51
|
Taylor S, Srinivasan B, Wordinger RJ, Roque RS. Glutamate stimulates neurotrophin expression in cultured Müller cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:189-97. [PMID: 12654519 DOI: 10.1016/s0169-328x(03)00030-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The uptake of excess extracellular glutamate and the secretion of neurotrophins by glial cells have been suggested to protect CNS neurons from glutamate-induced toxicity. In the retina, perturbation of glutamate transport and decreased retrograde transport of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) may contribute to ganglion cell death in experimental glaucoma. Although many studies show a clear relationship between glutamate and neurotrophic factors, such relationship has not been thoroughly investigated in the retinal environment. In the following study, we determined the effects of glutamate on early passaged rat Müller cells, specifically their expression of neurotrophic factors including BDNF, nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and glial-cell line derived neurotrophic factor (GDNF); and of glutamate receptors and transporters using immunoblots or enzyme-linked immunosorbent assays. Binding of BDNF to its cognate receptor TrkB was also determined using co-immunoprecipitation studies. Cultured Müller cells grown in the presence of glutamate were also assayed for survival using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). Our study showed that while glutamate treatment did not promote cell death, it upregulated secretion of BDNF, NGF, NT-3, NT-4, and GDNF by Müller cells. While solitary bands at approximately 13-14 kDa were observed for NGF, NT-3, and NT-4; two BDNF-reactive bands were observed in immunoblots: a faster migrating band at the reported size of the BDNF monomer (approximately 13 kDa); and a more intense band at approximately 36 kDa. GDNF-reactive bands were observed at approximately 22, approximately 28, and approximately 55 kDa. Glutamate also induced significant changes in glutamate receptor and transporter proteins, as well maintained the association of BDNF to TrkB in Müller cells. The decreased N-methyl-D-aspartate receptor (NMDAR) levels and sustained activation of TrkB by BDNF could serve as protective mechanisms for Müller cell survival. Moreover, the increased secretion of neurotrophic factors and upregulation of L-glutamate/L-aspartate transporter (GLAST) expression in Müller cells may protect retinal neurons from glutamate toxicity.
Collapse
Affiliation(s)
- Sara Taylor
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
52
|
Oliveira A, Hodges H, Rezaie P. Excitotoxic lesioning of the rat basal forebrain with S-AMPA: consequent mineralization and associated glial response. Exp Neurol 2003; 179:127-38. [PMID: 12618119 DOI: 10.1016/s0014-4886(02)00012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regional depositions of calcium within the basal ganglia, cortex, cerebellum, and white matter and at perivascular sites have been observed in several pathological conditions. These generally indicate signs of ongoing apoptosis or necrotic processes, whereby the activation of glutamate receptors causes a rise in intracellular calcium levels leading to mineralization of neurons, and ultimately to cell death. The selective degeneration of cholinergic neurons in the basal forebrain is a major neuropathological component of Alzheimer's disease, and may result in abnormal deposition of calcium. In experimental models, selective lesions of the basal forebrain can be induced by intraparenchymal infusions of excito- or immunotoxins targeting cholinergic neurons. Excitotoxic lesions are often accompanied by calcium deposition within affected areas. In a previous study we also noted the presence of unusual deposition in areas close to the site of injections following unilateral S-AMPA-induced lesions of the basal forebrain (T. Perry, H. Hodges, and J. A. Gray, 2001, Brain Res. Bull. 54, 29-48). In this paper, we have characterized these deposits histologically and evaluated the microglial (CD11b) and astrocytic (GFAP) responses at 8 and 16 weeks following lesioning of the nucleus basalis magnocellularis with S-AMPA. The resulting deposits were heterogeneous in morphology and composed primarily of calcium. Small granular deposits were detected around blood vessels, whereas larger calcospherites were situated within the parenchyma. These deposits were more widely dispersed at 16 weeks postlesioning, affected neighboring nuclei, and displayed a progressive increase in size and frequency of occurrence. However, calcification within these regions was differentially associated with microglial and astrocytic reactivity at the two time points. Both microglial and astrocytic responses were pronounced at 8 weeks, whereas at 16 weeks, astrocytic reactivity prevailed and the microglial response was markedly attenuated. Importantly, the pattern of reactivity for microglia detected at 8 weeks was specifically localized to vulnerable nucleated areas prior to their substantial accumulation of calcium deposits, which was clearly evident by 16 weeks. We suggest that the initial microglial response could be used as a selective predictor of tissue necrosis and subsequent calcification, and that astrocytes, which form a glial scar in the affected tissues, may contribute toward the buildup of calcium deposits. The functional relevance of these findings is discussed.
Collapse
Affiliation(s)
- Alcyr Oliveira
- Department of Psychology, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK.
| | | | | |
Collapse
|
53
|
Zhang Q, Hu B, Sun S, Tong E. Induction of increased intracellular calcium in astrocytes by glutamate through activating NMDA and AMPA receptors. Curr Med Sci 2003; 23:254-7. [PMID: 14526426 DOI: 10.1007/bf02829506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Indexed: 10/19/2022]
Abstract
To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitoring the fluctuation of intracellular Ca2+ concentration ([Ca2+]i) on the basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamate on the intracellular calcium signal were observed after blockage of NMDA and (or) AMPA receptors. It was found that L-glutamate could induce an increased [Ca2+]i in most of the cells in concentration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selective antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX, a selective antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively. The treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| | | | | | | |
Collapse
|
54
|
Paz Soldán MM, Warrington AE, Bieber AJ, Ciric B, Van Keulen V, Pease LR, Rodriguez M. Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol Cell Neurosci 2003; 22:14-24. [PMID: 12595235 DOI: 10.1016/s1044-7431(02)00018-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Our laboratory has identified mouse and human monoclonal antibodies that promote myelin repair in multiple models of demyelinating disease. We have proposed that these antibodies promote remyelination by directly activating central nervous system glia. Intracellular calcium concentration was monitored using a Fura2 ratiometric assay. Repair-promoting antibodies induced distinct Ca2+ signals in both astrocytes and oligodendrocytes. Astrocyte Ca2+ signaling is mediated by a phospholipase C-dependent pathway while oligodendrocyte Ca2+ signaling is mediated via AMPA-sensitive glutamate receptors. An antibody's ability to induce Ca2+ signals is statistically correlated with promotion of myelin repair. These findings support the hypothesis that remyelination-promoting antibodies are acting directly at the surface of glial cells to induce calcium-dependent physiologic reparative function.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Surface/drug effects
- Antigens, Surface/immunology
- Astrocytes/drug effects
- Astrocytes/immunology
- Astrocytes/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/immunology
- Cells, Cultured
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Mice
- Mice, Inbred Strains
- Myelin Sheath/immunology
- Myelin Sheath/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/immunology
- Oligodendroglia/metabolism
- Protein Binding/immunology
- Protein Structure, Tertiary/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- M Mateo Paz Soldán
- Program in Molecular Neuroscience, Mayo Medical and Graduate Schools, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Grossman AW, Churchill JD, Bates KE, Kleim JA, Greenough WT. A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept? PROGRESS IN BRAIN RESEARCH 2002; 138:91-108. [PMID: 12432765 DOI: 10.1016/s0079-6123(02)38073-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A view that is emerging is that the brain has multiple forms of plasticity that must be governed, at least in part, by independent mechanisms. This view is illustrated by: (1) the apparent separate governance of some non-neural changes by activity, in contrast to synaptic changes driven by learning; (2) the apparent independence of different kinds of synaptic changes that occur in response to the learning aspects of training; (3) the occurrence of separate patterns of synaptic plasticity in the same system in response to different task demands; and (4) apparent dissociations between behaviorally induced synaptogenesis and LTP. The historical focus of research and theory in areas ranging from learning and memory to experiential modulation of brain development has been heavily upon synaptic plasticity since shortly after the discovery of the synapse. Based upon available data, it could be argued that: (1) synaptic, and even neuronal, plasticity is but a small fraction of the range of changes that occur in response to experience; and (2) we are just beginning to understand the importance of these other forms of brain plasticity. Appreciation of this aspect of the brain's adaptive process may allow us to better understand the capacity of the brain to tailor a particular set of changes to the demands of the specific experiences that generated them.
Collapse
Affiliation(s)
- Aaron W Grossman
- Beckman Institute, Neuroscience Program, Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
56
|
Svingos AL, Colago EEO. Kappa-Opioid and NMDA glutamate receptors are differentially targeted within rat medial prefrontal cortex. Brain Res 2002; 946:262-71. [PMID: 12137930 DOI: 10.1016/s0006-8993(02)02894-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of kappa-opioid receptors (KOR) in the medial prefrontal cortex (mPFC) modulates excitatory transmission, which may involve interactions with N-methyl-D-aspartate (NMDA) glutamate receptors. We investigated possible anatomical correlates of this modulation by using dual labeling electron microscopy to examine the cellular distributions of antibodies raised against KOR and the R1 subunit of the NMDA receptor (NR1). KOR immunoreactivity primarily was localized to plasma and vesicular membranes of axons and axon terminals that were morphologically heterogeneous. A small proportion of KOR immunoreactivity was associated with cytosolic compartments of dendrites and membranes of glial processes. NR1 labeling was mainly postsynaptic, associated most often with membranes of cytoplasmic organelles in cell bodies and large dendrites and plasmalemmal surfaces of distal dendrites. The remaining NR1-labeled profiles were axonal profiles and glial processes. Of all cellular associations between labeled profiles, the majority were KOR-labeled axons that contacted NR1-immunoreactive dendrites or cell bodies. Occasionally the two antigens were colocalized in axon terminals that formed either asymmetric synapses or displayed varicose morphology. KOR and NR1 also were colocalized within dendrites, and rarely were observed in the same cell bodies. Occasionally glial processes coursing adjacent to axo-spinous appositions expressed both KOR and NR1 immunoreactivity. These results indicate that ligand activation of KOR or NMDA receptors differentially modulates excitatory transmission in the mPFC through pre- and postsynaptic mechanisms, respectively. The data also suggest more minor roles for colocalized KOR and NMDA receptors in shared regulation of presynaptic transmitter release, postsynaptic responsivity, and glial function.
Collapse
Affiliation(s)
- Adena L Svingos
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 411 E. 69th St., New York, NY 10021, USA.
| | | |
Collapse
|
57
|
Lohr C, Tucker E, Oland LA, Tolbert LP. Development of depolarization-induced calcium transients in insect glial cells is dependent on the presence of afferent axons. JOURNAL OF NEUROBIOLOGY 2002; 52:85-98. [PMID: 12124748 DOI: 10.1002/neu.10075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K(+) concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K(+) (1 min) with a transient increase in [Ca(2+)](i) of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K(+), the amplitude of the [Ca(2+)](i) transients averaging 592 nM. At later stages, all cells responded to 25 mM K(+) with [Ca(2+)](i) transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca(2+)](i) transients. The amplitudes of these [Ca(2+)](i) transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca(2+)](i) transients were greatly reduced in Ca(2+)-free, EGTA-buffered saline, and in the presence of the Ca(2+) channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca(2+) influx through voltage-activated Ca(2+) channels into antennal lobe glial cells. The development of the depolarization-induced Ca(2+) transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna.
Collapse
Affiliation(s)
- Christian Lohr
- ARL Division of Neurobiology, University of Arizona, P.O. Box 210077, Tucson, Arizona 85721-0077, USA.
| | | | | | | |
Collapse
|
58
|
Abstract
Recent results have demonstrated the existence of bidirectional communication between glial cells and neurons. We investigated in brain slices whether rat hippocampal astrocytes respond to acetylcholine synaptically released by an extrinsic pathway. We stimulated the stratum oriens/alveus, which contains cholinergic afferents from the septum and diagonal band of Broca, and recorded whole-cell membrane currents and intracellular Ca2+ levels of astrocytes located in the hippocampal stratum oriens. Nerve-fiber stimulation evoked a long-lasting inward current and increased the Ca2+ levels in astrocytes. Both astrocytic responses were abolished by tetrodotoxin or Cd2+ and were increased by 4-aminopyridine, indicating that the responses were attributable to synaptically released neurotransmitter. The inward current was inhibited by glutamate transporter antagonists, indicating that it was attributable to the electrogenic glutamate transporter activity. The synaptically evoked intracellular Ca2+ elevations were not affected by glutamate receptor antagonists but were abolished by atropine, indicating that they were mediated by muscarinic cholinergic receptors. Thapsigargin prevented the Ca2+ elevation but did not modify the inward current, indicating that the Ca2+ signal was attributable to intracellular Ca2+ mobilization. These results indicate that hippocampal astrocytes respond to acetylcholine released by synaptic terminals. The synaptically released acetylcholine acts on muscarinic receptors, mobilizing Ca2+ from the intracellular stores. Different regions in the recorded astrocytes showed independent stimulus-induced Ca2+ variations, suggesting the existence of subcellular domains in the astrocytic responses evoked by the synaptic cholinergic activity. Therefore, our results show the existence of cholinergic neuron-astrocyte signaling and suggest that astrocytes are a target of axonal inputs from different brain areas.
Collapse
|
59
|
Perea G, Araque A. Communication between astrocytes and neurons: a complex language. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:199-207. [PMID: 12445897 DOI: 10.1016/s0928-4257(02)00007-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, accumulating evidence suggests the existence of bidirectional communication between astrocytes and neurons, indicating an important active role of astrocytes in the physiology of the nervous system. As a consequence of this evidence, a new concept of the synaptic physiology--"the tripartite synapse"--has been proposed, in which the synapse is formed by three functional elements, i.e. the pre- and postsynaptic elements and the surrounding astrocytes. In the present article we review and discuss the current knowledge on the cellular mechanisms and physiological properties of this communication that displays highly complex characteristics. We are beginning to realize that the communication between astrocytes and neurons uses a quite complex language.
Collapse
Affiliation(s)
- Gertrudis Perea
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | | |
Collapse
|
60
|
Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A 2002; 99:4037-42. [PMID: 11891290 PMCID: PMC122644 DOI: 10.1073/pnas.052020999] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glial cells are traditionally regarded as elements for structural support and ionic homeostasis, but have recently attracted attention as putative integral elements of the machinery involved in synaptic transmission and plasticity. Here, we demonstrate that calcium-binding protein S100B, which is synthesized in considerable amounts in astrocytes (a major glial cell subtype), modulates long-term synaptic plasticity. Mutant mice devoid of S100B developed normally and had no detectable abnormalities in the cytoarchitecture of the brain. These mutant mice, however, had strengthened synaptic plasticity as identified by enhanced long-term potentiation (LTP) in the hippocampal CA1 region. Perfusion of hippocampal slices with recombinant S100B proteins reversed the levels of LTP in the mutant slices to those of the wild-type slices, indicating that S100B might act extracellularly. In addition to enhanced LTP, mutant mice had enhanced spatial memory in the Morris water maze test and enhanced fear memory in the contextual fear conditioning. The results indicate that S100B is a glial modulator of neuronal synaptic plasticity and strengthen the notion that glial-neuronal interaction is important for information processing in the brain.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Laboratories for Behavioral Genetics and Neuronal Circuit Dynamics, and Neuronal Circuit Mechanisms Research Group, Brain Science Institute (BSI), Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
61
|
Nett WJ, Oloff SH, McCarthy KD. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 2002; 87:528-37. [PMID: 11784768 DOI: 10.1152/jn.00268.2001] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Results presented in this study indicate that a large subpopulation (approximately 65%) of hippocampal astrocytes in situ exhibit calcium oscillations in the absence of neuronal activity. Further, the spontaneous oscillations observed within individual hippocampal astrocytes generally developed asynchronously throughout the astrocyte's fine processes and occasionally spread through a portion of that astrocyte as a calcium wave but do not appear to spread among astrocytes as an intercellular calcium wave. Bath application of cyclopiazonic acid and injection of individual astrocytes with heparin blocked astrocytic calcium oscillations. Application of tetrodotoxin or incubation of slices with bafilomycin A1 had no effect on astrocytic calcium oscillations but did block evoked and spontaneous postsynaptic currents measured in CA1 pyramidal neurons. Application of a cocktail of antagonists for metabotropic glutamate receptors and purinergic receptors had no effect on the astrocytic calcium oscillations but blocked the ability of purinergic and metabotropic glutamatergic agonists to increase astrocytic calcium levels. These results indicate that the spontaneous calcium oscillations observed in hippocampal astrocytes in situ are mediated by IP3 receptor activation, are not dependent on neuronal activity, and do not depend on activation of metabotropic glutamate receptors or purinergic receptors. To our knowledge, this is the first demonstration that astrocytes in situ exhibit intrinsic signaling. This finding supports the hypothesis that astrocytes, independent of neuronal input, may act as pacemakers to modulate neuronal activity in situ.
Collapse
Affiliation(s)
- Wolfgang J Nett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | | | | |
Collapse
|
62
|
Abstract
3,5-dihydroxyphenylglycine (3,5-DHPG) was the first agonist shown to be group I metabotropic glutamate receptor selective with its agonist effects residing exclusively in the S-isomer. Some results suggest that (S)-3,5-DHPG may be a partial agonist of mGluR1a and mGluR5a in neurons and astrocytes. It has been reported that (S)-3,5-DHPG can, under certain conditions, interact with NMDA receptors. (S)-3,5-DHPG exerts different effects on second messengers in adult and neonatal tissues. It stimulates phosphoinositide hydrolysis in a dose-dependent manner in both the adult and neonate hippocampus, inhibits stimulated cAMP levels in the adult and enhances the cAMP in the neonate. It is an effective antagonist of mGluRs linked to phospholipase D (PLD) in the adult and an agonist in the neonate brain or astrocyte cultures. (S)-3,5-DHPG induces elevation of [Ca2+]i and regulates multiple subtypes of Ca2+ channels. This agonist of group I mGluRs may modulate neurotransmitters release, reflecting the diversity of mechanisms involved. Depending on the dose, (S)-3,5-DHPG enhances or decreases excitatory postsynaptic potentials (EPSPs) and under appropriate conditions it can induce long-term depression (LTD) and long-term potentiation (LTP). Some studies suggested a therapeutic role for (S)-3,5-DHPG in neuronal injury, regulation of intestinal motility and secretion, learning and memory processes and in cardiovascular system. (S)-3,5-DHPG may be useful as a cognitive enhancing agent in memory impairment associated with ischemia or hypoxia. Recent investigations suggested possible beneficial effects of (S)-3,5-DHPG in Alzheimer's disease.
Collapse
Affiliation(s)
- Konstanty Wiśniewski
- Department of Pharmacology, Medical Academy, 15-222 Bialystok, Mickiewicza 2c, Poland.
| | | |
Collapse
|
63
|
Latour I, Gee CE, Robitaille R, Lacaille JC. Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus 2001; 11:132-45. [PMID: 11345120 DOI: 10.1002/hipo.1031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were therefore due to direct actions on glial cells. Glutamate-evoked responses were significantly reduced by the L-type Ca2+ channel blocker nimodipine, the group I/II metabotropic glutamate receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), and the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)2-amino-5-phosphonopentanoic acid (APV). However, glutamate-induced Ca2+ responses were not significantly reduced by the non-NMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). These results indicate that local application of glutamate increases intracellular Ca2+ levels in glial cells via the activation of L-type Ca2+ channels, NMDA receptors, and metabotropic glutamate receptors. Brief (1 s) tetanization of Schaffer collaterals produced increases in intracellular Ca2+ levels in glial cells that were dependent on the frequency of stimulation (> or =50 Hz) and on synaptic transmission (abolished by tetrodotoxin). These Ca2+ responses were also antagonized by the L-type Ca2+ channel blocker nimodipine and the metabotropic glutamate receptor antagonist MCPG. However, the non-NMDA receptor antagonist CNQX significantly reduced the Schaffer collateral-evoked Ca2+ responses, while the NMDA antagonist APV did not. Thus, these synaptically mediated Ca2+ responses in glial cells involve the activation of L-type Ca2+ channels, group I/II metabotropic glutamate receptors, and non-NMDA receptors. These findings indicate that increases in intracellular Ca2+ levels induced in glial cells by local glutamate application and by synaptic activity share similar mechanisms (activation of L-type Ca2+ channels and group I/II metabotropic glutamate receptors) but also have distinct components (NMDA vs. non-NMDA receptor activation, respectively). Therefore, neuron-glia interactions in rat hippocampus in situ involve multiple, complex Ca2+-mediated processes that may not be mimicked by local glutamate application.
Collapse
Affiliation(s)
- I Latour
- Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
64
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
65
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
66
|
Abstract
Astrocytes, a sub-type of glia in the central nervous system, are dynamic signaling elements that integrate neuronal inputs, exhibit calcium excitability, and can modulate neighboring neurons. Neuronal activity can lead to neurotransmitter-evoked activation of astrocytic receptors, which mobilizes their internal calcium. Elevations in astrocytic calcium in turn trigger the release of chemical transmitters from astrocytes, which can cause sustained modulatory actions on neighboring neurons. Astrocytes, and perisynaptic Schwann cells, by virtue of their intimate association with synapses, are strategically positioned to regulate synaptic transmission. This capability, that has now been demonstrated in several studies, raises the untested possibility that astrocytes are an integral element of the circuitry for synaptic plasticity. Because the highest ratio of glia-to-neurons is found at the top of the phylogenetic tree in the human brain, these recent demonstrations of dynamic bi-directional signaling between astrocytes and neurons leave us with the question as to whether astrocytes are key regulatory elements of higher cortical functions.
Collapse
Affiliation(s)
- A Araque
- Instituto Cajal, CSIC, Doctor Arce 37, Madrid 28002, Spain.
| | | | | |
Collapse
|
67
|
König N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM. Synaptic and non-synaptic AMPA receptors permeable to calcium. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:1-17. [PMID: 11430460 DOI: 10.1254/jjp.86.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For a long time, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors permeable to calcium have been considered to be either non-existent or as "atypical". There is now ample evidence that these receptors exist in numerous regions of the nervous system and in many neuronal as well as non-neuronal cell populations. This evidence has been accumulated by several methods, including electrophysiological recording, calcium imaging and cobalt-loading. Functional AMPA receptors permeable to calcium are already expressed at very early stages of embryonic development, well before the onset of synaptogenesis. They are probably involved in the paracrine signaling necessary for construction of the nervous system before becoming involved in synaptic transmission. In immature cells, cyclothiazide strongly increases the steady-state level of responses not only to AMPA, but also to kainate. Ingestion, during pregnancy, of food or drug substances that can cross the placental barrier and act upon the embryonic receptors may constitute a risk for normal development. In the adult nervous system, synaptic as well as non-synaptic (paracrine) AMPA receptors permeable to calcium are probably widely expressed in both glial and neuronal cells. They may also participate in controlling some aspects related to adult neurogenesis, in particular the migration of newly formed neurons.
Collapse
Affiliation(s)
- N König
- EPHE Quantitative Cell Biology and INSERM U 336, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
68
|
Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 2001; 98:4148-53. [PMID: 11259680 PMCID: PMC31194 DOI: 10.1073/pnas.071540198] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this report we provide evidence that neuronal nicotinic acetylcholine receptors (nAChRs) are present on hippocampal astrocytes and their activation produces rapid currents and calcium transients. Our data indicate that these responses obtained from astrocytes are primarily mediated by an AChR subtype that is functionally blocked by alpha-bungarotoxin (alpha Bgt) and contains the alpha7 subunit (alpha Bgt-AChRs). Furthermore, their action is unusual in that they effectively increase intracellular free calcium concentrations by activating calcium-induced calcium release from intracellular stores, triggered by influx through the receptor channels. These results reveal a mechanism by which alpha Bgt-AChRs on astrocytes can efficiently modulate calcium signaling in the central nervous system in a manner distinct from that observed with these receptors on neurons.
Collapse
Affiliation(s)
- G Sharma
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
69
|
Kimelberg HK, Schools GP, Cai Z, Zhou M. Freshly isolated astrocyte (FIA) preparations: a useful single cell system for studying astrocyte properties. J Neurosci Res 2000; 61:577-87. [PMID: 10972954 DOI: 10.1002/1097-4547(20000915)61:6<577::aid-jnr1>3.0.co;2-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes are cell constituents of the mammalian CNS whose intricate relationships with neurons, blood vessels and meninges in situ are well documented. These relationships and their complex morphologies imply numerous functions. Over the past quarter century or so, however, the main experimental basis for determining which roles are likely have been derived from studies on primary astrocyte cultures, usually prepared from neonatal rodent brains. We list a number of examples where these cultures have shown quantitative and qualitative differences from the properties exhibited by astrocytes in situ. The absence of an adequate reliable database makes proposals of likely hypotheses of astrocyte function difficult to formulate. In this article we describe representative studies from our laboratory showing that freshly isolated astrocytes (FIAs), can be used to determine the properties of astrocytes that seem more in concordance with the properties exhibited in situ. Although the cells are most easily isolated from < or =15 day old rat hippocampi they can be isolated from up to 30 day old rats. The examples we describe are that several different types of K(+) currents can be determined by patch clamp electrophysiology, of all the mGluRs only mGluR3 and 5 were detected by single cell RT-PCR, and that single cell Ca(2+) imaging shows that the mGluR5 receptor is functional. It was found that the frequency of cells expressing mGluR5 declines with the age of the animal with the mGluR5b type splice variant replacing the mGluR5a type, as occurs in the intact brain. It is concluded that FIAs can be used to determine the individual characteristics of astrocytes and their properties without the problems of indirect effects inherent in a heterogeneous system such as the slice, and without the problem of cultures unpredictably reflecting the in situ state. The FIAs obviously cannot be used to study interactions of astrocytes with the other CNS components but we propose that they will provide a good database on which hypotheses regarding such interactions can be tested in slices. FIAs can also be isolated from brain slices or intact brain after various pharmacological or electrophysiological perturbations to determine the changes in astrocyte properties that correlate with the perturbations.
Collapse
Affiliation(s)
- H K Kimelberg
- Division of Neurosurgery and Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
70
|
Shelton MK, McCarthy KD. Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 2000; 74:555-63. [PMID: 10646506 DOI: 10.1046/j.1471-4159.2000.740555.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.
Collapse
Affiliation(s)
- M K Shelton
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|