Germany
| | | | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | | | - Michael Weichenthal
- University Skin Cancer Center Kiel, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ralf Gutzmer
- Skin Cancer Center, Department of Dermatology, Mühlenkreiskliniken, Ruhr University Bochum Campus Minden, Minden, Germany
| | - Peter Mohr
- Elbe-Klinikum Buxtehude, Buxtehude, Germany
| | - Rajat Rai
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | | | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ana M Arance
- Hospital Clinic, Barcelona & IDIBAPS, Barcelona, Spain
| | - Lisa Pickering
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, United Kingdom.,Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Dirk Schadendorf
- University Hospital Essen, University of Duisburg-Essen, German Cancer Consortium, Partner Site Essen, Essen, Germany
| | | | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Westmead and Blacktown Hospitals, Sydney, Australia
| | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Royal North Shore and Mater Hospitals, Sydney, Australia
| |
Collapse
|