51
|
Sellappan LK, Sanmugam A, Manoharan S. Fabrication of dual layered biocompatible herbal biopatch from biological waste for skin - tissue regenerative applications. Int J Biol Macromol 2021; 183:1106-1118. [PMID: 33984381 DOI: 10.1016/j.ijbiomac.2021.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
A dual layered herbal biopolymeric patch (biopatch) with enhanced wound healing efficiency and skin mimicking functions was fabricated for skin-tissue regenerative applications. In this study, hoof keratin (KE) extracted from biological waste and gelatin (GE) was employed for KE-GE biosheet fabrication using a simple casting method. Further, the top layer of the fabricated KE-GE biosheet was coated with bioactive Matricaria recutita (Chamomile flower) extract (CH) with gelatin through an electrospraying method. The optimized dual layered herbal biopatch (KE-GE/GE-CH) exhibits strong physiochemical (FTIR, XRD TG-DTA), mechanical (tensile strength) and biological (in vitro and in vivo) studies. Moreover, the morphology (SEM) of soft mimetic biopatch possesses excellent cell-material interaction and cell proliferation which accelerates the wound healing process. Biopatch demonstrates a proven degradation profile with good swelling features to achieve more than 80% herbal drug release in 96 h. Antimicrobial properties also reveal the potential activity of biopatch against bacterial microbes. In addition, in vitro cell viability using NIH 3T3 fibroblast cell lines and in vivo investigations revealed that the biopatch is non-cytotoxic, increases collagen deposition and shows rapid reepithelialization at the wound site as a potential wound dressing. We anticipated that the biological hoof keratin and bioactive herbal extract coated biopatch could serve as a desirable wound dressing candidate to suit various skin tissue regenerative applications.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, Dr. N.G.P. Institute of Technology, Coimbatore 641048, India.
| | - Anandhavelu Sanmugam
- Department of Chemistry, Vel Tech Multi Tech Engineering College, Chennai 600062, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, K.P.R. Institute of Engineering and Technology, Coimbatore 641407, India
| |
Collapse
|
52
|
Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S, Xia Y. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18472-18487. [PMID: 33856781 DOI: 10.1021/acsami.0c22671] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Repair of large bone defects represents a major challenge for orthopedic surgeons. The newly formed microvessels inside grafts play a crucial role in successful bone tissue engineering. Previously, an active role for mesenchymal stem cell (MSC)-derived exosomes in blood vessel development and progression was suggested in the repair of multiple tissues. However, the reports on the application of MSC-derived exosomes in the repair of large bone defects are sparse. In this study, we encapsulated umbilical MSC-derived exosomes (uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel) and combined them with customized nanohydroxyapatite/poly-ε-caprolactone (nHP) scaffolds to repair cranial defects in rats. Imaging and histological evaluation indicated that the uMSCEXOs/Gel/nHP composites markedly enhanced bone regeneration in vivo, and the uMSCEXOs might play a key role in this process. Moreover, the in vitro results demonstrated that uMSCEXOs promoted the proliferation, migration, and angiogenic differentiation of endothelial progenitor cells (EPCs) but did not significantly affect the osteogenic differentiation of BMSCs. Importantly, mechanistic studies revealed that exosomal miR-21 was the potential intercellular messenger that promoted angiogenesis by upregulating the NOTCH1/DLL4 pathway. In conclusion, our findings exhibit a promising exosome-based strategy in repairing large bone defects through enhanced angiogenesis, which potentially regulated by the miR-21/NOTCH1/DLL4 signaling axis.
Collapse
Affiliation(s)
- Yuntong Zhang
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yang Xie
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zichen Hao
- Department of Orthopaedics, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
| | - Panyu Zhou
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Panfeng Wang
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shuo Fang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lu Li
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shuogui Xu
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Xia
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
53
|
Chen L, Yan D, Wu N, Yao Q, Sun H, Pang Y, Fu Y. Injectable bio-responsive hydrogel for therapy of inflammation related eyelid diseases. Bioact Mater 2021; 6:3062-3073. [PMID: 33778188 PMCID: PMC7960684 DOI: 10.1016/j.bioactmat.2021.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 01/09/2023] Open
Abstract
Eyelid plays a vital role in protecting the eye from injury or infection. Inflammation related eyelid diseases, such as blepharitis, are the most common ocular disorders that affect human's vision and quality of life. Due to the physiological barriers and anatomical structures of the eye, the bioavailability of topical administrated therapeutics is typically less than 5%. Herein, we developed a bio-responsive hydrogel drug delivery system using a generally recognized as safe compound, triglycerol monostearate (TG-18), for in-situ eyelid injection with sustained therapeutics release. In vitro, drug release and disassembly time of Rosiglitazone loaded hydrogel (Rosi-hydrogel) were estimated in the presence or absence of MMP-9, respectively. Moreover, the disassembly of TG-18 hydrogel was evaluated with 9-month-old and 12-month-old mice in vivo. Owing to the bio-responsive nature of Rosi-hydrogel, the on-demand Rosiglitazone release is achieved in response to local enzymes. These findings are proved by further evaluation in the age-related meibomian gland dysfunction mice model, and the bio-responsive hydrogel is used as an in-situ injection to treat eyelid diseases. Taken together, the in-situ eyelid injection with sustained drug release opens a window for the therapy of inflammation related eyelid diseases. This study is the first application of injectable bio-responsive hydrogel for therapy of inflammation related eyelid diseases. The enzyme response characteristic is extremely suitable for enhancing drug bioavailability in ocular drug delivery. In-situ release of rosiglitazone can effectively treat age-related meibomian gland dysfunction in the mice model.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dan Yan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Nianxuan Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qinke Yao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
54
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
55
|
Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111963. [PMID: 33812591 DOI: 10.1016/j.msec.2021.111963] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing is a promising method to prepare scaffolds for tissue regeneration. Collagen and chitosan composites are superior materials for tissue engineering scaffold but rarely printed due to their poor printability. Here, we prepared a series of tunable hybrid collagen/chitosan bioinks with significantly improved printability through hydrogen bond interaction and printed them into scaffolds by carefully controlling the temperature. Rheological tests proved the printable bioinks had sound shear thinning behavior, dramatical viscosity variation with temperature, and the gelation temperature from 7 to 10 °C. Chitosan could decrease the swelling ratio of the printed scaffolds, while their degradation rate increased with collagen proportion and the values of Young's modulus and tensile strength increased with chitosan proportion. Moreover, the scaffolds containing 2% (m/v) collagen and 2% (m/v) chitosan had a homogeneous and compact honeycomb-like structure, demonstrating the strengthening effect of chitosan. Cell viability assay presented vigorous cell growth on the surface of scaffolds, meanwhile, live cells were also found inside and at the bottom of the scaffolds, indicating the migration of cells. Therefore, chitosan can improve the printability of collagen and the hybrid collagen/chitosan bioinks can be printed into scaffolds with regulated properties, thus can fit different applications in tissue engineering.
Collapse
|
56
|
Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021; 137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy that boosts the body's immune system to treat local and distant metastatic tumors has offered a new treatment option for cancer. However, cancer immunotherapy via systemic administration of immunotherapeutic agents often has two major issues of limited immune responses and potential immune-related adverse events in the clinic. Hydrogels, a class of three-dimensional network biomaterials with unique porous structures can achieve local delivery of drugs into tumors to trigger the antitumor immunity, resulting in amplified immunotherapy at lower dosages. In this review, we summarize the recent development of polymer-based hydrogels as drug release systems for local delivery of various immunotherapeutic agents for cancer immunotherapy. The constructions of polymer-based hydrogels and their local delivery of various drugs in tumors to achieve sole immunotherapy, and chemotherapy-, and phototherapy-combinational immunotherapy are introduced. Furthermore, a brief conclusion is given and existing challenges and further perspectives of polymer-based hydrogels for cancer immunotherapy are discussed.
Collapse
|
57
|
Aktsiali M, Papachrysanthou T, Griveas I, Andriopoulos C, Sitaras P, Triantafyllopoulos IK, Lambrou GI. Treatment with Cinacalcet in Hemodialysis Patients with Severe Secondary Hyperparathyroidism, Influences Bone Mineral Metabolism and Anemia Parameters. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190802144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the premium rate of Chronic Kidney Disease, we have increased
our knowledge with respect to diagnosis and treatment of Bone Mineral Disease (BMD) in End-
Stage Renal Disease (ESRD). Currently, various treatment options are available. The medication
used for Secondary Hyper-Parathyroidism gives promising results in the regulation of Ca, P and
Parathormone levels, improving the quality of life. The aim of the present study was to investigate
the relation of cinacalcet administration to not only parathormone, Ca and P but also to anemia
parameters such as hematocrit and hemoglobin.
Materials and Methods:
retrospective observational study was conducted in a Chronic
Hemodialysis Unit. One-hundred ESRD patients were recruited for twenty-four months and were
evaluated on a monthly rate. Biochemical parameters were related to medication prescribed and the
prognostic value was estimated. Cinacalcet was administered to 43 out of 100 patients in a dose of
30-120 mg.
Results:
Significant differences were observed in PTH, Ca and P levels with respect to Cinacalcet
administration. Ca levels appeared to be higher at 30mg as compared to 60mg cinacalcet.
Furthermore, a decreasing age-dependent pattern was observed with respect to cinacalcet dosage. A
positive correlation was observed between Dry Weight (DW) and cinacalcet dose. Finally, a
positive correlation between Hematocrit and Hemoglobin and cinacalcet was manifested.
Conclusions:
Cinacalcet, is a potential cardiovascular and bone protective agent, which is approved
for use in ESRD patients to assist SHPT. A novel information was obtained from this study,
regarding the improvement of the control of anemia.
Collapse
Affiliation(s)
- Maria Aktsiali
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | | | - Ioannis Griveas
- 417 Veterans Army Administration Hospital of Athens, Monis Petraki 10-12, 11521, Athens, Greece
| | - Christos Andriopoulos
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | - Panagiotis Sitaras
- Private Dialysis Unit “Nefroiatriki”, Chlois 85 Str., 14452, Metamorfosi, Athens, Greece
| | - Ioannis K. Triantafyllopoulos
- Graduate Program “Metabolic Bones Diseases”, National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece
| | - George I. Lambrou
- Graduate Program “Metabolic Bones Diseases”, National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece
| |
Collapse
|
58
|
Alonzo M, Kumar SA, Allen S, Delgado M, Alvarez-Primo F, Suggs L, Joddar B. Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. Prog Biomater 2020; 9:125-137. [PMID: 32978746 PMCID: PMC7544760 DOI: 10.1007/s40204-020-00137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shane Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Fabian Alvarez-Primo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
59
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
60
|
Han J, Cui Y, Han X, Liang C, Liu W, Luo D, Yang D. Super-Soft DNA/Dopamine-Grafted-Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000684. [PMID: 32670769 PMCID: PMC7341087 DOI: 10.1002/advs.202000684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/26/2020] [Indexed: 05/31/2023]
Abstract
Engineering dynamic systems or materials to respond to biological process is one of the major tasks in synthetic biology and will enable wide promising applications, such as robotics and smart medicine. Herein, a super-soft and dynamic DNA/dopamine-grafted-dextran hydrogel, which shows super-fast volume-responsiveness with high sensitivity upon solvents with different polarities and enables creation of electric circuits in response to microbial metabolism is reported. Synergic permanent and dynamic double networks are integrated in this hydrogel. A serials of dynamic hydrogel-based electric circuits are fabricated: 1) triggered by using water as switch, 2) triggered by using water and petroleum ether as switch pair, 3) a self-healing electric circuit; 4) remarkably, a microbial metabolism process which produces ethanol triggering electric circuit is achieved successfully. It is envisioned that the work provides a new strategy for the construction of dynamic materials, particularly DNA-based biomaterials; and the electric circuits will be highly promising in applications, such as soft robotics and intelligent systems.
Collapse
Affiliation(s)
- Jinpeng Han
- Frontier Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350P. R. China
| | - Yuchen Cui
- Frontier Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350P. R. China
| | - Xinpeng Han
- Frontier Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350P. R. China
| | - Chenyu Liang
- Frontier Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350P. R. China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300350P. R. China
| | - Dan Luo
- Department of Biological & Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Dayong Yang
- Frontier Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350P. R. China
| |
Collapse
|
61
|
Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902004. [PMID: 31423670 PMCID: PMC7141789 DOI: 10.1002/adma.201902004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose-responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed-loop insulin delivery or "smart insulin" systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose-responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose-responsive moieties, including glucose oxidase, phenylboronic acid, and glucose-binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Zenomics Inc., Durham, NC 27709, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
62
|
Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interface Sci 2020; 275:102060. [PMID: 31739981 PMCID: PMC7094116 DOI: 10.1016/j.cis.2019.102060] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
Abstract
DNA hydrogels as special members in the DNA nanotechnology have provided crucial prerequisites to create innovative gels owing to their sufficient stability, biocompatibility, biodegradability, and tunable multifunctionality. These properties have tailored DNA hydrogels for various applications in drug delivery, tissue engineering, sensors, and cancer therapy. Recently, DNA-based materials have attracted substantial consideration for the exploration of smart hydrogels, in which their properties can change in response to chemical or physical stimuli. In other words, these gels can undergo switchable gel-to-sol or sol-to-gel transitions upon application of different triggers. Moreover, various functional motifs like i-motif structures, antisense DNAs, DNAzymes, and aptamers can be inserted into the polymer network to offer a molecular recognition capability to the complex. In this manuscript, a comprehensive discussion will be endowed with the recognition capability of different kinds of DNA hydrogels and the alternation in physicochemical behaviors upon target introducing. Finally, we offer a vision into the future landscape of DNA based hydrogels in sensing applications.
Collapse
Affiliation(s)
- Sima Khajouei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Ebrahimi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
63
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
64
|
Liu C, Zhang Q, Zhu S, Liu H, Chen J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv 2019; 9:28299-28311. [PMID: 35530460 PMCID: PMC9071167 DOI: 10.1039/c9ra05934b] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023] Open
Abstract
In situ injectable hydrogels have shown tremendous potential application in the biomedical field due to their significant drug accumulation at lesion sites, sustained release and markedly reduced systemic side effects. Specifically, peptide-based hydrogels, with unique biodegradation, biocompatibility, and bioactivity, are attractive molecular skeletons. In addition, peptides play a prominent role in normal metabolism, mimicking the natural tissue microenvironment and responding to stimuli in the lesion environment. Their advantages endow peptide-based hydrogels with great potential for application as biomedical materials. In this review, the fabrication and production of peptide-based hydrogels are presented. Several promising candidates, which are smart and environment-sensitive, are briefly reviewed. Then, the recent developments of these hydrogels for biomedical applications in tissue engineering, as drug/gene vehicles, and anti-bacterial agents are discussed. Finally, the development of peptide-based injectable hydrogels for biomedical applications in the future is surveyed.
Collapse
Affiliation(s)
- Chang Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Qingguo Zhang
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Song Zhu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Hong Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
65
|
Heo JY, Noh JH, Park SH, Ji YB, Ju HJ, Kim DY, Lee B, Kim MS. An Injectable Click-Crosslinked Hydrogel that Prolongs Dexamethasone Release from Dexamethasone-Loaded Microspheres. Pharmaceutics 2019; 11:pharmaceutics11090438. [PMID: 31480552 PMCID: PMC6781549 DOI: 10.3390/pharmaceutics11090438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Our purpose was to test whether a preparation of injectable formulations of dexamethasone (Dex)-loaded microspheres (Dex-Ms) mixed with click-crosslinked hyaluronic acid (Cx-HA) (or Pluronic (PH) for comparison) prolongs therapeutic levels of released Dex. Dex-Ms were prepared using a monoaxial-nozzle ultrasonic atomizer with an 85% yield of the Dex-Ms preparation, encapsulation efficiency of 80%, and average particle size of 57 μm. Cx-HA was prepared via a click reaction between transcyclooctene (TCO)-modified HA (TCO-HA) and tetrazine (TET)-modified HA (TET-HA). The injectable formulations (Dex-Ms/PH and Dex-Ms/Cx-HA) were fabricated as suspensions and became a Dex-Ms-loaded hydrogel drug depot after injection into the subcutaneous tissue of Sprague Dawley rats. Dex-Ms alone also formed a drug depot after injection. The Cx-HA hydrogel persisted in vivo for 28 days, but the PH hydrogel disappeared within six days, as evidenced by in vivo near-infrared fluorescence imaging. The in vitro and in vivo cumulative release of Dex by Dex-Ms/Cx-HA was much slower in the early days, followed by sustained release for 28 days, compared with Dex-Ms alone and Dex-Ms/PH. The reason was that the Cx-HA hydrogel acted as an external gel matrix for Dex-Ms, resulting in the retarded release of Dex from Dex-Ms. Therefore, we achieved significantly extended duration of a Dex release from an in vivo Dex-Ms-loaded hydrogel drug depot formed by Dex-Ms wrapped in an injectable click-crosslinked HA hydrogel in a minimally invasive manner. In conclusion, the Dex-Ms/Cx-HA drug depot described in this work showed excellent performance on extended in vivo delivery of Dex.
Collapse
Affiliation(s)
- Ji Yeon Heo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
66
|
Wang D, Hou X, Zhang X, Zhao Y, Sun Y, Wang J. One- and two-photon responsive injectable nano-bundle biomaterials from co-assembled lipopeptides for controlling molecular diffusion. SOFT MATTER 2019; 15:6476-6484. [PMID: 31365016 DOI: 10.1039/c9sm01184f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An injectable biomaterial has been prepared through co-assembly of lipopeptides C4-Bhc-Glu-Glu-NH2 and C14-Phe-Lys-Lys-NH2. This biomaterial contained a large number of nanofibre bundles (nano-bundles, NBs) of lipopeptide co-assemblies and performed like hydrogels. The morphologies of the NBs were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The rheological properties were investigated with a rheometer. Excitingly, the NB biomaterials exhibited shear thinning and self-healing properties, and could be used as injectable biomaterials. The coumarin group in the lipopeptides endowed the NB biomaterials with both ultraviolet (UV, a one photon process) and near-infrared (NIR) light (a two photon process) responsiveness. A small molecule (Doxorubicin, DOX) and a large molecule (bovine serum albumin, BSA) were used as model drugs, and both of them could be encapsulated in the NB biomaterials and could also be released sustainably or explosively under different conditions (with or without one- and two-photon irradiation). DOX and BSA have different release behaviors because of the NBs. Cell assays showed that the co-assembled NB biomaterials exhibited low cytotoxicity to normal cells. However, when DOX was loaded, the NB biomaterials could kill HeLa cells sustainably. Under UV and NIR irradiation, HeLa cells could be killed rapidly because of the burst release of DOX. The co-assembled supramolecular NB biomaterials with dual-responsiveness, tunable rheological properties and multi-drug encapsulating ability might have potential in biomedical engineering.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiaojun Hou
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xuecheng Zhang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
67
|
Hosseinkhani H, Domb AJ. Biodegradable polymers in gene‐silencing technology. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Abraham J. Domb
- School of Pharmacy‐Faculty of Medicine, Institute of Drug Research, The Center for Nanoscience and Nanotechnology and Alex Grass Center for drug Design and SynthesisThe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
68
|
GhavamiNejad A, Lu B, Giacca A, Wu XY. Glucose regulation by modified boronic acid-sulfobetaine zwitterionic nanogels - a non-hormonal strategy for the potential treatment of hyperglycemia. NANOSCALE 2019; 11:10167-10171. [PMID: 31112182 DOI: 10.1039/c9nr01687b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have introduced a non-hormonal hyperglycemia treatment strategy by using an injectable glucose-responsive boronic acid- zwitterionic nanogel. The synthesized system, similar to an artificial liver, is capable of storing/releasing glucose at high/low blood glucose concentrations. In vivo performance revealed that the injection of the nanogels can effectively regulate blood glucose in type 1 diabetic rats for at least 6 hours.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
69
|
Jiang H, Qin Z, Zheng Y, Liu L, Wang X. Aggregation-Induced Electrochemiluminescence by Metal-Binding Protein Responsive Hydrogel Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901170. [PMID: 30951259 DOI: 10.1002/smll.201901170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Functionalized hydrogels have aroused general interest due to their versatile applications in biomaterial fields. This work reports a hydrogel network composed of gold nanoclusters linked with bivalent cations such as Ca2+ , Mg2+ , and Zn2+ . The hydrogel exhibits both aggregation-induced emission (AIE) and aggregation-induced electrochemiluminescence (AIECL) effects. Most noteworthy, the AIECL effect (≈50-fold enhancement) is even more significant than the corresponding AIE effect (approximately fivefold enhancement). Calmodulin, a Ca2+ binding protein, may efficiently regulate the AIECL dynamics after specific binding of the Ca2+ linker, with the linear range from 0.3 to 50 µg mL-1 and a limit of detection of 0.1 µg mL-1 . Considering the important roles of bivalent cations in the life system, these results may pave a new avenue for the design of a biomolecule-responsive AIECL-type hydrogel with multifunctional biomedical purposes.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zhaojian Qin
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Youkun Zheng
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
70
|
Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics 2019; 9:65-76. [PMID: 30662554 PMCID: PMC6332800 DOI: 10.7150/thno.29766] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rationale: Chronic nonhealing diabetic wound therapy and complete skin regeneration remains a critical clinical challenge. The controlled release of bioactive factors from a multifunctional hydrogel was a promising strategy to repair chronic wounds. Methods: Herein, for the first time, we developed an injectable, self-healing and antibacterial polypeptide-based FHE hydrogel (F127/OHA-EPL) with stimuli-responsive adipose-derived mesenchymal stem cells exosomes (AMSCs-exo) release for synergistically enhancing chronic wound healing and complete skin regeneration. The materials characterization, antibacterial activity, stimulated cellular behavior and in vivo full-thickness diabetic wound healing ability of the hydrogels were performed and analyzed. Results: The FHE hydrogel possessed multifunctional properties including fast self-healing process, shear-thinning injectable ability, efficient antibacterial activity, and long term pH-responsive bioactive exosomes release behavior. In vitro, the FHE@exosomes (FHE@exo) hydrogel significantly promoted the proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs). In vivo, the FHE@exo hydrogel significantly enhanced the healing efficiency of diabetic full-thickness cutaneous wounds, characterized with enhanced wound closure rates, fast angiogenesis, re-epithelization and collagen deposition within the wound site. Moreover, the FHE@exo hydrogel displayed better healing outcomes than those of exosomes or FHE hydrogel alone, suggesting that the sustained release of exosomes and FHE hydrogel can synergistically facilitate diabetic wound healing. Skin appendages and less scar tissue also appeared in FHE@exo hydrogel treated wounds, indicating its potent ability to achieve complete skin regeneration. Conclusion: This work offers a new approach for repairing chronic wounds completely through a multifunctional hydrogel with controlled exosomes release.
Collapse
Affiliation(s)
- Chenggui Wang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Tianzhen Xu
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingxing Zhang
- Center of Diabetic Foot, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cai Lin
- Center of Diabetic Foot, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyang Gao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huazi Xu
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Cong Mao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
71
|
Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 2019; 7:709-729. [DOI: 10.1039/c8tb02491j] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article highlights the properties of stimuli-responsive bio-based polymeric systems and their main intelligent applications.
Collapse
Affiliation(s)
- Shuting Gao
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Guosheng Tang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Dawei Hua
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Ranhua Xiong
- Lab General Biochemistry & Physical Pharmacy, Department of Pharmaceutics, Ghent University
- Belgium
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Qilu Zhang
- School of Material Science and Engineering, Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
- Laboratory of Biopolymer based Functional Materials, Nanjing Forestry University
- Nanjing
| |
Collapse
|
72
|
Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018; 4:E54. [PMID: 30674830 PMCID: PMC6209286 DOI: 10.3390/gels4020054] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.
Collapse
Affiliation(s)
- Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid 28006, Spain.
| | - Susete N Fernandes
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Maria H Godinho
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Paula I P Soares
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| |
Collapse
|