51
|
Zhang W, Ding M, Zhang H, Shang H, Zhang A. Tumor Acidity and Near-Infrared Light Responsive Drug Delivery MoS 2-Based Nanoparticles for Chemo-Photothermal Therapy. Photodiagnosis Photodyn Ther 2022; 38:102716. [PMID: 35021109 DOI: 10.1016/j.pdpdt.2022.102716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023]
Abstract
The rational design of tumor microenvironment (TME)- multifunctional stimuli-responsive nanocomposites is appealing for effective cancer treatment. However, multidrug resistance remains the main obstacles to construct responsive oncotherapy. Herein, a novel MoS2/PDA-TPP nanocomposite loaded with chemotherapy drug of doxorubicin (DOX) is designed for TME dual-response and synergistically enhanced anti-tumor therapy based on the tumor-specific mitochondria accumulation ability and photothermal (PTT) therapy. In detail, the designed MoS2/PDA-TPP nanoplatform can act as a pH-responsive dissociation to endow fast release of DOX under an acidic TME and simultaneously improve the efficiency of PTT. Moreover, the mechanism shows that MoS2/PDA-TPP trigger mitochondrial-dependent apoptosis by producing reactive oxygen species (ROS) and reducing mitochondrial membrane potential (MMP). Most importantly, during PTT procedure, hyperthermia up to 50°C can effectively induce tumor cell death without causing severe inflammation to adjacent tissues. Tumor targeting double stimulation response of nanocomposites is a novel idea to overcome drug resistance, which will provide a more effective strategy for solving practical problems.
Collapse
Affiliation(s)
- Wen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Huilan Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
52
|
Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:169. [PMID: 35010119 PMCID: PMC8746463 DOI: 10.3390/nano12010169] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur 492015, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| |
Collapse
|
53
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
54
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
55
|
Nano-Bio Interactions in the Lung. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_14-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
56
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
57
|
Fu Y, Zhai X, Wang S, Shao L, Bai XJ, Su ZS, Liu YL, Zhang LY, Chen JY. Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal-Organic Frameworks. Inorg Chem 2021; 60:16447-16454. [PMID: 34657422 DOI: 10.1021/acs.inorgchem.1c02277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Constructing metal nanoparticle (MNP) composites from metal-organic framework (MOF) precursors has attracted extensive attention as the MOF precursors provide an excellent porous matrix for the generation of MNP composites, which enables the direct fabrication of well-dispersed MNP composites. In this work, a novel strategy is proposed to fabricate MNP composites by slow chemical reduction (SCR) of MOF precursors at room temperature. The reduction process is skillfully slowed via using ethanol as the solvent, and the formation of MNP composites is then realized by the SCR process. Briefly, BH4- slowly diffuses into an MOF precursor and in situ reduces metal ions to well-dispersed nanoscale MNP composites. Meanwhile, this SCR process breaks the coordination bonds from MOF precursors, leading to the generation of porous structures for the resulting composites. Interestingly, the composites inherit the morphology of MOF precursors well. Besides, this SCR strategy allows construction of MNP composites from different types of MOF precursors. The resulting Cu@HK-3 composites possess well-dispersed nanoscale Cu NPs and a porous architecture, which exhibit superior catalytic performance and stability in the Ullmann coupling reaction. This strategy provides a feasible, convenient, and energy-saving route to prepare MNP composites from MOF precursors with customizable morphology and well-dispersed MNPs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Jue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ze-Shun Su
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yun-Ling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li-Ying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jun-Yi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer 843300, China
| |
Collapse
|
58
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
59
|
Nuñez-Magos L, Lira-Escobedo J, Rodríguez-López R, Muñoz-Navia M, Castillo-Rivera F, Viveros-Méndez PX, Araujo E, Encinas A, Saucedo-Anaya SA, Aranda-Espinoza S. Effects of DC Magnetic Fields on Magnetoliposomes. Front Mol Biosci 2021; 8:703417. [PMID: 34589517 PMCID: PMC8473709 DOI: 10.3389/fmolb.2021.703417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity. Encapsulated MNPs can be used as a potential drug and a gene delivery system, and in the presence of magnetic fields, MLs can be accumulated in a target tissue by a strong gradient magnetic field. Here, we present a study of the effects of DC magnetic fields on encapsulated MNPs inside liposomes. Despite their widespread applications in biotechnology and environmental, biomedical, and materials science, the effects of magnetic fields on MLs are unclear. We use a modified coprecipitation method to synthesize superparamagnetic nanoparticles (SNPs) in aqueous solutions. The SNPs are encapsulated inside phospholipid liposomes to study the interaction between phospholipids and SNPs. Material characterization of SNPs reveals round-shaped nanoparticles with an average size of 12 nm, mainly magnetite. MLs were prepared by the rehydration method. After formation, we found two types of MLs: one type is tense with SNPs encapsulated and the other is a floppy vesicle that does not show the presence of SNPs. To study the response of MLs to an applied DC magnetic field, we used a homemade chamber. Digitalized images show encapsulated SNPs assembled in chain formation when a DC magnetic field is applied. When the magnetic field is switched off, it completely disperses SNPs. Floppy MLs deform along the direction of the external applied magnetic field. Solving the relevant magnetostatic equations, we present a theoretical model to explain the ML deformations by analyzing the forces exerted by the magnetic field over the surface of the spheroidal liposome. Tangential magnetic forces acting on the ML surface result in a press force deforming MLs. The type of deformations will depend on the magnetic properties of the mediums inside and outside the MLs. The model predicts a coexistence region of oblate-prolate deformation in the zone where χ = 1. We can understand the chain formation in terms of a dipole-dipole interaction of SNP.
Collapse
Affiliation(s)
- L. Nuñez-Magos
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - J. Lira-Escobedo
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - R. Rodríguez-López
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - M. Muñoz-Navia
- Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - F. Castillo-Rivera
- CONACyT–Instituto de Geología de la Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - P. X. Viveros-Méndez
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - E. Araujo
- Departamento de Matematicas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, San Pedro Tlaquepaque, Mexico
| | - A. Encinas
- Laboratory of Magnetism, División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - S. A. Saucedo-Anaya
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - S. Aranda-Espinoza
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
60
|
|
61
|
Wang J, Chen P, Dong Y, Xie H, Wang Y, Soto F, Ma P, Feng X, Du W, Liu BF. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials 2021; 276:121056. [PMID: 34364178 DOI: 10.1016/j.biomaterials.2021.121056] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Exosomes, endogenous nanosized particles (50-150 nm) secreted and absorbed by cells, have been recently used as diagnostic and therapeutic platforms in cancer treatment. The integration of exosome-based delivery with multiple therapeutic modalities could result in better clinical outcomes and reduced-sided effects. Here, we combined the targeting and biocompatibility of designer exosomes with chemo/gene/photothermal therapy. Our platform consists of exosomes loaded with internalized doxorubicin (DOX, a model cancer drug) and coated with magnetic nanoparticles conjugated with molecular beacons capable of targeting miR-21 for responsive molecular imaging. The coated magnetic nanoparticle enables enrichment of the exosomes at the tumor site by external magnetic field guidance. After the exosomes are gathered at the tumor site, the application of near-infrared radiation (NIR) induces localized hyperthermia and triggers the release of cargoes loaded inside the exosome. The released molecular beacon can target the miR-21 for both imaging and gene silencing. Meanwhile, the released doxorubicin serves to kill the cancer cells. About 91.04 % of cancer cells are killed after treatment with Exo-DOX-Fe3O4@PDA-MB under NIR. The ability of the exosome-based method for cancer therapy has been demonstrated by animal models, in which the tumor size is reduced dramatically by 97.57 % with a magnetic field-guided tumor-targeted chemo/gene/photothermal approach. Thus, we expected this designer exosome-mediated multi-mode therapy to be a promising platform for the next-generation precision cancer nanomedicines.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, United States
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yachao Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fernando Soto
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, United States
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
62
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
63
|
Mngadi S, Singh M, Mokhosi S. PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The use of magnetic nanoparticles (MNPs) has transformed both diagnostics and therapeutic approaches in cancer treatment. Along with developing novel anti-cancer drugs with high therapeutic potential, researchers are exploring innovative strategies for more targeted delivery in order to alleviate the associated potent side effects. In this study, we describe the synthesis of Mg0.5Co0.5Fe2O4 ferrite nanoparticles, their functionalisation with polyvinyl alcohol (PVA), and encapsulation of the anti-cancer drug 5-fluorouracil (5-FU). Functionalised nanoparticles viz. PVA-Mg0.5Co0.5Fe2O4 -5-FU displayed desirable physiochemical properties with regards to the spherical shape, hydrodynamic sizes of <120 nm and relative colloidal stability of up to <−33 mV. The drug encapsulating efficiency was found to be 68%. In vitro cytotoxicity profiles were determined using the MTT and SRB assays, with >65% cell death recorded in MCF-7 and HeLa cancer cell lines. Overall, the nanocomposites exhibited excellent physiochemical elements, high specificity towards cancerous cells and displayed pH-sensitive drug release in a simulated acidic tumour micro-environment. The encapsulation of 5-FU improved bioavailability of the drug in cancer cell lines for a prolonged duration, with the promise to enhance its therapeutic effect, biocompatibility and safety. These MNPs present as promising in vitro delivery systems that can be further developed for therapeutic applications.
Collapse
Affiliation(s)
- Sanele Mngadi
- Discipline of Biochemistry , University of Kwazulu-Natal , Private Bag X54001 , Durban , South Africa
| | - Moganavelli Singh
- Discipline of Biochemistry , University of Kwazulu-Natal , Private Bag X54001 , Durban , South Africa
| | - Seipati Mokhosi
- Discipline of Biochemistry , University of Kwazulu-Natal , Private Bag X54001 , Durban , South Africa
| |
Collapse
|
64
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
65
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
66
|
Taher Z, Legge C, Winder N, Lysyganicz P, Rawlings A, Bryant H, Muthana M, Staniland S. Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies. Pharmaceutics 2021; 13:367. [PMID: 33802121 PMCID: PMC7998144 DOI: 10.3390/pharmaceutics13030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic heating, but their properties, cancer cell uptake and toxicity have yet to be compared to other MNP. Magnetosomes can be mimicked by coating MNP in either amphiphilic oleic acid or silica. In this study, magnetosomes are directly compared to control MNP, biomimetic oleic acid and silica coated MNP of varying sizes. MNP are characterized and compared with respect to size, magnetism, and surface properties. Small (8 ± 1.6 nm) and larger (32 ± 9.9 nm) MNP are produced by two different methods and coated with either silica or oleic acid, increasing the size and the size dispersity of the MNP. The coated larger MNP are comparable in size (49 ± 12.5 nm and 61 ± 18.2 nm) to magnetosomes (46 ± 11.8 nm) making good magnetosome mimics. All MNP are assessed and compared for cancer cell uptake in MDA-MB-231 cells and importantly, all are readily taken up with minimal toxic effect. Silica coated MNP show the most uptake with greater than 60% cell uptake at the highest concentration, and magnetosomes showing the least with less than 40% at the highest concentration, while size does not have a significant effect on uptake. Finally, surface functionalization is demonstrated for magnetosomes and silica coated MNP using biotinylation and EDC-NHS, respectively, to conjugate fluorescent probes. The modified particles are visualized in MDA-MB-231 cells and demonstrate how both naturally biosynthesized magnetosomes and biomimetic silica coated MNP can be functionalized and readily up taken by cancer cells for realization as nanomedical vehicles.
Collapse
Affiliation(s)
- Zainab Taher
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Christopher Legge
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Natalie Winder
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Pawel Lysyganicz
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Andrea Rawlings
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Helen Bryant
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Sarah Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| |
Collapse
|
67
|
Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.
Collapse
|
68
|
Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine 2021; 16:539-560. [PMID: 33519200 PMCID: PMC7837559 DOI: 10.2147/ijn.s283686] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for site-specific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-the-art nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sree Pooja Varahachalam
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Masoumeh Chamaneh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Kevin Morris
- Maharashtra University of Health Sciences (MUHS), Nashik, Maharashtra422004, India
| | - Joe F Bolanos
- Facultad De Ciencias De La Salud “Dr.Luis Edmundo Vasquez” Santa Tecla, Universidad Dr. Jose Matias Delgado, Cd Merliot, El Salvador
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics Engineering, Kwangwoon University, Seoul01897, South Korea
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, and Mathematics, Florida Polytechnic University, Lakeland, FL3385, USA
| |
Collapse
|
69
|
Alaghmandfard A, Madaah Hosseini HR. A facile, two-step synthesis and characterization of Fe 3 O 4 - L Cysteine - graphene quantum dots as a multifunctional nanocomposite. APPLIED NANOSCIENCE 2021; 11:849-860. [PMID: 33425639 PMCID: PMC7778724 DOI: 10.1007/s13204-020-01642-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023]
Abstract
In this research, a facile, two-step synthesis of Fe3O4–LCysteine–graphene quantum dots (GQDs) nanocomposite is reported. This synthesis method comprises the preparation of GQDs via hydrothermal route, which should be conjugated to the LCysteine functionalized core–shell magnetic structure with the core of about 7.5-nm iron oxide nanoparticle and 3.5-nm LCysteine shell. LCysteine, as a biocompatible natural amino acid, was used to link magnetite nanoparticles (MNPs) with GQDs. X-ray powder diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray were used to investigate the presence and formation of MNPs, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{L}}_{{{\text{Cysteine}}}}$$\end{document}LCysteine functionalized MNPs, and final hybrid nanostructure. Morphology and size distribution of nanoparticles were demonstrated by scanning electron microscopy and transmission electron microscopy. Finally, the magnetic and optical properties of the prepared nanocomposite were measured by vibrating sample magnetometer, ultraviolet–visible, and photoluminescence spectroscopy. The results show that Fe3O4–LCysteine–GQDs nanocomposite exhibits a superparamagnetic behavior at room temperature with high saturation magnetization and low magnetic coercivity, which are 28.99 emu/g and 0.09 Oe, respectively. This nanocomposite also shows strong and stable emission at 460 nm and 530 nm when it is excited with the 235 nm wavelength. The magnetic GQDs structure also reveals the absorption wavelength at 270 nm. Therefore, Fe3O4–LCysteine–GQDs nanocomposite can be considered as a potential multifunctional hybrid structure with magnetic and optical properties simultaneously. This nanocomposite can be used for a wide range of biomedical applications like magnetic resonance imaging (MRI) contrast agents, biosensors, photothermal therapy, and hyperthermia.
Collapse
Affiliation(s)
- Amirhossein Alaghmandfard
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran
| |
Collapse
|
70
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
71
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
72
|
Abstract
Therapeutic nanomaterials serve as an important platform for drug delivery under image guidance. Despite significant growth and broad applications, their design specifics remain a subject of continued interest primarily due to multifunctional factors involved, ranging from nanomaterial properties, imaging modalities, and therapeutic agents to activation strategies. This review article summarizes key findings on their design characteristics with a particular interest in strategies developed for therapeutic activation (release). First, their activation can be controlled using either an endogenous factor including low pH and glutathione or an external stimulation by light, ultrasound, or electromagnetic field. The former is passively controlled from a spatiotemporal aspect compared to the latter, which is otherwise actively controlled through drug linker photolysis, nanomaterial disassembly, or gate opening. Second, light stimulation serves a most notable strategy due to its essential role in controlled drug release, photothermal activation (hyperthermia), and photodynamic production of reactive oxygen species (ROS). Third, some of those activation strategies that rely on ultrasound, photothermal, photoacoustic, magnetic field, or X-ray radiation are dually functional due to their role in imaging modalities. In summary, this review article presents recent advances and new insights that pertain to nanotherapeutic delivery systems. It also addresses their technical limitations associated with tissue penetration (light), spatial resolution (ultrasound, hyperthermia), and occurrence of cellular resistance (ROS).
Collapse
|
73
|
Yang SJ, Tseng SY, Wang CH, Young TH, Chen KC, Shieh MJ. Magnetic nanomedicine for CD133-expressing cancer therapy using locoregional hyperthermia combined with chemotherapy. Nanomedicine (Lond) 2020; 15:2543-2561. [DOI: 10.2217/nnm-2020-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Cells with CD133 overexpression, a theoretical cancer stem cells (CSCs) marker, have been shown to induce colorectal cancer (CRC) initiation and relapse. Therefore, the detection and treatment of CSCs are the most important factors in overcoming CRC. Materials & methods: Herein, we developed a magnetite-based nanomedicine (superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticle) using loco-regional hyperthermia combined with chemotherapy for CRC- and CSC-specific targeting treatment. Results: The designed nanoparticles were highly biocompatible and exhibited a higher temperature increase rate under radiofrequency generator irradiation. The nanoparticles could be used as a T2-weighted magnetic resonance imaging contrast media, and also applied during hyperthermia and chemotherapy to display a synergistic anticancer effect. Conclusion: Therefore, the superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticles are a powerful candidate for future antitumor strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Shu-Yi Tseng
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Surgery, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
74
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
75
|
Hassanpour S, Kim HJ, Saadati A, Tebon P, Xue C, van den Dolder FW, Thakor J, Baradaran B, Mosafer J, Baghbanzadeh A, de Barros NR, Hashemzaei M, Lee KJ, Lee J, Zhang S, Sun W, Cho HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Mokhtarzadeh A, Khademhosseini A. Thrombolytic Agents: Nanocarriers in Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001647. [PMID: 32790000 PMCID: PMC7702193 DOI: 10.1002/smll.202001647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Thrombosis is a life-threatening pathological condition in which blood clots form in blood vessels, obstructing or interfering with blood flow. Thrombolytic agents (TAs) are enzymes that can catalyze the conversion of plasminogen to plasmin to dissolve blood clots. The plasmin formed by TAs breaks down fibrin clots into soluble fibrin that finally dissolves thrombi. Several TAs have been developed to treat various thromboembolic diseases, such as pulmonary embolisms, acute myocardial infarction, deep vein thrombosis, and extensive coronary emboli. However, systemic TA administration can trigger non-specific activation that can increase the incidence of bleeding. Moreover, protein-based TAs are rapidly inactivated upon injection resulting in the need for large doses. To overcome these limitations, various types of nanocarriers have been introduced that enhance the pharmacokinetic effects by protecting the TA from the biological environment and targeting the release into coagulation. The nanocarriers show increasing half-life, reducing side effects, and improving overall TA efficacy. In this work, the recent advances in various types of TAs and nanocarriers are thoroughly reviewed. Various types of nanocarriers, including lipid-based, polymer-based, and metal-based nanoparticles are described, for the targeted delivery of TAs. This work also provides insights into issues related to the future of TA development and successful clinical translation.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, Olomouc, 77146, Czech Republic
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Peyton Tebon
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chengbin Xue
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Floor W van den Dolder
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Division Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - Jai Thakor
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, 9519633787, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Natan Roberto de Barros
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, 9861618335, Iran
| | - Kang Ju Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyun-Jong Cho
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Samad Ahadian
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
76
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
77
|
Sun CY, Zhang BB, Zhou JY. Light-activated drug release from a hyaluronic acid targeted nanoconjugate for cancer therapy. J Mater Chem B 2020; 7:4843-4853. [PMID: 31389968 DOI: 10.1039/c9tb01115c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA)-based nanocarriers are of great interest in the drug delivery field due to the tumor targetability via CD44-mediated recognition and endocytosis. However, sufficient tumor-specific release of encapsulated cargoes with steady controllability is necessary to optimize their outcome for cancer therapy. In this study, we constructed a light-activated nanocarrier TKHCENPDOX to enable on-demand drug release at the desired site (tumor). Particularly, TKHCENPDOX encapsulating doxorubicin (DOX) was self-assembled from a HA-photosensitizer conjugate (HA-TK-Ce6) containing reactive oxygen species (ROS)-sensitive thioketal (TK) linkers. Following i.v. injection, TKHCENPDOX was accumulated in the MDA-MB-231 breast tumor xenograft more efficiently through preventing drug leakage in the bloodstream and the HA-mediated targeting effect. Upon internalization into tumoral cells, 660 nm laser irradiation generated ROS during a photodynamic (PDT) process to cleave the TK linker next to Ce6, resulting in light-induced TKHCENPDOX dissociation and selective DOX release in the tumor area. Consequently, TKHCENPDOX showed a remarkable therapeutic effect and minimized toxicity in vivo. This strategy might provide new insight for designing cancer-selective nanoplatforms with active targeting and locoregional drug release simultaneously.
Collapse
Affiliation(s)
- Chun-Yang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.
| | | | | |
Collapse
|
78
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
79
|
Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol 2020; 154:1175-1184. [DOI: 10.1016/j.ijbiomac.2019.10.272] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
|
80
|
Lucena GN, Santos CC, Pinto GC, Amantéa BE, Piazza RD, Jafelicci Júnior M, Marques RFC. Surface engineering of magnetic nanoparticles for hyperthermia and drug delivery. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guilherme N. Lucena
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Caio C. Santos
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriel C. Pinto
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Bruno E. Amantéa
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Rodolfo D. Piazza
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Miguel Jafelicci Júnior
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| | - Rodrigo Fernando C. Marques
- Magnetic Materials and Colloidal Laboratory Institute of Chemistry São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
81
|
Chen H, Luo Q, Wang J, He H, Luo W, Zhang L, Xiao Q, Chen T, Xu X, Niu W, Ke Y, Wang Y. Response of pH-Sensitive Doxorubicin Nanoparticles on Complex Tumor Microenvironments by Tailoring Multiple Physicochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22673-22686. [PMID: 32337980 DOI: 10.1021/acsami.0c05724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular internalization, delivery efficiency, and therapeutic efficacy of nanoparticles vary according to the microenvironmental complexity for tumor types. Adjusting their physicochemical properties, such as surface properties and size, has significant potential for dealing with such complexities. Herein, we prepare four types of pH-sensitive doxorubicin nanoparticles (DOX-D1, DOX-D2, DOX-W1, and DOX-W2 Nano) using simply changing reaction medium or reactant ratio. DOX-D1 and DOX-D2 Nano exhibit similar surface characteristics (surface coating and targeting ligand content) and different size, while both DOX-W Nano examples present similar surface characteristics and size. And they can re-self-assemble into smaller particles in blood-mimic conditions and the order of size is as follows: DOX-D1> DOX-D2 ≈ DOX-W Nano, and DOX-W Nano has a higher targeting ligand content than DOX-D Nano. Thus, the bioactivities in vitro and tumor microenvironment responses of DOX-D1, DOX-D2, and DOX-W1 are further investigated due to their different physicochemical properties. DOX-W1 Nano exhibits a higher cellular uptake, a stronger antiproliferation than DOX-D1 and DOX-D2 Nano attributed to its smaller size, and a higher targeting moiety content. Despite the similar sizes of DOX-W1 and DOX-D2, DOX-D2 Nano shows a greater in vitro blood-brain barrier (BBB) permeability related to its surface coating. Interestingly, DOX-D1 with suitable size and surface property can efficiently bypass the BBB and deliver to an intracranial glioma; in comparison DOX-W1 Nano has excellent targeting efficiency in subcutaneous tumors (glioma and breast cancer). Accordingly, DOX-D1 Nano is preferential for the treatment of intracranial glioma while DOX-W1 Nano exhibits potent killing ability for subcutaneous tumors. Our work suggests tailoring multiple physicochemical properties of nanoparticles can play a significant role in addressing tumor microenvironment complexity.
Collapse
Affiliation(s)
- Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haoqi He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wanxian Luo
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qian Xiao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenbo Niu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
82
|
Chitosan-Functionalized Mg0.5Co0.5Fe2O4 Magnetic Nanoparticles Enhance Delivery of 5-Fluorouracil In Vitro. COATINGS 2020. [DOI: 10.3390/coatings10050446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) have been widely investigated as a strategy to improve the delivery efficiency of therapeutic and diagnostic agents. Substituted iron oxides or ferrite nanoparticles (NPs) such as CoFe2O4 represent an interesting and novel class of MNPs, although they are under-researched in the field of biomedicine. In this study, chitosan-functionalized Mg0.5Co0.5Fe2O4 NPs were loaded with the anti-cancer 5-fluorouracil (5-FU) drug to yield CS-Mg0.5Co0.5Fe2O4-5FU. Transmission electron microscopy (TEM), Fourier Transform infra-red (FTIR) spectroscopy and nanoparticle tracking analysis (NTA) were employed to determine the physiochemical properties of the NPs. Physico-chemical characterizations confirmed spherical NPs with particle sizes of approximately 20.39 nm. Improved colloidal stability was observed, as determined by a zeta potential of approximately −20 mV for the drug-loaded CS-Mg0.5Co0.5Fe2O4 NPs. Drug encapsulation efficiencies of >60% were attained, showing a pH-dependent release of 5-FU. Cell viabilities investigated using the 3-[(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) and sulforodhamine B (SRB) assays in human embryonic kidney (HEK293), human breast adenocarcinoma (MCF-7) and human cervical cancer (HeLa) cells showed that these drug-loaded NPs exhibited more targeted tumor-specific cytotoxicities compared to free drugs. CS-Mg0.5Co0.5Fe2O4-5-FU NPs displayed significant targeted delivery potential to the investigated cancer cell lines. Conclusively, these results suggest that the CS-Mg0.5Co0.5Fe2O4-5-FU NPs are promising therapeutic delivery systems in anti-cancer treatment.
Collapse
|
83
|
Hu PY, Zhao YT, Zhang J, Yu SX, Yan JS, Wang XX, Hu MZ, Xiang HF, Long YZ. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110708. [DOI: 10.1016/j.msec.2020.110708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
|
84
|
Xu J, Saklatvala R, Mittal S, Deshmukh S, Procopio A. Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli-an Industry Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903394. [PMID: 32328428 PMCID: PMC7175294 DOI: 10.1002/advs.201903394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Indexed: 05/14/2023]
Abstract
The past decade has seen the materialization of immune checkpoint blockade as an emerging approach to cancer treatment. However, the overall response and patient survival are still modest. Various efforts to study the "cancer immunogram" have highlighted complex biology that necessitates a multipronged approach. This includes increasing the antigenicity of the tumor, strengthening the immune infiltration in the tumor microenvironment, removing the immunosuppressive mechanisms, and reducing immune cell exhaustion. The coordination of these approaches, as well as the ability to enhance them through delivery, is evaluated. Due to their success in multiple preclinical models, external-stimuli-responsive nanoparticles have received tremendous attention. Several studies report success in distantly located tumor regression, metastases, and reoccurrence in preclinical mouse models. However, clinical translation in this space remains low. Herein, the recent advancement in external-stimuli-responsive nanoconstruct-synergized immune checkpoint blockade is summarized, offering an industry perspective on the limitations of current academic innovations and discussing challenges in translation from a technical, manufacturing, and regulatory perspective. These limitations and challenges will need to be addressed to establish external-stimuli-based therapeutic strategies for patients.
Collapse
Affiliation(s)
- Jun Xu
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Robert Saklatvala
- Discovery Pharmaceutical SciencesMRLMerck & Co., Inc.33 Avenue Louis PasteurBostonMA02115USA
| | - Sachin Mittal
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Smeet Deshmukh
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Adam Procopio
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| |
Collapse
|
85
|
Varghese S, Chaudhary JP, Ghoroi C. One-step dry synthesis of an iron based nano-biocomposite for controlled release of drugs. RSC Adv 2020; 10:13394-13404. [PMID: 35493020 PMCID: PMC9051537 DOI: 10.1039/d0ra01133a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Bio-based drug carriers have gained significant importance in Control Drug Delivery Systems (CDDS). In the present work, a new iron-based magnetic nano bio-composite (nano-Fe-CNB) is developed in a one-step dry calcination process (solventless) using a seaweed-based biopolymer. The detailed analysis of the developed nano Fe-CNB is carried out using FE-SEM, HR-TEM, P-XRD, XPS, Raman spectroscopy, FTIR etc. and shows that nano-Fe-CNB consists of nanoparticles of 5–10 nm decorated on 7–8 nm thick 2-D graphitic carbon material. The impregnation of nano-Fe-CNB into the calcium alginate (CA) hydrogel beads is found to have good drug loading capacity as well as pH responsive control release behavior which is demonstrated using doxorubicin (DOX) as a model cancer drug. The drug loading experiments exhibit ∼94% loading of DOX and release shows ∼38% and ∼8% release of DOX at pH 5.4 and 7.4 respectively. The developed nano Fe-CNB facilitates strong electrostatic interactions with cationic DOX molecules at pH 7.4 and thereby restricts the release of the drug at physiological pH. However, at cancer cell pH (5.4), the interaction between the drug and nano-Fe-CNB reduces which facilitates more drug release at pH 5.4. Thus, the developed nano-biocomposite has the potential to reduce the undesired side effects associated with faster release of drugs. Schematics for synthesis and application of magnetic nano-biocomposite for control release of DOX.![]()
Collapse
Affiliation(s)
- Sophia Varghese
- DryProTech Lab., Chemical Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar-382355 Gujarat India +91-79-23952405
| | - Jai Prakash Chaudhary
- DryProTech Lab., Chemical Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar-382355 Gujarat India +91-79-23952405
| | - Chinmay Ghoroi
- DryProTech Lab., Chemical Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar-382355 Gujarat India +91-79-23952405
| |
Collapse
|
86
|
Salunkhe A, Khot V, Patil SI, Tofail SA, Bauer J, Thorat ND. MRI Guided Magneto-chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics. ACS APPLIED BIO MATERIALS 2020; 3:2305-2313. [DOI: 10.1021/acsabm.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ashwini Salunkhe
- Department of Physics, Rajaram College, Kolhapur, Maharashtra 416004, India
- Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Vishwajeet Khot
- Department of Medical Physics, Centre for Interdisciplinary Research, D Y Patil Education Society (Institution Deemed to be University), Kolhapur, Maharashtra 416006, India
| | - S. I. Patil
- Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
87
|
Mahdavi M, Fattahi A, Tajkhorshid E, Nouranian S. Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers. ACS APPLIED BIO MATERIALS 2020; 3:1354-1363. [PMID: 33313482 DOI: 10.1021/acsabm.9b00956] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations were performed to investigate the loading and dynamics of doxorubicin (DOX) anticancer drug on graphene oxide (GO) and poly(ethylene glycol) (PEG) decorated GO (PEGGO) nanocarriers in an aqueous environment at human body temperature (310 K) and physiological pH level of 7.4. Mechanisms of DOX adsorption on PEGGO as a function of PEG chain length were revealed. While the total DOX-nanocarrier interaction energy was the same for the DOX/GO (control), DOX/Sh-PEGGO (short PEG chains consisting of 15 repeat units), and DOX/L-PEGGO (long PEG chains consisting of 30 repeat units) within the margin of error, the PEG-DOX interactions increased with an increase in the PEG chain length. At the same time, the PEG-DOX solvent-accessible contact area almost doubled going from the short to long PEG chains. PEGylation of the GO effectively causes an increase in the average water density around the nanocarrier, which can act as a barrier, leading to the DOX migration to the solvated PEG-free part of the GO surface. This effect is more pronounced for shorter PEG chains. The DOX-DOX solvent-accessible contact area is smaller in the DOX/GO system, which means the drug molecules are less aggregated in this system. However, the level of DOX aggregation is slightly higher for the PEGGO systems. The computational results in this work shed light on the fact that increasing the PEG chain length benefits DOX loading on the nanocarrier, revealing an observation that is difficult to acertain through experiments. Moreover, a detailed picture is provided for the DOX adsorption and retention in PEGGO drug delivery systems, which would enable the researchers to improve the drug's circulation time, as well as its delivery and targeting efficiency.
Collapse
Affiliation(s)
- Mina Mahdavi
- Department of Chemical Engineering, The University of Mississippi, University, MS 38677, United States
| | - Ali Fattahi
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sasan Nouranian
- Department of Chemical Engineering, The University of Mississippi, University, MS 38677, United States
| |
Collapse
|
88
|
Mukherjee S, Liang L, Veiseh O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12020147. [PMID: 32053995 PMCID: PMC7076668 DOI: 10.3390/pharmaceutics12020147] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic nanomaterials belong to a class of highly-functionalizable tools for cancer therapy owing to their intrinsic magnetic properties and multifunctional design that provides a multimodal theranostics platform for cancer diagnosis, monitoring, and therapy. In this review article, we have provided an overview of the various applications of magnetic nanomaterials and recent advances in the development of these nanomaterials as cancer therapeutics. Moreover, the cancer targeting, potential toxicity, and degradability of these nanomaterials has been briefly addressed. Finally, the challenges for clinical translation and the future scope of magnetic nanoparticles in cancer therapy are discussed.
Collapse
|
89
|
Bio-application of Inorganic Nanomaterials in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:115-130. [PMID: 32602094 DOI: 10.1007/978-981-15-3258-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials or nanoparticles (INPs) have drawn high attention for their usage in the biomedical field. In addition to the facile synthetic and modifiable property of INPs, INPs have various unique properties that originate from the components of the INPs, such as metal ions that are essential for the human body. Apart from their roles as components of the human body, inorganic materials have unique properties, such as magnetic, antibacterial, and piezoelectric, so that INPs have been widely used as either carriers or inducers. However, most of the bio-applicable INPs, especially those consisting of metal, can cause cytotoxicity. Therefore, INPs require modification to alleviate the harmful effect toward the cells by controlling the release of metal ions from INPs. Even though many attempts have been made to modify INPs, many things, including the side effects of INPs, still remain as obstacles in the bio-application, which need to be elucidated. In this chapter, we introduce novel INPs in terms of their synthetic method and bio-application in tissue engineering.
Collapse
|
90
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
91
|
Liu D, Hong Y, Li Y, Hu C, Yip TC, Yu WK, Zhu Y, Fong CC, Wang W, Au SK, Wang S, Yang M. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics 2020; 10:1181-1196. [PMID: 31938059 PMCID: PMC6956796 DOI: 10.7150/thno.38989] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) have been implicated in cancer recurrence and therapy resistance. Therefore, a CSC-targeted therapy that disrupts the maintenance and survival of CSCs may offer an effective approach in killing tumor cells in primary tumors and preventing the metastasis caused by CSCs. Nanoparticles (NPs)-based thermotherapy and/or chemotherapy are promising therapeutic methods for cancer treatment. Methods: A silica-based multifunctional NP system was present, which encapsulated a chemotherapeutic agent and magnetic cores and coated with a specific antibody against the lung CSCs. The efficacy of this novel therapeutic strategy was systematically studied both in vitro and in vivo by simultaneous activating the combined thermotherapy and chemotherapy via CSC-targeted NPs. Results: These NPs were systematically administered and activated for targeted chemotherapy and thermotherapy by using an externally applied alternating magnetic field (AMF). The antibody-modified NPs targeted to lung CSCs with enhanced cellular uptake in vitro and extended accumulation in tumor in vivo. Up to 98% of lung CSCs was killed in vitro with 30-min application of AMF, due to the combined effects of hyperthermia and chemotherapeutic drug treatment. In in vivo models, this combined therapy significantly suppressed tumor growth and metastasis in lung CSC xenograft-bearing mice, with minimal side effects and adverse effects. Conclusion: With good biocompatibility and targeting capability, the nanodrug delivery system may offer a promising clinical platform for the combined thermotherapy and chemotherapy. This work demonstrated the feasibility of developing multifunctional nanomedicine targeting CSCs for effective cancer treatment.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 510000, China
| | - Yaping Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chong Hu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Tak-Chun Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wai-Kin Yu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Yu Zhu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chi-Chun Fong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Department of Thoracic Surgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 510000, China
| | - Weimao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Siu-Kie Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
92
|
Angelopoulou A, Kolokithas-Ntoukas A, Fytas C, Avgoustakis K. Folic Acid-Functionalized, Condensed Magnetic Nanoparticles for Targeted Delivery of Doxorubicin to Tumor Cancer Cells Overexpressing the Folate Receptor. ACS OMEGA 2019; 4:22214-22227. [PMID: 31891105 PMCID: PMC6933766 DOI: 10.1021/acsomega.9b03594] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 05/28/2023]
Abstract
This study concerns the development of folic acid (FA)-functionalized iron oxide condensed colloidal magnetic clusters for a more selective delivery of doxorubicin (DOX) to tumor cancer cells overexpressing the folate receptor. Alginate-coated condensed magnetic nanoparticles (co-MIONs) were synthesized via an alkaline precipitation method of an iron precursor in the presence of sodium alginate. Poly(ethylene glycol) (OH-PEG-NH2) was conjugated to the carboxylic acid end group of alginate and folic acid (FA) was conjugated to the hydroxyl terminal group of PEG to produce folate-functionalized, pegylated co-MIONS (Mag-Alg-PEG-FA). The physicochemical properties of nanoparticles were fully characterized. DOX was loaded on the nanoparticles, and the cellular uptake and anticancer efficacy of the nanoparticles were examined in cancer cell lines expressing and not expressing the folate receptor. The biocompatibility of the carrier (blank nanoparticles) was also evaluated by cytocompatibility and hemocompatibility experiments. The nanoparticles exhibited sustained DOX release in aqueous buffers and biorelevant media, which was responsive to pH and external alternating current magnetic fields. The effect of the magnetic field on DOX percentage release appeared to be independent of the timing (onset time) of magnetic field application, providing flexibility to the magnetic control of drug release from the nanoparticles. The blank nanoparticles were not cytotoxic and did not cause hemolysis. The DOX-loaded and FA-functionalized nanoparticles exhibited increased uptake and caused increased apoptosis and cytotoxicity against the MDA-MB-231 cell line, expressing the folate receptor, compared to the MCF-7 cell line, not expressing the folate receptor. The application of a 0.5 T magnetic field during incubation of the nanoparticles with the cancer cells increased the cellular uptake and cytotoxicity of the nanoparticles. The obtained results indicate the potential of the folate-functionalized, pegylated co-MIONS for a more efficacious DOX delivery to cancer cells of solid tumors.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Argiris Kolokithas-Ntoukas
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Christos Fytas
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Konstantinos Avgoustakis
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
- Clinical
Studies Unit, Biomedical Research Foundation
Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
93
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
94
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Shanmukhan NK. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. THE PHARMACOGENOMICS JOURNAL 2019; 20:1-18. [PMID: 31819163 DOI: 10.1038/s41397-019-0135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Personalized medicine has been a booming area in clinical research for the past decade, in which the detailed information about the patient genotype and clinical conditions were collected and considered to optimize the therapy to prevent adverse reactions. However, the utility of commercially available personalized medicine has not yet been maximized due to the lack of a structured protocol for implementation. In this narrative review, we explain the role of pharmacogenetics in personalized medicine, next-generation personalized medicine, i.e., patient-centric personalized medicine, in which the patient's comfort is considered along with pharmacogenomics to be a primary factor. We extensively discuss the classifications, strategies, tools, and drug delivery systems that can support the implementation of patient-centric personalized medicine from an industrial perspective.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India
| | | |
Collapse
|
95
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
96
|
Hartshorn CM, Russell LM, Grodzinski P. National Cancer Institute Alliance for nanotechnology in cancer-Catalyzing research and translation toward novel cancer diagnostics and therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1570. [PMID: 31257722 PMCID: PMC6788937 DOI: 10.1002/wnan.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been a burgeoning research field, which is finding compelling applications in several practical areas of everyday life. It has provided novel, paradigm shifting solutions to medical problems and particularly to cancer. In order to accelerate integration of nanotechnology into cancer research and oncology, the National Cancer Institute (NCI) of the National Institutes of Health (NIH) established the NCI Alliance for Nanotechnology in Cancer program in 2005. This effort brought together scientists representing physical sciences, chemistry, and engineering working at the nanoscale with biologists and clinicians working on cancer to form a uniquely multidisciplinary cancer nanotechnology research community. The last 14 years of the program have produced a remarkable body of scientific discovery and demonstrated its utility to the development of practical cancer interventions. This paper takes stock of how the Alliance program influenced melding of disparate research disciplines into the field of nanomedicine and cancer nanotechnology, has been highly productive in the scientific arena, and produced a mechanism of seamless transfer of novel technologies developed in academia to the clinical and commercial space. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Christopher M. Hartshorn
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Luisa M. Russell
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
97
|
Perez J, Cifuentes J, Cuellar M, Suarez-Arnedo A, Cruz JC, Muñoz-Camargo C. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int J Nanomedicine 2019; 14:8483-8497. [PMID: 31695376 PMCID: PMC6817350 DOI: 10.2147/ijn.s224286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Controlled delivery of therapeutic molecules in a localized manner has become an area of interest due to its potential to reduce drug exposure to healthy tissues and consequently to minimize undesirable side effects. We have recently introduced novel cell-penetrating vehicles by immobilizing the antimicrobial peptide Buforin II (BUF-II) on magnetite nanoparticles (MPNPs). Despite the potent translocating abilities of such nanobioconjugates, they failed to preserve the antimicrobial activity of native BUF-II. In this work, we explored immobilization on MNPs with the aid of polymer surface spacers, which has been considered as an attractive alternative for the highly efficient conjugation of various biomolecules. Methods Here, we immobilized BUF-II on polyetheramine-modified magnetite nanoparticles to preserve its structural integrity. As a result, for the obtained nanobioconjugates the lost antimicrobial activity against gram-positive and gram-negative bacteria was only 50% with respect to the native BUF-II. The nanobioconjugates were also characterized via FTIR, DLS, TEM, and TGA. Delivery on THP-1, HaCaT, HFF, and Escherichia coli cells was conducted to confirm capability for cell membrane translocation. Results Colocalization with Lysotracker showed an endosomal escape efficiency of about 73∓12% in THP-1 cells. Avoidance of endocytic pathways of internalization was qualitatively confirmed by a delivery assay at low temperature. Nuclear penetration of the nanobioconjugates was corroborated via confocal microscopy and showed high biocompatibility as demonstrated by hemolysis levels below 5% and acute cytotoxicity of around 15%. Conclusion The obtained nanobioconjugates were capable of translocating the cell membrane and nuclei of different normal and cancerous cell lines without significantly decreasing viability. This makes the vehicle addressable for a number of applications ranging from antimicrobial topical treatments to the delivery of nucleotides and therapeutic molecules with difficulties to bypass cell membranes.
Collapse
Affiliation(s)
- Jessica Perez
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Monica Cuellar
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alejandra Suarez-Arnedo
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan C Cruz
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Carolina Muñoz-Camargo
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
98
|
Roy S, Liu Z, Sun X, Gharib M, Yan H, Huang Y, Megahed S, Schnabel M, Zhu D, Feliu N, Chakraborty I, Sanchez-Cano C, Alkilany AM, Parak WJ. Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjug Chem 2019; 30:2751-2762. [DOI: 10.1021/acs.bioconjchem.9b00645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sathi Roy
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Xing Sun
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Mustafa Gharib
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Yalan Huang
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - Dingcheng Zhu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | | | - Alaaldin M. Alkilany
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, 11931 Amman, Jordan
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- CIC Biomagune, 20014 San Sebastian, Spain
| |
Collapse
|
99
|
Abstract
Many diseases and conditions affect a relatively localized area of the body. They can be treated either by direct deposition of drug in the target area, or by giving the drug systemically. Here we review nanoparticle-based approaches to achieving both. We highlight advantages and disadvantages that nanoscale solutions have for locally administered therapies, with emphasis on the former. We discuss strategies to enable systemically delivered nanoparticles to deliver their payloads at specific locations in the body, including triggering (local and remote) and targeting.
Collapse
Affiliation(s)
- Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
100
|
Lungu II, Grumezescu AM, Volceanov A, Andronescu E. Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules 2019; 24:E3547. [PMID: 31574993 PMCID: PMC6804091 DOI: 10.3390/molecules24193547] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
The disadvantages that come with traditional cancer treatments, such as chemotherapy and radiotherapy, generated a research shift toward nanotechnology. However, even with the important advancements regarding cancer therapy, there are still serious stepping stones that need to be addressed. The use of both nanotechnology and nanomedicine has generated significant improvements in nano-sized materials development and their use as therapeutic, diagnosis, and imaging agents. The biological barriers that come from the healthy body, as well from the tumorous sites, are important parameters that need to be taken into consideration when designing drug delivery systems. There are several aspects of extreme importance such as the tumor microenvironment and vasculature, the reticuloendothelial system, the blood-brain barrier, the blood-tumor barrier, and the renal system. In order to achieve an effective system for cancer therapy, several characteristics of the nanoparticles have been outlined. Moreover, this review has also focused on the different types of nanoparticles that have been studied over the years as potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Iulia Ioana Lungu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
- National Institute of Laser, Plasma and Radiation Physics (NILPRP), Bucharest-Magurele, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|