51
|
Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, Chen D, Wasley M, Silva JDA, Mitchell JA, Voss TA, Masrorpour F, Leyton CK, Yang L, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Cortez MA, Welsh JW. Combining a nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resistant lung cancer. J Nanobiotechnology 2022; 20:417. [PMID: 36123677 PMCID: PMC9484155 DOI: 10.1186/s12951-022-01621-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Genevieve Bertolet
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Duygu Sezen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Dawei Chen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Mark Wasley
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jordan DA Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Joylise A Mitchell
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia Kettlun Leyton
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Liangpeng Yang
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
52
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
53
|
Telarovic I, Yong CSM, Guckenberger M, Unkelbach J, Pruschy M. Radiation-induced lymphopenia does not impact treatment efficacy in a mouse tumor model. Neoplasia 2022; 31:100812. [PMID: 35667149 PMCID: PMC9168138 DOI: 10.1016/j.neo.2022.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Radiation-induced lymphopenia is a common occurrence in radiation oncology and an established negative prognostic factor, however the mechanisms underlying the relationship between lymphopenia and inferior survival remain elusive. The relevance of lymphocyte co-irradiation as critical normal tissue component at risk is an emerging topic of high clinical relevance, even more so in the context of potentially synergistic radiotherapy-immunotherapy combinations. The impact of the radiotherapy treatment volume on the lymphocytes of healthy and tumor-bearing mice was investigated in a novel mouse model of radiation-induced lymphopenia. Using an image-guided small-animal radiotherapy treatment platform, translationally relevant tumor-oriented volumes of irradiation with an anatomically defined increasing amount of normal tissue were irradiated, with a focus on the circulating blood and lymph nodes. In healthy mice, the influence of irradiation with increasing radiotherapy treatment volumes was quantified on the level of circulating blood cells and in the spleen. A significant decrease in the lymphocytes was observed in response to irradiation, including the minimally irradiated putative tumor area. The extent of lymphopenia correlated with the increasing volumes of irradiation. In tumor-bearing mice, differential radiotherapy treatment volumes did not influence the overall therapeutic response to radiotherapy alone. Intriguingly, an improved treatment efficacy in mice treated with draining-lymph node co-irradiation was observed in combination with an immune checkpoint inhibitor. Taken together, our study reveals compelling data on the importance of radiotherapy treatment volume in the context of lymphocytes as critical components of normal tissue co-irradiation and highlights emerging challenges at the interface of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Dept. Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
54
|
Remon J, Levy A, Singh P, Hendriks LEL, Aldea M, Arrieta O. Current challenges of unresectable stage III NSCLC: are we ready to break the glass ceiling of the PACIFIC trial? Ther Adv Med Oncol 2022; 14:17588359221113268. [PMID: 35923929 PMCID: PMC9340398 DOI: 10.1177/17588359221113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
Consolidation anti-programmed death-ligand 1 has become a new standard of care in unresectable stage III non-small cell lung cancer (NSCLC) following chemo-radiotherapy (CTRT), based on the results of two phase III trials. Advances remain however needed, in particular to reduce the risk of distant relapse and for treatment personalization. Newer strategies are currently being tested, including consolidation with dual immune checkpoint inhibitors (ICIs), concurrent chemo-radioimmunotherapy and (chemo)-immunotherapy induction before CTRT. One randomized phase II reported better outcomes with a double ICI consolidation as compared with durvalumab alone. Three nonrandomized phase II trials also suggested that concurrent ICI-CTRT was feasible. Within this review, we summarize the current evidence, highlight ongoing trials and discuss challenges that will ideally lead to a cure for more patients with unresectable stage III NSCLC.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral
Oncológico Clara Campal (HM-CIOCC), Hospital HM Nou Delfos, HM Hospitales,
Avinguda de Vallcarca, 151, Barcelona 08023, Spain
| | - Antonin Levy
- Department of Radiation Oncology, International
Center for Thoracic Cancers (CICT), Université Paris-Saclay, Gustave Roussy,
Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine,
Le Kremlin-Bicêtre, France
| | - Pawan Singh
- Department of Pulmonary and Critical Care
Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical
Sciences, Rohtak, Haryana, India
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW–School
for Oncology and Reproduction, Maastricht University Medical Center,
Maastricht, The Netherlands
| | - Mihaela Aldea
- Department of Medical Oncology, International
Center for Thoracic Cancers (CICT), Université Paris-Saclay, Gustave Roussy,
Gustave Roussy, Villejuif, France
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of
Personalized Medicine, Instituto Nacional de Cancerología, Mexico City,
Mexico
| |
Collapse
|
55
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
56
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|
57
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|
58
|
Milic M, Mondini M, Deutsch E. How to Improve SBRT Outcomes in NSCLC: From Pre-Clinical Modeling to Successful Clinical Translation. Cancers (Basel) 2022; 14:cancers14071705. [PMID: 35406477 PMCID: PMC8997119 DOI: 10.3390/cancers14071705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. Stereotactic body radiotherapy (SBRT) has emerged as a major treatment modality for lung cancer in the last decade. Additional research is needed to elucidate underlying mechanisms of resistance and to develop improved therapeutic strategies. Clinical progress relies on accurate preclinical modelling of human disease in order to yield clinically meaningful results; however, successful translation of pre-clinical research is still lagging behind. In this review, we summarize the major clinical developments of radiation therapy for non-small-cell lung cancer (NSCLC), and we discuss the pre-clinical research models at our disposal, highlighting ongoing translational challenges and future perspectives. Abstract Despite major research and clinical efforts, lung cancer remains the leading cause of cancer-related death. While the delivery of conformal radiotherapy and image guidance of stereotactic body radiotherapy (SBRT) have revolutionized the treatment of early-stage non-small-cell lung cancer (NSCLC), additional research is needed to elucidate underlying mechanisms of resistance and identify novel therapeutic combinations. Clinical progress relies on the successful translation of pre-clinical work, which so far has not always yielded expected results. Improved clinical modelling involves characterizing the preclinical models and selecting appropriate experimental designs that faithfully mimic precise clinical scenarios. Here, we review the current role of SBRT and the scope of pre-clinical armamentarium at our disposal to improve successful clinical translation of pre-clinical research in the radiation oncology of NSCLC.
Collapse
Affiliation(s)
- Marina Milic
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Correspondence: (M.M.); (E.D.)
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, F-94805 Villejuif, France;
- Gustave Roussy, Département d’Oncologie-Radiothérapie, F-94805 Villejuif, France
- Correspondence: (M.M.); (E.D.)
| |
Collapse
|
59
|
Kelly G, Milligan JJ, Mastria EM, Kim S, Zelenetz SR, Dobbins J, Cai LY, Li X, Nair SK, Chilkoti A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J Control Release 2022; 343:267-276. [PMID: 35077742 PMCID: PMC8960370 DOI: 10.1016/j.jconrel.2022.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Biomaterial-based approaches for a combination of radiotherapy and immunotherapy can improve outcomes in metastatic cancer through local delivery of both therapeutic modalities to the primary tumor to control local tumor growth and distant metastases. This study describes an injectable depot for sustained intratumoral (i.t.) delivery of an iodine-131 (131I) radionuclide and a CpG oligodeoxynucleotide immunostimulant, driven by the thermally sensitive phase transition behavior of elastin-like polypeptides (ELPs). We synthesized and characterized an ELP with an oligolysine tail (ELP-K12) that forms an electrostatic complex with CpG for delivery from an ELP depot and evaluated the ability of the complex to enhance local and systemic tumor control as a monotherapy and in combination with 131I-ELP brachytherapy. I.t delivery of CpG from an ELP-K12 depot dramatically prolongs i.t. retention to more than 21 days as compared to soluble CpG that is only retained within the tumor for <24 h. ELP-K12 also enhances CpG delivery by increasing cellular uptake of CpG to generate greater toll-like receptor 9 (TLR9) activation than CpG alone. I.t. treatment with an ELP-K12/CpG depot slows primary tumor growth and reduces lung metastases in a poorly immunogenic 4 T1 syngeneic breast cancer model whereas i.t treatment of CpG alone has no significant effect on primary tumor growth or metastases. Notably, a combination of 131I-ELP brachytherapy and ELP-K12/CpG delivered i.t. inhibited 4 T1 tumor growth and strongly decreased the development of lung metastases, leading to a synergistic improvement in mouse survival. These preclinical results demonstrate that injectable ELP depots may provide a useful approach for the delivery of combination radio- and immuno-therapy to treat metastatic disease.
Collapse
Affiliation(s)
- Garrett Kelly
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Eric M. Mastria
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Sarah Kim
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Stephanie R. Zelenetz
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Jarrett Dobbins
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Leon Y. Cai
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA
| | - Smita K. Nair
- Department of Surgery, Duke University School of Medicine, 2301 Erwin Rd., DUMC Box 370, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Dr., Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
60
|
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, Yang T, Zeng Y, He T, Ma J, Wang X, Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022; 12:809304. [PMID: 35198442 PMCID: PMC8858950 DOI: 10.3389/fonc.2022.809304] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Though single tumor immunotherapy and radiotherapy have significantly improved the survival rate of tumor patients, there are certain limitations in overcoming tumor metastasis, recurrence, and reducing side effects. Therefore, it is urgent to explore new tumor treatment methods. The new combination of radiotherapy and immunotherapy shows promise in improving therapeutic efficacy and reducing recurrence by enhancing the ability of the immune system to recognize and eradicate tumor cells, to overcome tumor immune tolerance mechanisms. Nanomaterials, as new drug-delivery-system materials of the 21st century, can maintain the activity of drugs, improve drug targeting, and reduce side effects in tumor immunotherapy. Additionally, nanomaterials, as radiosensitizers, have shown great potential in tumor radiotherapy due to their unique properties, such as light, heat, electromagnetic effects. Here, we review the mechanisms of tumor immunotherapy and radiotherapy and the synergy of radiotherapy with multiple types of immunotherapies, including immune checkpoint inhibitors (ICIs), tumor vaccines, adoptive cell therapy, and cytokine therapy. Finally, we propose the potential for nanomaterials in tumor radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Yang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
61
|
Yuan J, Li X, Yu S. CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochim Biophys Acta Rev Cancer 2022; 1877:188680. [PMID: 35051528 DOI: 10.1016/j.bbcan.2022.188680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Cancer arises from genetic alterations that invariably contribute to dysregulated transcriptional programs. These dysregulated programs establish and maintain specific cancer cell states, leading to an intensive dependence on a set of certain regulators of gene expression. The CDK7 functions as the core of transcription, and governs RNA polymerase II and the downstream oncogenes expression in cancers. CDK7 inhibition leads to reduced recruitment of super-enhancers-driven oncogenic transcription factors, and the depression of these associated oncogenes expression, which indicates the dependence of transcriptional addiction of cancers on CDK7. Given that specified oncoproteins of sarcomas commonly function at oncogenic transcription, targeting CDK7-denpendent transcriptional addiction may be of guiding significance for the treatment of sarcomas. In this review, we summarize the advances in mechanism of targeted CDK7-dependent transcriptional addiction and discuss the path ahead to potential application discovery in bone and soft tissue sarcomas, providing theoretical considerations for bio-orthogonal therapeutic strategies.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
62
|
Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front Oncol 2021; 11:766407. [PMID: 34900715 PMCID: PMC8651618 DOI: 10.3389/fonc.2021.766407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Interstitial brachytherapy (BT) is generally used for the treatment of well-confined solid tumors. One example of this is in the treatment of prostate tumors by permanent placement of radioactive seeds within the prostate gland, where low doses of radiation are delivered for several months. However, successful implementation of this technique is hampered due to several posttreatment adverse effects or symptoms and operational and logistical complications associated with it. Recently, with the advancements in nanotechnology, radioactive nanoparticles (radio-NPs) functionalized with tumor-specific biomolecules, injected intratumorally, have been reported as an alternative to seed-based BT. Successful treatment of solid tumors using radio-NPs has been reported in several preclinical studies, on both mice and canine models. In this article, we review the recent advancements in the synthesis and use of radio-NPs as a substitute to seed-based BT. Here, we discuss the limitations of current seed-based BT and advantages of radio-NPs for BT applications. Recent progress on the types of radio-NPs, their features, synthesis methods, and delivery techniques are discussed. The last part of the review focuses on the currently used dosimetry protocols and studies on the dosimetry of nanobrachytherapy applications using radio-NPs. The current challenges and future research directions on the role of radio-NPs in BT treatments are also discussed.
Collapse
Affiliation(s)
- Baljeet Seniwal
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec), Axe Médecine Régénératrice, Québec, QC, Canada
| | - Velaphi C Thipe
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil.,Department of Radiology, Institute of Green Nanotechnology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sukhvir Singh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Telma C F Fonseca
- Departamento de Engenharia Nuclear-Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Freitas de Freitas
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
63
|
Luna J, Zafra J, Areses Manrique MC, Rodríguez A, Sotoca A, Fírvida JL, Chicas-Sett R, Mielgo X, Reyes JCT, Couñago F. New challenges in the combination of radiotherapy and immunotherapy in non-small cell lung cancer. World J Clin Oncol 2021; 12:983-999. [PMID: 34909394 PMCID: PMC8641011 DOI: 10.5306/wjco.v12.i11.983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has represented one of the main medical revolutions of recent decades, and is currently a consolidated treatment for different types of tumors at different stages and scenarios, and is present in a multitude of clinical trials. One of the diseases in which it is most developed is non-small cell lung cancer. The combination of radiotherapy and immunotherapy in cancer in general and lung cancer in particular currently represents one of the main focuses of basic and clinical research in oncology, due to the synergy of this interaction, which can improve tumor response, resulting in improved survival and disease control. In this review we present the biochemical and molecular basis of the interaction between radiotherapy and immunotherapy. We also present the current clinical status of this interaction in each of the stages and cases of non-small cell lung cancer, with the main results obtained in the different studies both in terms of tumor response and survival as well as toxicity. Finally, we mention the main studies underway and the challenges of this interaction in the coming years, including how these treatments should be combined to achieve the greatest efficacy with the fewest possible side effects (dose, type of radiotherapy and drugs, sequence of treatments).
Collapse
Affiliation(s)
- Javier Luna
- Department of Radiation Oncology, Oncohealth Institute, Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Juan Zafra
- Department of Radiation Oncology, Dr. Negrín University Hospital of Gran Canaria, Las Palmas 35010, Spain
| | | | - Aurora Rodríguez
- Department of Radiation Oncology, Ruber International Hospital, Madrid 28034, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Ruber International Hospital, Madrid 28034, Spain
| | - Jose Luis Fírvida
- Department of Medical Oncology, Ourense University Hospital, Ourense 32005, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, Dr. Negrín University Hospital of Gran Canaria, Las Palmas 35010, Spain
| | - Xabier Mielgo
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, Alcorcón 28922, Spain
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario QuirónSalud Madrid, Hospital La Luz, Universidad Europea de Madrid, Madrid 28223, Spain
| |
Collapse
|
64
|
Ma QL, Shen MO, Han N, Xu HZ, Peng XC, Li QR, Yu TT, Li LG, Xu X, Liu B, Chen X, Wang MF, Li TF. Chlorin e6 mediated photodynamic therapy triggers resistance through ATM-related DNA damage response in lung cancer cells. Photodiagnosis Photodyn Ther 2021; 37:102645. [PMID: 34823034 DOI: 10.1016/j.pdpdt.2021.102645] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Photodynamic therapy (PDT) has emerged as a promising strategy in the treatment of malignant tumors due to its high selectivity, non-toxicity, and non-invasiveness. However, PDT can also induce DNA damage and subsequent repair response, which may reduce the efficacy of PDT. In the present study, we sought to explore the effect of chlorin e6 (Ce6)-mediated PDT on DNA damage and DNA damage response (DDR) in lung cancer cells. In addition, the effect of PDT combined with ATM inhibitor on molecules of DDR and the possibility of improving the efficacy of PDT were further investigated. MATERIALS AND METHODS In the in vitro study, lewis cells were submitted to Ce6 treatment (2, 4, 8, 16, 32 μg/mL). To determine the concentration of Ce6, uptake and toxicity of Ce6 mediated PDT were detected using flow cytometry (FACS), Confocal microscopy, and CCK-8. In the subsequent research, 8 μg/mL of Ce6 was the treatment condition for inducing PDT. The different post-irradiation placement times were further grouped under this condition (2, 4, 6, 12 h). Cellular reactive oxygen species (ROS), damage of DNA were measured by DCFH-DA probe, comet assay respectively. Then the expression of p-ATM, p53, and γ-H2A.X proteins related to DNA damage response, was detected by WB. The efficacy of Ce6 induced PDT was also demonstrated by Annexin-V/PI staining as well as the expression of PCNA, cleaved-caspase-3. On this basis, ATM inhibitor was applied to treat lewis cells combined with Ce6 (2, 4 h) to investigate whether the efficacy of PDT induced by Ce6 can be improved after the ATM-related DDR was blocked. The cell viability, apoptosis, and expression of associated proteins were assayed. RESULTS At 2-4 h after PDT treatment, ROS was dramatically elevated in lewis cells, DNA double-strand breaks (DDSB) occurred, as well as up-regulation of DDR proteins γ-H2A.X, p-ATM, and p53. At the same time, lewis cells did not undergo significant apoptosis. After ATM inhibition, the DDR was significantly blocked within 2-4 hours after Ce6 induced PDT, along with a pronounced decrease in cell viability followed by a prominent increase of apoptosis. CONCLUSION Ce6-mediated PDT generates ROS in a short period time, thus inducing DNA damage, ATM-related DDR as well as promoting resistance of lung cancer cells to PDT. Combining ATM inhibitor with PDT could effectively inhibit the DDR induced by PDT, thereby enhancing the efficacy. This study reveals a new resistance mechanism of PDT and proposes an intervention strategy.
Collapse
Affiliation(s)
- Qian-Li Ma
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Mai-Ou Shen
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xing-Chun Peng
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Bin Liu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
65
|
Benadjaoud MA, Soysouvanh F, Tarlet G, Paget V, Buard V, Santos de Andrade H, Morilla I, Dos Santos M, Bertho A, l'Homme B, Gruel G, François A, Mondini M, Deutsch E, Guipaud O, Milliat F. Deciphering the Dynamic Molecular Program of Radiation-Induced Endothelial Senescence. Int J Radiat Oncol Biol Phys 2021; 112:975-985. [PMID: 34808254 DOI: 10.1016/j.ijrobp.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.
Collapse
Affiliation(s)
- Mohamed Amine Benadjaoud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Frédéric Soysouvanh
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; Sorbonne University, Doctoral College, Paris
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Henrique Santos de Andrade
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Ian Morilla
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Morgane Dos Santos
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Annaïg Bertho
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Bruno l'Homme
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Gaëtan Gruel
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif; Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses.
| |
Collapse
|
66
|
Bulgarelli J, Piccinini C, Petracci E, Pancisi E, Granato AM, de Rosa F, Guidoboni M, Petrini M, Ancarani V, Foschi G, Romeo A, Tontini L, De Giorgi U, Lolli C, Gentili G, Valmorri L, Rossi A, Ferroni F, Casadei C, Cortesi P, Crudi L, Ridolfi L. Radiotherapy and High-Dose Interleukin-2: Clinical and Immunological Results of a Proof of Principle Study in Metastatic Melanoma and Renal Cell Carcinoma. Front Immunol 2021; 12:778459. [PMID: 34777395 PMCID: PMC8578837 DOI: 10.3389/fimmu.2021.778459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
High-dose interleukin-2 (HD IL-2) has curative potential in metastatic melanoma (MM) and renal cell carcinoma (RCC). Radiotherapy (RT) kills cancer cells and induces immunomodulatory effects. Prospective trials exploring clinical and immunological properties of combined RT/HD IL-2 are still needed. We designed a phase II, single-arm clinical trial for patients with MM and RCC. The treatment schedule consisted of 3 daily doses of 6-12 Gy of RT to 1-5 non-index metastatic fields, before IL-2 at the first and third treatment cycle. HD IL-2 was administered by continuous infusion for 72 hours and repeated every 3 weeks for up to 4 cycles, thereafter every 4 weeks for a maximum of 2 cycles. The primary endpoint was the immunological efficacy of the combined RT/HD IL-2 treatment (assessed by IFN-γ ELISPOT). Nineteen out of 22 patients were evaluable for immunological and clinical response. Partial response occurred in 3 (15.7%) patients and stable disease was observed in 7 (36.8%). The disease control rate was 52.6% after a median follow up of 39.2 months. According to Common Terminology Criteria for Adverse Events 4.0 (CTCAE 4.0), the majority of toxicities were grade 1-2. Immunological responses were frequent and detected in 16 (84.2%) patients. Increased levels of IL-8 and IL-10 in melanoma, circulating effector memory CD4+ and intratumoral CD8+ T cells in both tumor types were detected after therapy. Overall the treatment was well tolerated and immunologically active. Immunomonitoring and correlative data on tumor and peripheral blood cell subsets suggest that this combination treatment could be a promising strategy for patients progressing after standard treatments.
Collapse
Affiliation(s)
- Jenny Bulgarelli
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Piccinini
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Pancisi
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimo Guidoboni
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Foschi
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Antonino Romeo
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luca Tontini
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Linda Valmorri
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Fabio Ferroni
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Carla Casadei
- Anesthesiology Service, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Pietro Cortesi
- Cardio-Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Crudi
- Oncology Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Ridolfi
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
67
|
Rodríguez Plá M, Dualde Beltrán D, Ferrer Albiach E. Immune Checkpoints Inhibitors and SRS/SBRT Synergy in Metastatic Non-Small-Cell Lung Cancer and Melanoma: A Systematic Review. Int J Mol Sci 2021; 22:ijms222111621. [PMID: 34769050 PMCID: PMC8584181 DOI: 10.3390/ijms222111621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Several immunotherapy (IT) agents are FDA approved for treatment of melanoma and non-small-cell lung cancer (NSCLC). The addition of stereotactic radiosurgery (SRS) or stereotactic body radiation therapy (SBRT) to immunotherapy looks promising. A systematic review was conducted to evaluate the possible synergistic effects of immune checkpoints inhibitors (ICIs) and stereotactic radiation therapy in melanoma and NSCLC. Materials and methods: Pubmed databases from January 2010 to December 2020 were reviewed to identify English language studies reporting control of local and abscopal effect of the combination of ICI-SBRT/SRS in metastatic NSCLC and melanoma cancer. The inclusion criteria were followed according to PICO criteria. Results: Thirty-nine articles were included of the 2141 initial results. The reported rates for local control were 16.5–100% and 40–94% in brain and extracerebral metastases, respectively. Distant/abscopal response rates were 1–45% in extracerebral metastases. Abscopal effect could not be evaluated in brain metastases because it was not reported in studies. Treatments were well tolerated with few grade 4 toxicities and no grade 5. Conclusions: The combined treatment of ICI-SBRT/SRS achieves high local control and non-negligible abscopal response in patients with extracerebral metastases, with its benefit in cerebral metastases being more controversial. Clinical trials are needed to better characterize the potential synergism.
Collapse
|
68
|
Doyen J, Besse B, Texier M, Bonnet N, Levy A. PD-1 iNhibitor and chemotherapy with concurrent IRradiation at VAried tumor sites in advanced Non-small cell lung cAncer: the Prospective Randomized Phase 3 NIRVANA-Lung Trial. Clin Lung Cancer 2021; 23:e252-e256. [PMID: 34810130 DOI: 10.1016/j.cllc.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Advanced non-small cell lung cancer (NSCLC) remains a high unmet medical need. The first line standard-of-care therapy comprises concurrent chemotherapy-immunotherapy with pembrolizumab. Concurrent irradiation with pembrolizumab has been shown to significantly improve survival benefit compared with immunotherapy alone in a pooled analysis of 2 randomized phase 2 trials. We present the rationale and study design of the "PD-1 iNhibitor and chemotherapy with concurrent IRradiation at VAried tumor sites in advanced Non-small cell lung cAncer" (NIRVANA-Lung) trial (ClinicalTrials.gov identifier, NCT03774732). This study is a national multicenter 1:1 randomized phase III trial testing in 460 patients, the addition of multisite radiotherapy in advanced NSCLC treated with standard immune checkpoint inhibitors (pembrolizumab)-chemotherapy in first line. The primary objective of the trial is to compare the overall survival between the 2 arms at year 1 of the study. The secondary objective is to compare the progression-free survival and cancer-specific survival at year 1 and 2, as well as to determine quality of life, local and distant control in irradiated and nonirradiated sites at 6 months and year 1.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Centre Antoine-Lacassagne, University of Côte d'Azur, Fédération Claude-Lalanne, Nice, France.
| | - Benjamin Besse
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | | | - Naima Bonnet
- Research Group in Radiotherapy of Unicancer (UNITRAD), UNICANCER, Paris, France
| | - Antonin Levy
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France; Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy, Villejuif, France.
| |
Collapse
|
69
|
Benković V, Borojević N, Šikić D, Horvat Knežević A, Milić M. DNA damage assessment in peripheral blood of Swiss albino mice after combined exposure to volatile anesthetics and 1 or 2 Gy radiotherapy in vivo. Int J Radiat Biol 2021; 97:1425-1435. [PMID: 34328801 DOI: 10.1080/09553002.2021.1962565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Patient immobilization by general volatile anesthesia (VA) may be necessary during medical radiology treatment, and its use has increased in recent years. Although ionizing radiation (IR) is a well-known genotoxic and cytotoxic agent, and VA exposure has caused a range of side effects among patients and occupationally exposed personnel, there are no studies to date comparing DNA damage effects from combined VA and single fractional IR dose exposure. MATERIAL AND METHODS We investigate whether there is a difference in white blood cells DNA damage response (by the alkaline comet assay) in vivo in 185 healthy Swiss albino mice divided into 37 groups, anesthetized with isoflurane/sevoflurane/halothane and exposed to 1 or 2 Gy of IR. Blood samples were taken after 0, 2, 6 and 24 h after exposure, and comet parameters were measured: tail length, tail intensity and tail moment. The cellular DNA repair index was calculated to quantify the efficiency of cells in repairing and re-joining DNA strand breaks following different treatments. RESULTS In combined exposures, halothane caused higher DNA damage levels that were dose-dependent; sevoflurane damage increase did not differ significantly from the initial 1 Gy dose, and isoflurane even demonstrated a protective effect, particularly in the 2 Gy dose combined exposure. Nevertheless, none of the exposures reached control levels even after 24 h. CONCLUSION Halothane appears to increase the level of radiation-induced DNA damage, while sevoflurane and isoflurane exhibited a protective effect. DNA damage may have been even greater in target organs such as liver, kidney or even the brain, and this is proposed for future study.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nikola Borojević
- Warrington and Halton Teaching Hospitals, NHS Foundation Trust, Lovely Ln, Warrington, UK
| | - Dunja Šikić
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
70
|
Baumann M, Bacchus C. Radiation Oncology - Towards a mission-oriented approach to cancer. Mol Oncol 2021; 14:1429-1430. [PMID: 32615032 PMCID: PMC7332219 DOI: 10.1002/1878-0261.12730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
71
|
Levy A, Roux C, Mercier O, Issard J, Botticella A, Barlesi F, Le Péchoux C. [Radiotherapy for oligometastatic non-small cell lung cancer patients]. Cancer Radiother 2021; 25:517-522. [PMID: 34175225 DOI: 10.1016/j.canrad.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The oligometastatic disease concept suggests that patients with a limited number of metastases have a favorable prognosis. Radical local treatment of oligometastatic patients has then increased given developments in imaging (mainly positron emission tomography and brain magnetic resonance imaging) and access to effective and better tolerated treatments. Stereotactic radiotherapy has the advantage of being noninvasive, allowing a good rate of local control and a limited number of side effects. A better definition of oligometastatic disease, particularly for non-small cell lung cancer (NSCLC), has recently been published. For patients with NSCLC, two randomized phase II trials also suggested that the addition of a radical local treatment results in encouraging survival data, with a good safety profile. A single-arm phase II finally showed a benefit when combining a radical local treatment with an anti-PD1 immunotherapy. This review describes the definitions of oligometastatic disease, the main prospective findings including radiation therapy, and prospects for oligometastatic NSCLC patients.
Collapse
Affiliation(s)
- A Levy
- Gustave-Roussy, département d'oncologie radiothérapie, 94805 Villejuif, France; Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Université Paris-Saclay, Inserm U1030, radiothérapie moléculaire, 94805 Villejuif, France; Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France.
| | - C Roux
- Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Département de radiologie, Gustave-Roussy, 94805 Villejuif, France
| | - O Mercier
- Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France; Département de chirurgie thoracique et vasculaire et transplantation cardiopulmonaire, groupe hospitalier Paris Saint-Joseph-Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - J Issard
- Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Département de chirurgie thoracique et vasculaire et transplantation cardiopulmonaire, groupe hospitalier Paris Saint-Joseph-Marie-Lannelongue, 92350 Le Plessis-Robinson, France
| | - A Botticella
- Gustave-Roussy, département d'oncologie radiothérapie, 94805 Villejuif, France; Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France
| | - F Barlesi
- Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Gustave-Roussy Cancer Campus, Villejuif, France; Aix-Marseille université, Inserm, CNRS, CRCM, Marseille, France
| | - C Le Péchoux
- Gustave-Roussy, département d'oncologie radiothérapie, 94805 Villejuif, France; Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France
| |
Collapse
|
72
|
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98:107895. [PMID: 34171623 DOI: 10.1016/j.intimp.2021.107895] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tumor resistance to therapy modalities is one of the major challenges to the eradication of cancer cells and complete treatment. Tumor includes a wide range of cancer and non-cancer cells that play key roles in the proliferation of cancer cells and suppression of anti-tumor immunity. For overcoming tumor resistance to therapy, it is important to have in-depth knowledge relating to intercellular communications within the tumor microenvironment (TME). TME includes various types of immune cells such as CD4 + T lymphocytes, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, macrophages, and T regulatory cells (Tregs). Furthermore, some non-immune cells like cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs) are involved in the promotion of tumor growth. The interactions between these cells with cancer cells play a key role in tumor growth or inhibition. Resveratrol as a natural agent has shown the ability to modulate the immune system to potentiate anti-tumor immunity and also help to attenuate cancer cells and CSCs resistance. Thus, this review explains how resveratrol can modulate interactions within TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
73
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
74
|
Could Protons Promote Tumor Control by Avoiding Lymphopenia? J Thorac Oncol 2021; 16:e39-e41. [PMID: 34034888 DOI: 10.1016/j.jtho.2021.01.1614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023]
|
75
|
Vatner R, James CD, Sathiaseelan V, Bondra KM, Kalapurakal JA, Houghton PJ. Radiation therapy and molecular-targeted agents in preclinical testing for immunotherapy, brain tumors, and sarcomas: Opportunities and challenges. Pediatr Blood Cancer 2021; 68 Suppl 2:e28439. [PMID: 32827353 DOI: 10.1002/pbc.28439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Despite radiation therapy (RT) being an integral part of the treatment of most pediatric cancers and the recent discovery of novel molecular-targeted agents (MTAs) in this era of precision medicine with the potential to improve the therapeutic ratio of modern chemoradiotherapy regimens, there are only a few preclinical trials being conducted to discover novel radiosensitizers and radioprotectors. This has resulted in a paucity of translational clinical trials combining RT and novel MTAs. This report describes the opportunities and challenges of investigating RT together with MTAs in preclinical testing for immunotherapy, brain tumors, and sarcomas in pediatric oncology. We discuss the need for improving the collaboration between radiation oncologists, biologists, and physicists to improve the reliability, reproducibility, and translational potential of RT-based preclinical research. Current translational clinical trials using RT and MTAs for immunotherapy, brain tumors, and sarcomas are described. The technologic advances in experimental RT, availability of novel experimental tumor models, advances in immunology and tumor biology, and the discovery of novel MTAs together hold considerable promise for good quality preclinical and clinical multimodality research to improve the current rates of survival and toxicity in children afflicted with cancer.
Collapse
Affiliation(s)
- Ralph Vatner
- Radiation Oncology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | | | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| |
Collapse
|
76
|
Otegbeye EE, Mitchem JB, Park H, Chaudhuri AA, Kim H, Mutch MG, Ciorba MA. Immunity, immunotherapy, and rectal cancer: A clinical and translational science review. Transl Res 2021; 231:124-138. [PMID: 33307273 PMCID: PMC8016725 DOI: 10.1016/j.trsl.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Rectal cancer remains a challenging disease to treat. Therapy for locally advanced rectal cancer (LARC), the most frequent presentation, has evolved to include a multimodal approach of radiation, chemotherapy, and surgery. While this approach improves local disease control, the distant recurrence rate is nearly 30% and treatment-related morbidity is substantial, thus underscoring the need for new therapeutic approaches with better efficacy and lower side effects. Immunotherapy could potentially fill this need, but its promise is not yet realized in rectal cancer. In this translational science review, we address what is known about how cytotoxic therapies shape rectal cancer immunity and potentially prime the tumor microenvironment for response to immune checkpoint inhibitors and other immunotherapies. We also address the role of current immunotherapies in colorectal cancer and highlight where novel immunotherapy approaches are currently being evaluated in LARC. Finally, we address important future directions in LARC immunotherapy including the need to define optimal therapeutic sequencing, predictive biomarkers, strategies to limit treatment-related side effects and the potential of gut microbiome manipulation to improve outcomes. In summary, this review provides a framework to guide future research and inform immunotherapy trial design so as to advance rectal cancer care.
Collapse
Affiliation(s)
- Ebunoluwa E Otegbeye
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan B Mitchem
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri; Surgical Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Haeseong Park
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Aadel A Chaudhuri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri; Department of Computer Science & Engineering, Washington University, St. Louis, Missouri
| | - Hyun Kim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew G Mutch
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, Section of Colorectal Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Ciorba
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri; Inflammatory Bowel Diseases Center and the Division of Gastroenterology, Washington University in Saint Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
77
|
Yang J, Bi F, Gou H. Complete Pathologic Response After Concurrent Treatment with Pembrolizumab and Radiotherapy in Metastatic Colorectal Cancer: A Case Report. Onco Targets Ther 2021; 14:2555-2561. [PMID: 33880034 PMCID: PMC8053529 DOI: 10.2147/ott.s298333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Due to specific genetic characteristics, therapeutic options for colorectal cancer (CRC) with DNA mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) are limited. Although programmed death 1 (PD-1) blockade has been shown to be highly effective therapy for dMMR/MSI-H CRC, there is a need to develop new therapeutic paradigms to further improve survival rates of patients with dMMR/MSI-H CRC. So far, there is no case report on the use of immunotherapy combined with radiotherapy (RT) for the treatment of dMMR/MSI-H metastatic CRC (mCRC). Here, we report a 64-year-old patient diagnosed with mCRC who experienced a complete pathological response (pCR) after successfully conversion treatment with pembrolizumab and RT, and remains to be tumor-free during a follow-up of 11 months while off therapy. Immunohistochemical staining for MLH1, MSH2, MSH6, and PMS2 on the intestinal biopsy samples revealed loss of MLH1 and PMS2 protein expression. The present case report adds to the limited data on the safety and effectiveness of local RT combined with immunotherapy for patients with dMMR/MSI-H mCRC. This combination therapy appears to be a potential treatment for dMMR/MSI-H mCRC and deserves further exploration.
Collapse
Affiliation(s)
- Jian Yang
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Feng Bi
- Department of Medical Oncology, Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Hongfeng Gou
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| |
Collapse
|
78
|
Amini P, Nodooshan SJ, Ashrafizadeh M, Eftekhari SM, Aryafar T, Khalafi L, Musa AE, Mahdavi SR, Najafi M, Farhood B. Resveratrol Induces Apoptosis and Attenuates Proliferation of MCF-7 Cells in Combination with Radiation and Hyperthermia. Curr Mol Med 2021; 21:142-150. [PMID: 32436827 DOI: 10.2174/1566524020666200521080953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/22/2022]
Abstract
AIM In the current in vitro study, we tried to examine the possible role of resveratrol as a sensitizer in combination with radiotherapy or hyperthermia. BACKGROUND Breast cancer is the most common malignancy for women and one of the most common worldwide. It has been suggested that using non-invasive radiotherapy alone cannot eliminate cancer cells. Hyperthermia, which is an adjuvant modality, induces cancer cell death mainly through apoptosis and necrosis. However, cancer cells can also develop resistance to this modality. OBJECTIVE The objective of this study was to determine possible potentiation of apoptosis when MCF-7 cells treated with resveratrol before hyperthermia or radiotherapy. METHODS MCF-7 cancer cells were treated with different doses of resveratrol to achieve IC50%. Afterwards, cells treated with the achieved concentration of resveratrol were exposed to radiation or hyperthermia. Proliferation, apoptosis and the expression of pro-apoptotic genes were evaluated using flow cytometry, MTT assay and real-time PCR. Results for each combination therapy were compared to radiotherapy or hyperthermia without resveratrol. RESULTS Both irradiation or hyperthermia could reduce the viability of MCF-7 cells. Furthermore, the regulation of Bax and caspase genes increased, while Bcl-2 gene expression reduced. Resveratrol potentiated the effects of radiation and hyperthermia on MCF-7 cells. CONCLUSION Results of this study suggest that resveratrol is able to induce the regulation of pro-apoptotic genes and attenuate the viability of MCF-7 cells. This may indicate the sensitizing effect of resveratrol in combination with both radiotherapy and hyperthermia.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Jafari Nodooshan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Tayebeh Aryafar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khalafi
- Omid Tehran Radiation Oncology Center, Physics Section, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
79
|
Zhang T, Zheng S, Liu Y, Li X, Wu J, Sun Y, Liu G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair (Amst) 2021; 102:103112. [PMID: 33838550 DOI: 10.1016/j.dnarep.2021.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Ovarian cancer has a poor prognosis due to drug resistance, relapse and metastasis. In recent years, immunotherapy has been applied in numerous cancers clinically. However, the effect of immunotherapy monotherapy in ovarian cancer is limited. DNA damage response (DDR) is an essential factor affecting the efficacy of tumor immunotherapy. Defective DNA repair may lead to carcinogenesis and tumor genomic instability, but on the other hand, it may also portend particular vulnerability of tumors and can be used as biomarkers for immunotherapy patient selection. Programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway mediates tumor immune escape, which may be a promising target for immunotherapy. Therefore, further understanding of the mechanism of PD-L1 expression after DDR may help guide the development of immunotherapy in ovarian cancer. In this review, we present the DNA damage repair pathway and summarize how DNA damage repair affects the PD-1/PD-L1 pathway in cancer cells. And then we look for biomarkers that affect efficacy or prognosis. Finally, we review the progress of PD-1/PD-L1-based immunotherapy in combination with other therapies that may affect the DDR pathway in ovarian cancer.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Shuangshuang Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yang Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| |
Collapse
|
80
|
De Martino M, Daviaud C, Vanpouille-Box C. Radiotherapy: An immune response modifier for immuno-oncology. Semin Immunol 2021; 52:101474. [PMID: 33741223 DOI: 10.1016/j.smim.2021.101474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
The ability of radiotherapy to enhance antigenicity and adjuvanticity of an irradiated tumor has stimulated the interest for its combination with immuno-oncology agents. However, radiotherapy often generates multiple layers of host responses which likely depends on the tumor biology, the immune cell infiltration and the induction of immunosuppressive signals post radiotherapy. Consequently, translation of preclinical findings to the clinic is more convoluted than anticipated which underscore the need to decipher molecular and cellular mechanisms elicited by radiotherapy. Here we review pro-inflammatory and immunosuppressive mechanisms triggered by radiotherapy that impact the outcome of antigen specific T cell killing and discuss how radiation-induced immunostimulatory mechanisms can be exploited to reactivate the host's immune system, especially in the context of immunotherapy.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
81
|
Shin SW, Yang K, Lee M, Moon J, Son A, Kim Y, Choi S, Kim DH, Choi C, Lee N, Park HC. Manganese Ferrite Nanoparticles Enhance the Sensitivity of Hepa1-6 Hepatocellular Carcinoma to Radiation by Remodeling Tumor Microenvironments. Int J Mol Sci 2021; 22:ijms22052637. [PMID: 33807943 PMCID: PMC7961905 DOI: 10.3390/ijms22052637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
We evaluated the effect of manganese ferrite nanoparticles (MFN) on radiosensitization and immunologic responses using the murine hepatoma cell line Hepa1-6 and the syngeneic mouse model. The clonogenic survival of Hepa1-6 cells was increased by hypoxia, while being restricted by ionizing radiation (IR) and/or MFN. Although MFN suppressed HIF-1α under hypoxia, the combination of IR and MFN enhanced apoptosis and DNA damage in Hepa1-6 cells. In the Hepa1-6 syngeneic mouse model, the combination of IR and MFN notably limited the tumor growth compared to the single treatment with IR or MFN, and also triggered more frequent apoptosis in tumor tissues than that observed under other conditions. Increased expression of PD-L1 after IR was not observed with MFN alone or the combination of IR and MFN in vitro and in vivo, and the percentage of tumor-infiltrating T cells and cytotoxic T cells increased with MFN, regardless of IR, in the Hepa1-6 syngeneic mouse model, while IR alone led to T cell depletion. MFN might have the potential to overcome radioresistance by alleviating hypoxia and strengthening antitumor immunity in the tumor microenvironment.
Collapse
Affiliation(s)
- Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
- Department of Medicine, Samsung Medical Center, Sungkyunwan University School of Medicine, Seoul 06351, Korea
| | - Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
- Department of Medicine, Samsung Medical Center, Sungkyunwan University School of Medicine, Seoul 06351, Korea
| | - Miso Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea; (M.L.); (J.M.)
| | - Jiyoung Moon
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea; (M.L.); (J.M.)
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
| | - Yeeun Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
| | - Suha Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
| | - Do-hyung Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea; (M.L.); (J.M.)
- Correspondence: (N.L.); (H.C.P.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (S.-W.S.); (K.Y.); (A.S.); (Y.K.); (S.C.); (D.-h.K.); (C.C.)
- Department of Medicine, Samsung Medical Center, Sungkyunwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (N.L.); (H.C.P.)
| |
Collapse
|
82
|
Meng J, Su R, Wang L, Yuan B, Li L. Inhibitory effect and mechanism of action (MOA) of hirsutine on the proliferation of T-cell leukemia Jurkat clone E6-1 cells. PeerJ 2021; 9:e10692. [PMID: 33604171 PMCID: PMC7863788 DOI: 10.7717/peerj.10692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background The bark of Uncaria rhynchophylla has been traditionally used to treat convulsion, bleeding, hypertension, auto-immune conditions, cancer, and other diseases. The main focus of this research is done for the purpose of exploring the antitumor activity and mechanism of action (MOA) for hirsutine isolated from U. rhynchophylla. Methods Jurkat clone E6-1 cells were treated using 10, 25 and 50 μM for 48 h. Inhibition of cell proliferation due to hirsutine treatment was evaluated by CCK8 assay. Flow cytometry was applied to ascertain Jurkat cell cycle progression and apoptosis after treatment with 10, 25 and 50 μM hirsutine for 48 h. The expression and level of the apoptosis-related genes and proteins was analyzed by Real-time Quantitative polymerase chain reaction (qPCR) and Western blotting method, respectively. Results CCK8 analyses revealed that hirsutine could significantly inhibit the proliferation of Jurkat clone E6-1 cells, in a concentration and time-dependent fashion. Flow cytometry assays revealed that hirsutine could drive apoptotic death and G0/G1 phase arrest in Jurkat cells. Apoptotic cells frequencies were 4.99 ± 0.51%, 13.69 ± 2.00% and 40.21 ± 15.19%, and respective cell cycle arrest in G0/G1 accounted for 34.85 ± 1.81%, 42.83 ± 0.70% and 49.12 ± 4.07%. Simultaneously, compared with the control group, Western blot assays indicated that the up-regulation of pro-apoptotic Bax, cleaved-caspase3, cleaved-caspase9 and Cyto c proteins, as well as the down-regulation of Bcl-2 protein which guards against cell death, might be correlated with cell death induction and inhibition of cell proliferation. QPCR analyses indicated that hirsutine could diminish BCL2 expression and, at the same time, improve Bax, caspase-3 and caspase-9 mRNA levels, thus reiterating a putative correlation of hirsutine treatment in vitro with apoptosis induction and inhibition of cell proliferation (p-value < 0.05). Excessive hirsutine damages the ultrastructure in mitochondria, leading to the release of Cyt c from the mitochondria to cytoplasm in Jurkat clone E6-1 cells, thereby inducing the activated caspase cascade apoptosis process through a mitochondria-mediated pathway. Conclusion An important bioactive constituent-hirsutine-appears to have antitumor effects in human T-cell leukemia, thus enlightening the use of phytomedicines as a novel source for tumor therapy. It is speculated that hirsutine may induce apoptosis of Jurkat Clone E6-1 cells through the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Jie Meng
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Su
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luping Wang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Yuan
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
83
|
Romano E, Honeychurch J, Illidge TM. Radiotherapy-Immunotherapy Combination: How Will We Bridge the Gap Between Pre-Clinical Promise and Effective Clinical Delivery? Cancers (Basel) 2021; 13:457. [PMID: 33530329 PMCID: PMC7865752 DOI: 10.3390/cancers13030457] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations.
Collapse
Affiliation(s)
- Erminia Romano
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Jamie Honeychurch
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Timothy M. Illidge
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
- Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
84
|
Kwon M, Jung H, Nam GH, Kim IS. The right Timing, right combination, right sequence, and right delivery for Cancer immunotherapy. J Control Release 2021; 331:321-334. [PMID: 33434599 DOI: 10.1016/j.jconrel.2021.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy (CI) represented by immune checkpoint inhibitors (ICIs) presents a new paradigm for cancer treatment. However, the types of cancer that attain a therapeutic benefit from ICIs are limited, and the efficacy of these treatments does not meet expectations. To date, research on ICIs has mainly focused on identifying biomarkers and patient characteristics that can enhance the therapeutic effect on tumors. However, studies on combinational strategies for CI are being actively conducted to overcome the resistance to ICI treatment. Moreover, it has been confirmed that dramatic anticancer effects are achieved through "neoadjuvant" immunotherapy with ICIs in treatment-naïve cancer patients; consequently, it has become necessary to consider how to best apply cancer immunotherapies for patients, even with respect to their tumor stages. In this review, we sought to discuss the right timing of ICI treatment in consideration of the progression of cancer with a changing tumor-immune microenvironment. Furthermore, we investigated which types of combinational treatments and their corresponding sequences of administration could optimize the therapeutic effect of ICIs to expand the applicable target of ICIs and increase their therapeutic efficacy. Finally, we discussed several delivery pathways and methods that can maximize the effect of ICIs.
Collapse
Affiliation(s)
- Minsu Kwon
- Korea University Anam Hospital, Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Hanul Jung
- Korea University Anam Hospital, Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, Republic of Korea.
| |
Collapse
|
85
|
Lin X, Deng H, Chen L, Wu D, Chen X, Yang Y, Chen T, Xie X, Xie Z, Liu M, Ouyang M, Qin Y, Li S, Zhong N, Gregg JP, Horita N, Song Y, Zhou C. Clinical types of checkpoint inhibitor-related pneumonitis in lung cancer patients: a multicenter experience. Transl Lung Cancer Res 2021; 10:415-429. [PMID: 33569323 PMCID: PMC7867788 DOI: 10.21037/tlcr-20-1258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Checkpoint inhibitor-related pneumonitis (CIP) is not well classified according to clinical factors. We propose different clinical sub-types of CIP based on clinical factors and investigated the corresponding clinical features, treatments, and outcomes. Methods We conducted a multicenter retrospective study of patients with lung cancer (including non-small cell lung cancer and small cell lung cancer) who developed CIP. The clinical characteristics, radiologic features, treatments, and outcomes of CIP were analyzed. Results A total of 55 patients developed CIP and were classified into 3 groups as follows: 21 in the pure type (PT) group, 14 in the induced type (IT) group, and 20 in the mixed type (MT) group. The incidence of severe (grade 3–5) pneumonitis was significantly higher in the IT group than in the PT and MT groups (71.4% vs. 14.3% vs. 50.0%, P=0.002). Antiviral therapy was significantly more frequent in the IT group than in the PT and MT groups. Antibiotic therapy was administered in 23.8%, 71.4%, and 80.0% of patients with the PT, IT, and MT, respectively. The improvement time in the PT group was longer than that in the IT and MT groups (0.9 vs. 0.5 vs. 0.3 months, P=0.028). Patients with the PT had a better tumor response to immune checkpoint inhibitors (ICIs) than those with the other 2 types [overall response rate (ORR), 78% vs. 31% vs. 44%, P=0.027]. Conclusions The clinical classification of CIP may favor strategies for treatments and predict the tumor response to ICIs.
Collapse
Affiliation(s)
- Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Di Wu
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaobo Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yilin Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jeffrey P Gregg
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yong Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
86
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
87
|
Storozynsky Q, Hitt MM. The Impact of Radiation-Induced DNA Damage on cGAS-STING-Mediated Immune Responses to Cancer. Int J Mol Sci 2020; 21:E8877. [PMID: 33238631 PMCID: PMC7700321 DOI: 10.3390/ijms21228877] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is a major modality used to combat a wide range of cancers. Classical radiobiology principles categorize ionizing radiation (IR) as a direct cytocidal therapeutic agent against cancer; however, there is an emerging appreciation for additional antitumor immune responses generated by this modality. A more nuanced understanding of the immunological pathways induced by radiation could inform optimal therapeutic combinations to harness radiation-induced antitumor immunity and improve treatment outcomes of cancers refractory to current radiotherapy regimens. Here, we summarize how radiation-induced DNA damage leads to the activation of a cytosolic DNA sensing pathway mediated by cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING). The activation of cGAS-STING initiates innate immune signaling that facilitates adaptive immune responses to destroy cancer. In this way, cGAS-STING signaling bridges the DNA damaging capacity of IR with the activation of CD8+ cytotoxic T cell-mediated destruction of cancer-highlighting a molecular pathway radiotherapy can exploit to induce antitumor immune responses. In the context of radiotherapy, we further report on factors that enhance or inhibit cGAS-STING signaling, deleterious effects associated with cGAS-STING activation, and promising therapeutic candidates being investigated in combination with IR to bolster immune activation through engaging STING-signaling. A clearer understanding of how IR activates cGAS-STING signaling will inform immune-based treatment strategies to maximize the antitumor efficacy of radiotherapy, improving therapeutic outcomes.
Collapse
Affiliation(s)
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| |
Collapse
|
88
|
Seledtsov VI, von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther 2020; 21:323-342. [PMID: 32981358 DOI: 10.1080/14712598.2021.1828338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The immune system is able to exert both tumor-destructive and tumor-protective functions. Immunotherapeutic technologies aim to enhance immune-based anti-tumor activity and (or) weaken tumor-protective immunity. AREAS COVERED Cancer vaccination, antibody (Ab)-mediated cytotoxicity, Ab-based checkpoint molecule inhibition, Ab-based immunostimulation, cytokine therapy, oncoviral therapy, drug-mediated immunostimulation, exovesicular therapy, anti-inflammatory therapy, neurohormonal immunorehabilitation, metabolic therapy, as well as adoptive cell immunotherapy, could be coherently used to synergize and amplify each other in achieving robust anti-cancer responses in cancer patients. Tumor-specific immunotherapy applied at early stages is capable of eliminating remaining tumor cells after surgery, thus preventing the development of minimal residual disease. Patients with advanced disease stages could benefit from combined immunotherapy, which would be aimed at providing tumor cell/mass dormancy. Traditional therapeutic anti-cancer interventions (chemoradiotherapy, hyperthermia, anti-hormonal therapy) could significantly enhance tumor sensitivity to anti-cancer immunotherapy. It is important that lower-dose (metronomic) chemotherapy regimens, which are well-tolerated by normal cells, could advance immune-mediated control over tumor growth. EXPERT OPINION We envisage that combined immunotherapy regimens in the context of traditional treatment could become the mainstream modality for treating cancers in all phases of the tumorigenesis. The effectiveness of the anti-cancer treatment could be monitored by the following blood parameters: C-reactive protein, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Integral Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| | - Alexei von Delwig
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| |
Collapse
|
89
|
Yuasa T. Editorial Comment from Dr Yuasa to Possible abscopal effect after discontinuation of nivolumab in metastatic renal cell carcinoma. IJU Case Rep 2020; 3:218. [PMID: 32914081 PMCID: PMC7469836 DOI: 10.1002/iju5.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Takeshi Yuasa
- Department of UrologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
90
|
Berns A, Ringborg U, Celis JE, Heitor M, Aaronson NK, Abou‐Zeid N, Adami H, Apostolidis K, Baumann M, Bardelli A, Bernards R, Brandberg Y, Caldas C, Calvo F, Dive C, Eggert A, Eggermont A, Espina C, Falkenburg F, Foucaud J, Hanahan D, Helbig U, Jönsson B, Kalager M, Karjalainen S, Kásler M, Kearns P, Kärre K, Lacombe D, de Lorenzo F, Meunier F, Nettekoven G, Oberst S, Nagy P, Philip T, Price R, Schüz J, Solary E, Strang P, Tabernero J, Voest E. Towards a cancer mission in Horizon Europe: recommendations. Mol Oncol 2020; 14:1589-1615. [PMID: 32749074 PMCID: PMC7400777 DOI: 10.1002/1878-0261.12763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research-care-prevention continuum has the potential to achieve in 2030 a 10-year cancer-specific survival for 75% of patients diagnosed in European Union (EU) member states with a well-developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high-quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science-driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC-like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long-term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans-border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence-based advice.
Collapse
|
91
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86:106761. [PMID: 32629409 DOI: 10.1016/j.intimp.2020.106761] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is one of the most common modalities for the treatment of cancer. One of the most promising effects of radiotherapy is immunologic cell death and the release of danger alarms, which are known as damage-associated molecular patterns (DAMPs). DAMPs are able to trigger cancer cells and other cells within tumor microenvironment (TME), either for suppression or promotion of tumor growth. Heat shock proteins (HSPs) including HSP70 and HSP90, high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) and its metabolites such as adenosine are the most common danger alarms that are released after radiotherapy-induced immunologic cell death. Some DAMPs including adenosine is able to interact with both cancer cells as well as other cells in TME to promote tumor growth and resistance to radiotherapy. However, others are able to trigger anti-tumor immunity or both tumor suppressive and immunosuppressive mechanisms depending on affected cells. In this review, we explain the mechanisms behind the release of radiation-induced DAMPs, and its consequences on cells within tumor. Targeting of these mechanisms may be in favor of tumor control in combination with radiotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
92
|
Krause M, Alsner J, Linge A, Bütof R, Löck S, Bristow R. Specific requirements for translation of biological research into clinical radiation oncology. Mol Oncol 2020; 14:1569-1576. [PMID: 32175659 PMCID: PMC7332213 DOI: 10.1002/1878-0261.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy has been optimized over the last decades not only through technological advances, but also through the translation of biological knowledge into clinical treatment schedules. Optimization of fractionation schedules and/or the introduction of simultaneous combined systemic treatment have significantly improved tumour cure rates in several cancer types. With modern techniques, we are currently able to measure factors of radiation resistance or radiation sensitivity in patient tumours; the definition of new biomarkers is expected to further enable personalized treatments. In this Review article, we overview important translation paths and summarize the quality requirements for preclinical and translational studies that will help to avoid bias in trial results.
Collapse
Affiliation(s)
- Mechthild Krause
- German Cancer Consortium (DKTK)Partner Site DresdenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- OncoRay ‐ National Center for Radiation Research in OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusHelmholtz‐Zentrum Dresden – RossendorfTU DresdenGermany
- Department of Radiotherapy and Radiation OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusTU DresdenGermany
- Helmholtz‐Zentrum Dresden ‐ RossendorfInstitute of Radiooncology – OncoRayDresdenGermany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), HeidelbergGermany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, DresdenGermany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR)DresdenGermany
| | - Jan Alsner
- Department of Experimental Clinical OncologyAarhus University HospitalDenmark
| | - Annett Linge
- German Cancer Consortium (DKTK)Partner Site DresdenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- OncoRay ‐ National Center for Radiation Research in OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusHelmholtz‐Zentrum Dresden – RossendorfTU DresdenGermany
- Department of Radiotherapy and Radiation OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusTU DresdenGermany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), HeidelbergGermany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, DresdenGermany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR)DresdenGermany
| | - Rebecca Bütof
- German Cancer Consortium (DKTK)Partner Site DresdenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- OncoRay ‐ National Center for Radiation Research in OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusHelmholtz‐Zentrum Dresden – RossendorfTU DresdenGermany
- Department of Radiotherapy and Radiation OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusTU DresdenGermany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), HeidelbergGermany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, DresdenGermany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR)DresdenGermany
| | - Steffen Löck
- German Cancer Consortium (DKTK)Partner Site DresdenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
- OncoRay ‐ National Center for Radiation Research in OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusHelmholtz‐Zentrum Dresden – RossendorfTU DresdenGermany
- Department of Radiotherapy and Radiation OncologyFaculty of MedicineUniversity Hospital Carl Gustav CarusTU DresdenGermany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), HeidelbergGermany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, DresdenGermany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR)DresdenGermany
| | - Rob Bristow
- Translational OncogenomicsCRUK Manchester Institute and CentreDivision of Cancer SciencesUniversity of ManchesterUK
| |
Collapse
|
93
|
Baumann M, Ebert N, Kurth I, Bacchus C, Overgaard J. What will radiation oncology look like in 2050? A look at a changing professional landscape in Europe and beyond. Mol Oncol 2020; 14:1577-1585. [PMID: 32463984 PMCID: PMC7332208 DOI: 10.1002/1878-0261.12731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
The number of newly diagnosed cancers per year is predicted to almost double in the next two decades worldwide, and it remains unclear if and when this alarming trend will level off or even reverse. As such, cancer is very likely to continue to pose a major threat to human health. Radiation oncology is an indispensable pillar of cancer treatment and a well‐developed discipline. Nevertheless, key trends in cancer research and care, including improved primary prevention, early detection, integrated multidisciplinary approaches, personalized strategies at all levels of care, value‐based assessments of healthcare systems, and global health perspectives, will all shape the future of radiation oncology. Broader scientific advances, such as rapid progress in digitization, automation, and in our biological understanding of cancer, as well as the wider societal view of healthcare systems will also influence radiation oncology and how it is practiced. To stimulate a proactive discussion on how to adapt and reshape our discipline, this review provides some predictions on what the role and practice of radiation oncology might look like in 30 years’ time.
Collapse
Affiliation(s)
- Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Ruprecht-Karls-University, Heidelberg, Germany
| | - Nadja Ebert
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
94
|
Valentini V, Boldrini L, Mariani S, Massaccesi M. Role of radiation oncology in modern multidisciplinary cancer treatment. Mol Oncol 2020; 14:1431-1441. [PMID: 32418368 PMCID: PMC7332217 DOI: 10.1002/1878-0261.12712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer care is moving from a disease‐focused management toward a patient‐centered tailored approach. Multidisciplinary management that aims to define individual, optimal treatment strategies through shared decision making between healthcare professionals and patient is a fundamental aspect of high‐quality cancer care and often includes radiation oncology. Advances in technology and radiobiological research allow to deliver ever more tailored radiation treatments in an ever easier and faster way, thus improving the efficacy, safety, and accessibility of radiation therapy. While these changes are improving quality of cancer care, they are also enormously increasing complexity of decision making, thus challenging the ability to deliver quality affordable cancer care. In this review, we provide an updated outline of the role of radiation oncology in the modern multidisciplinary treatment of cancer. Particularly, we focus on the way some developments in key areas of cancer management are challenging multidisciplinary cancer care in the different clinical settings of early, locally advanced, and metastatic disease, thus highlighting some priority areas of research.
Collapse
Affiliation(s)
- Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Istituto di Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Silvia Mariani
- Istituto di Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Mariangela Massaccesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
95
|
Botticella A, Levy A, Pechoux CL. Multimodal approach: combining radiation therapy with immunotherapy in solid tumors. Future Oncol 2020; 16:1669-1671. [DOI: 10.2217/fon-2020-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, Institut d’Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, F-94805, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d’Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, F-94805, France
- Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, F-94270, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Institut d’Oncologie Thoracique (IOT), Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
96
|
Chargari C, Levy A, Paoletti X, Soria JC, Massard C, Weichselbaum RR, Deutsch E. Methodological Development of Combination Drug and Radiotherapy in Basic and Clinical Research. Clin Cancer Res 2020; 26:4723-4736. [PMID: 32409306 DOI: 10.1158/1078-0432.ccr-19-4155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Newer technical improvements in radiation oncology have been rapidly implemented in recent decades, allowing an improved therapeutic ratio. The development of strategies using local and systemic treatments concurrently, mainly targeted therapies, has however plateaued. Targeted molecular compounds and immunotherapy are increasingly being incorporated as the new standard of care for a wide array of cancers. A better understanding of possible prior methodology issues is therefore required and should be integrated into upcoming early clinical trials including individualized radiotherapy-drug combinations. The outcome of clinical trials is influenced by the validity of the preclinical proofs of concept, the impact on normal tissue, the robustness of biomarkers and the quality of the delivery of radiation. Herein, key methodological aspects are discussed with the aim of optimizing the design and implementation of future precision drug-radiotherapy trials.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xavier Paoletti
- University of Versailles St. Quentin, France
- Institut Curie INSERM U900, Biostatistics for Personalized Medicine Team, St. Cloud, France
| | | | - Christophe Massard
- Université Paris-Sud, Orsay, France
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
97
|
Hader M, Savcigil DP, Rosin A, Ponfick P, Gekle S, Wadepohl M, Bekeschus S, Fietkau R, Frey B, Schlücker E, Gaipl US. Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers (Basel) 2020; 12:cancers12051082. [PMID: 32349284 PMCID: PMC7281749 DOI: 10.3390/cancers12051082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
The treatment of breast cancer by radiotherapy can be complemented by hyperthermia. Little is known about how the immune phenotype of tumor cells is changed thereby, also in terms of a dependence on the heating method. We developed a sterile closed-loop system, using either a warm-water bath or a microwave at 2.45 GHz to examine the impact of ex vivo hyperthermia on cell death, the release of HSP70, and the expression of immune checkpoint molecules (ICMs) on MCF-7 and MDA-MB-231 breast cancer cells by multicolor flow cytometry and ELISA. Heating was performed between 39 and 44 °C. Numerical process simulations identified temperature distributions. Additionally, irradiation with 2 × 5 Gy or 5 × 2 Gy was applied. We observed a release of HSP70 after hyperthermia at all examined temperatures and independently of the heating method, but microwave heating was more effective in cell killing, and microwave heating with and without radiotherapy increased subsequent HSP70 concentrations. Adding hyperthermia to radiotherapy, dynamically or individually, affected the expression of the ICM PD-L1, PD-L2, HVEM, ICOS-L, CD137-L, OX40-L, CD27-L, and EGFR on breast cancer cells. Well-characterized pre-clinical heating systems are mandatory to screen the immune phenotype of tumor cells in clinically relevant settings to define immune matrices for therapy adaption.
Collapse
Affiliation(s)
- Michael Hader
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Deniz Pinar Savcigil
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Andreas Rosin
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Philipp Ponfick
- Chair for Ceramic Materials Engineering, Keylab Glass Technology, University of Bayreuth, 95447 Bayreuth, Germany; (A.R.); (P.P.)
| | - Stephan Gekle
- Biofluid Simulations and Modeling, Fachbereich Physik, University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
| | - Eberhard Schlücker
- Department of Chemical and Biological Engineering, Institute of Process Machinery and Systems Engineering (iPAT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.H.); (D.P.S.); (R.F.); (B.F.)
- Correspondence: ; Tel.: +49-9131-8544-258; Fax: +49-9131-8539-335
| |
Collapse
|
98
|
Fiorino C, Guckemberger M, Schwarz M, van der Heide UA, Heijmen B. Technology-driven research for radiotherapy innovation. Mol Oncol 2020; 14:1500-1513. [PMID: 32124546 PMCID: PMC7332218 DOI: 10.1002/1878-0261.12659] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Technology has a pivotal role in the continuous development of radiotherapy. The long road toward modern ‘high‐tech’ radiation oncology has been studded with discoveries and technological innovations that resulted from the interaction of various disciplines. In the last decades, a dramatic technology‐driven revolution has hugely improved the capability of accurately and safely delivering complex‐shaped dose distributions. This has contributed to many clinical improvements, such as the successful management of lung cancer and oligometastatic disease through stereotactic body radiotherapy. Technology‐driven research is an active and lively field with promising potential in several domains, including image guidance, adaptive radiotherapy, integration of artificial intelligence, heavy‐particle therapy, and ‘flash’ ultra‐high dose‐rate radiotherapy. The evolution toward personalized Oncology will deeply influence technology‐driven research, aiming to integrate predictive models and omics analyses into fast and efficient solutions to deliver the best treatment for each single patient. Personalized radiation oncology will need affordable technological solutions for middle‐/low‐income countries, as these are expected to experience the highest increase of cancer incidence and mortality. Moreover, technology solutions for automation of commissioning, quality assurance, safety tests, image segmentation, and plan optimization will be required. Although a large fraction of cancer patients receive radiotherapy, this is certainly not reflected in the worldwide budget for radiotherapy research. Differently from the pharmaceutical companies‐driven research, resources for research in radiotherapy are highly limited to equipment vendors, who can, in turn, initiate a limited number of collaborations with academic research centers. Thus, enhancement of investments in technology‐driven radiotherapy research via public funds, national governments, and the European Union would have a crucial societal impact. It would allow for radiotherapy to further strengthen its role as a highly effective and cost‐efficient cancer treatment modality, and it could facilitate a rapid and equalitarian large‐scale transfer of technology to clinic, with direct impact on patient care.
Collapse
Affiliation(s)
- Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Matthias Guckemberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Marco Schwarz
- Protontherapy Department, Trento Hospital and TIFPA-INFN, Trento, Italy
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ben Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
99
|
Zhou K, Guo S, Li F, Sun Q, Liang G. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2020; 8:569219. [PMID: 33178688 PMCID: PMC7593554 DOI: 10.3389/fcell.2020.569219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
As a classical immune checkpoint molecule, PD-L1 on the surface of tumor cells plays a pivotal role in tumor immunosuppression, primarily by inhibiting the antitumor activities of T cells by binding to its receptor PD-1. PD-1/PD-L1 inhibitors have demonstrated unprecedented promise in treating various human cancers with impressive efficacy. However, a significant portion of cancer patients remains less responsive. Therefore, a better understanding of PD-L1-mediated immune escape is imperative. PD-L1 can be expressed on the surface of tumor cells, but it is also found to exist in extracellular forms, such as on exosomes. Recent studies have revealed the importance of exosomal PD-L1 (ExoPD-L1). As an alternative to membrane-bound PD-L1, ExoPD-L1 produced by tumor cells also plays an important regulatory role in the antitumor immune response. We review the recent remarkable findings on the biological functions of ExoPD-L1, including the inhibition of lymphocyte activities, migration to PD-L1-negative tumor cells and immune cells, induction of both local and systemic immunosuppression, and promotion of tumor growth. We also discuss the potential implications of ExoPD-L1 as a predictor for disease progression and treatment response, sensitive methods for detection of circulating ExoPD-L1, and the novel therapeutic strategies combining the inhibition of exosome biogenesis with PD-L1 blockade in the clinic.
Collapse
Affiliation(s)
- Kaijian Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo,
| | - Fei Li
- Department of Pharmaceutical Science, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxin Liang
- Cancer Therapy Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|