51
|
Huo C, Xiao J, Xiao K, Zou S, Wang M, Qi P, Liu T, Hu Y. Pre-Treatment with Zirconia Nanoparticles Reduces Inflammation Induced by the Pathogenic H5N1 Influenza Virus. Int J Nanomedicine 2020; 15:661-674. [PMID: 32099358 PMCID: PMC6996547 DOI: 10.2147/ijn.s221667] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background New approaches are urgently needed to fight influenza viral infection. Previous research has shown that zirconia nanoparticles can be used as anticancer materials, but their antiviral activity has not been reported. Here, we investigated the antiviral effect of zirconia (ZrO2) nanoparticles (NPs) against a highly pathogenic avian influenza virus. Materials and Methods In this study, the antiviral effects of ZrO2 on H5N1 virus were assessed in vivo, and the molecular mechanism responsible for this protection was investigated. Results Mice treated with 200 nm positively-charged NPs at a dose of 100 mg/kg showed higher survival rates and smaller reductions in weight. 200 nm ZrO2 activated mature dendritic cells and initially promoted the expression of cytokines associated with the antiviral response and innate immunity. In the lungs of H5N1-infected mice, ZrO2 treatment led to less pathological lung injury, significant reduction in influenza A virus replication, and overexpression of pro-inflammatory cytokines. Conclusion This antiviral study using zirconia NPs shows protection of mice against highly pathogenic avian influenza virus and suggests strong application potential for this method, introducing a new tool against a wide range of microbial infections.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Kai Xiao
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People's Republic of China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
52
|
Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, Cho CS, Islam MA. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics 2020; 12:E30. [PMID: 31906277 PMCID: PMC7022884 DOI: 10.3390/pharmaceutics12010030] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
DNA vaccines offer a flexible and versatile platform to treat innumerable diseases due to the ease of manipulating vaccine targets simply by altering the gene sequences encoded in the plasmid DNA delivered. The DNA vaccines elicit potent humoral and cell-mediated responses and provide a promising method for treating rapidly mutating and evasive diseases such as cancer and human immunodeficiency viruses. Although this vaccine technology has been available for decades, there is no DNA vaccine that has been used in bed-side application to date. The main challenge that hinders the progress of DNA vaccines and limits their clinical application is the delivery hurdles to targeted immune cells, which obstructs the stimulation of robust antigen-specific immune responses in humans. In this updated review, we discuss various nanodelivery systems that improve DNA vaccine technologies to enhance the immunological response against target diseases. We also provide possible perspectives on how we can bring this exciting vaccine technology to bedside applications.
Collapse
Affiliation(s)
- Michael Lim
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Mohammad Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Taslim Ahmed Al-Hilal
- Department of Pharmaceutical Sciences, University of Texas El Paso, El Paso, TX 79968, USA;
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Technology, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | | |
Collapse
|
53
|
Wu J, Ma G. Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomater Sci 2020; 8:2366-2375. [DOI: 10.1039/c9bm02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The design strategies of particle adjuvants by mimicking natural pathogens to strengthen their interaction with antigen-presenting cells.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| |
Collapse
|
54
|
Samadian H, Salami MS, Jaymand M, Azarnezhad A, Najafi M, Barabadi H, Ahmadi A. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108296. [DOI: 10.1016/j.mrrev.2020.108296] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/26/2022]
|
55
|
Zhao H, Xu J, Li Y, Guan X, Han X, Xu Y, Zhou H, Peng R, Wang J, Liu Z. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. ACS NANO 2019; 13:13127-13135. [PMID: 31710460 DOI: 10.1021/acsnano.9b05974] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor vaccines to induce robust immunity for cancer treatment have attracted tremendous interests in cancer immunotherapy. In this work, a type of cancer vaccine is prepared by using nanoscale coordination polymer (NCP) formed between Mn2+ ions and a nucleotide oligomerization binding domain 1 (Nod1) agonist, meso-2,6-diaminopimelic acid (DAP), as the organic ligand, to encapsulate a model protein antigen, ovalbumin (OVA). The obtained OVA@Mn-DAP nanoparticles could act as an effective tumor vaccine to promote the maturation of dendritic cells (DCs) as well as their antigen cross-presentation via increasing the cellular uptake of antigen and stimulating Nod1 pathway with DAP. Such OVA@Mn-DAP vaccine could migrate into lymph nodes after local injection, as revealed by in vivo magnetic resonance (MR) and fluorescence imaging. Importantly, vaccination with OVA@Mn-DAP could not only offer prophylactic to protect mice from challenged B16-OVA tumors but also result in significant therapeutic effect to inhibit growth of already-established tumors if in combination with anti-programmed cell death protein 1 antibody (α-PD-1) immune checkpoint blockade therapy. Therefore, this work presents an innovative platform to construct effective nanovaccine for tumor immunotherapy.
Collapse
Affiliation(s)
- He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yan Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xinxian Guan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yunyun Xu
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Huiting Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
56
|
Tang S, Liu Z, Xu W, Li Q, Han T, Pan D, Yue N, Wu M, Liu Q, Yuan W, Huang Z, Zhou D, Zhou W, Qian Z. Versatile Functionalization of Ferritin Nanoparticles by Intein-Mediated Trans-Splicing for Antigen/Adjuvant Co-delivery. NANO LETTERS 2019; 19:5469-5475. [PMID: 31251065 DOI: 10.1021/acs.nanolett.9b01974] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembling protein nanoparticles are extensively and increasingly engineered to integrate adjuvants with antigens to elicit potent and long-term immunity due to uniform architecture, inherent biocompatibility, and excellent plasticity. However, functionalization of nanoparticles by surface tailoring has two common problems: (1) disassembly caused by loaded cargoes; and (2) an adjuvant that is inconvenient to co-deliver with an antigen by genetic fusion. Here, we report an intein-mediated trans-splicing approach that overcomes the detrimental effects of loaded proteins on ferritin nanoparticle stability and allows concurrent display of antigen and adjuvant in a facile, efficient, and site-specific manner. An immunization study with an epitope-based model antigen reveals that antigen and adjuvant co-delivery nanoparticles induce a more potent protective immunity than other formulations do. Our results demonstrate that protein engineering represents an intriguing approach for antigen/adjuvant co-delivery to potentiate antigen-associated immune responses.
Collapse
Affiliation(s)
- Shubing Tang
- Guangzhou Institute of Pediatrics, Department of Neonatology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , 510623 Guangzhou , China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Zhi Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Wenjia Xu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Qi Li
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Tian Han
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Deng Pan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Nan Yue
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Mangteng Wu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Qingwei Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Weiming Yuan
- Guangzhou Institute of Pediatrics, Department of Neonatology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , 510623 Guangzhou , China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Dongming Zhou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| | - Wei Zhou
- Guangzhou Institute of Pediatrics, Department of Neonatology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , 510623 Guangzhou , China
| | - Zhikang Qian
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , 200031 Shanghai , China
| |
Collapse
|
57
|
Dong Z, Wang Q, Huo M, Zhang N, Li B, Li H, Xu Y, Chen M, Hong H, Wang Y. Mannose-Modified Multi-Walled Carbon Nanotubes as a Delivery Nanovector Optimizing the Antigen Presentation of Dendritic Cells. ChemistryOpen 2019; 8:915-921. [PMID: 31338275 PMCID: PMC6625155 DOI: 10.1002/open.201900126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor-specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti-tumor immune response, herein, a specific DCs target delivery system was assembled by using multi-walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi-walled carbon nanotubes (Man-MWCNTs) with a large drug loading content. This nanotube-antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release in vitro, indicating that it could be a potent antigen-adjuvant nanovector of efficient antigen delivery for therapeutic purpose.
Collapse
Affiliation(s)
- Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Qiyan Wang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Ming Huo
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Nanxia Zhang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Bingxia Li
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Yisong Xu
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Meng Chen
- Nanjing Foreign Language SchoolNO.30 East Beijing RoadNanjing210029China
| | - Hao Hong
- Center for Molecular Imaging, Department of RadiologyUniversity of Michigan, Ann Arbor, Michigan48109-2200United States
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| |
Collapse
|
58
|
Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun 2019; 10:2025. [PMID: 31048681 PMCID: PMC6497709 DOI: 10.1038/s41467-019-09760-3] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Combined checkpoint blockade (e.g., PD1/PD-L1) with traditional clinical therapies can be hampered by side effects and low tumour-therapeutic outcome, hindering broad clinical translation. Here we report a combined tumour-therapeutic modality based on integrating nanosonosensitizers-augmented noninvasive sonodynamic therapy (SDT) with checkpoint-blockade immunotherapy. All components of the nanosonosensitizers (HMME/R837@Lip) are clinically approved, wherein liposomes act as carriers to co-encapsulate sonosensitizers (hematoporphyrin monomethyl ether (HMME)) and immune adjuvant (imiquimod (R837)). Using multiple tumour models, we demonstrate that combining nanosonosensitizers-augmented SDT with anti-PD-L1 induces an anti-tumour response, which not only arrests primary tumour progression, but also prevents lung metastasis. Furthermore, the combined treatment strategy offers a long-term immunological memory function, which can protect against tumour rechallenge after elimination of the initial tumours. Therefore, this work represents a proof-of-concept combinatorial tumour therapeutics based on noninvasive tumours-therapeutic modality with immunotherapy. Immunotherapy for the treatment of cancer can be complicated by side effects and poor efficacy. Here, the authors use a nanoparticle-based approach in combination with a TLR7 agonist and sonodynamic therapy, and find that when used together with anti-PD-L1, tumour formation and metastases are impacted.
Collapse
|
59
|
Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019; 297:79-90. [PMID: 30659906 DOI: 10.1016/j.jconrel.2019.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long. Stemming from the observed capacities of CNTs to enter various types of cells via diversified mechanisms utilising energy-dependent and/or passive routes of cell uptake, the use of CNTs for the delivery of therapeutic agents has drawn increasing interests over the last decade. Here we review the previous studies that demonstrated the possible benefits of these cylindrical nano-vectors as cancer vaccine delivery systems as well as the obstacles their clinical application is facing.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Lesley A Smyth
- School of Health, Sport and Biosciences, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - Adam A Walters
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
60
|
Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, Han X, Liu Z. Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802228. [PMID: 30663118 DOI: 10.1002/adma.201802228] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/15/2018] [Indexed: 05/17/2023]
Abstract
External radiotherapy is extensively used in clinic to destruct tumors by locally applied ionizing-radiation beams. However, the efficacy of radiotherapy is usually limited by tumor hypoxia-associated radiation resistance. Moreover, as a local treatment technique, radiotherapy can hardly control tumor metastases, the major cause of cancer death. Herein, core-shell nanoparticles based poly(lactic-co-glycolic) acid (PLGA) are fabricate, by encapsulating water-soluble catalase (Cat), an enzyme that can decompose H2 O2 to generate O2 , inside the inner core, and loading hydrophobic imiquimod (R837), a Toll-like-receptor-7 agonist, within the PLGA shell. The formed PLGA-R837@Cat nanoparticles can greatly enhance radiotherapy efficacy by relieving the tumor hypoxia and modulating the immune-suppressive tumor microenvironment. The tumor-associated antigens generated postradiotherapy-induced immunogenic cell death in the presence of such R837-loaded adjuvant nanoparticles will induce strong antitumor immune responses, which together with cytotoxic T-lymphocyte associated protein 4 (CTLA-4) checkpoint blockade will be able to effectively inhibit tumor metastases by a strong abscopal effect. Moreover, a long term immunological memory effect to protect mice from tumor rechallenging is observed post such treatment. This work thus presents a unique nanomedicine approach as a next-generation radiotherapy strategy to enable synergistic whole-body therapeutic responses after local treatment, greatly promising for clinical translation.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiawen Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhijuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
61
|
Liu J, Feng X, Chen Z, Yang X, Shen Z, Guo M, Deng F, Liu Y, Zhang H, Chen C. The adjuvant effect of C 60(OH) 22 nanoparticles promoting both humoral and cellular immune responses to HCV recombinant proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:753-759. [PMID: 30678964 DOI: 10.1016/j.msec.2018.12.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis c virus (HCV) infection is one of major causes for chronic liver diseases worldwide and could lead to death. Development of effective HCV vaccines is a powerful auxiliary method of existing treatments. Adjuvants are necessary for modern vaccines to promote immune responses. Among the various nanomaterials that have been developed, multihydroxylated fullerene (C60(OH)22) has been proved as an efficient adjuvant for human immunodeficiency virus DNA vaccine. Here, we utilized three types of HCV recombinant proteins as antigens to investigate the activity of C60(OH)22 as a protein vaccine adjuvant. The proteins were carried by C60(OH)22 in a way of surface adsorption and self-assemble encapsulation. C60(OH)22 at a relatively low dose was sufficient to promote both humoral and cellular immune responses to HCV protein antigens and reduce the usage of antigen. These results demonstrated the positive adjuvant properties of C60(OH)22 when applied to protein vaccines.
Collapse
Affiliation(s)
- Jing Liu
- The College of Life Sciences, Northwest University, Xi'an 710069, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoyan Feng
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiqin Yang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Ziyi Shen
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Heqiu Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
62
|
The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 2018; 36:2232-2247. [PMID: 30342084 DOI: 10.1016/j.biotechadv.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
With unique characteristics such as high surface area, capacity of various functionalization, low weight, high conductivity, thermal and chemical stability, and free radical scavenging, carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs), fullerene, graphene (oxide), carbon nanohorns (CNHs), and their derivatives have increasingly been utilized in nanomedicine and biomedicine. On the one hand, owing to ever-increasing applications of CNMs in technological and industrial fields as well as presence of combustion-derived CNMs in the ambient air, the skepticism has risen over the adverse effects of CNMs on human being. The influences of CNMs on cardiovascular system and cardiovascular diseases (CVDs) such as atherosclerosis, of which consequences are ischemic heart disease and ischemic stroke, as the main causes of death, is of paramount importance. In this regard, several studies have been devoted to specify the biomedical applications and cardiovascular toxicity of CNMs. Therefore, the aim of this review is to specify the roles and applications of various CNMs in atherosclerosis, and also identify the key role playing parameters in cardiovascular toxicity of CNMs so as to be a clue for prospective deployment of CNMs.
Collapse
|
63
|
Mitchell SL, Carlson EE. Tiny Things with Enormous Impact: Nanotechnology in the Fight Against Infectious Disease. ACS Infect Dis 2018; 4:1432-1435. [PMID: 30070819 DOI: 10.1021/acsinfecdis.8b00138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanoparticles have exceptional properties that make them outstanding candidates for improving diagnostics and the treatment of infectious disease. Their small size, distinctive intrinsic properties, and ability to be decorated with a variety of complex functionalities make them uniquely capable of detection and targeting of certain diseases. Nanotechnology has the ability to increase the sensitivity of detection methods, the potency and ease of treatment, and the effectiveness of vaccinations. However, major challenges remain to their application in low-resource settings due in large part to the sensitivity of these particles to their local environment, a property that makes them both exceptional for detection and prone to complications or failure during synthesis and utilization. These challenges are likely to be solved only by continued and enhanced communication across scientific disciplines, for example, medical doctors and diagnosticians providing information about what is needed in new technologies. This information will enable materials scientists and engineers to rapidly address the corresponding technical challenges, such as the scalable and reproducible generation of nontoxic and stable, yet responsible nanoparticles.
Collapse
Affiliation(s)
- Stephanie L. Mitchell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
64
|
Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the major health problems all over the world and conventional therapeutic approaches have failed to attain an effective cure. Tumor microenvironments (TME) present a unique challenge in tumor therapy due to their complex structures and multiple components, which also serve as the soil for tumor growth, development, invasion, and migration. The complex TME includes immune cells, fibrous collagen structures, and tortuous blood vessels, in which conventional therapeutic approaches are rendered useless. State-of-the-art nanotechnologies have potential to cope with the threats of malignant tumors. With unique physiochemical properties, carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes, and carbon quantum dots, offer opportunities to resolve the hurdles, by targeting not only cancer cells but also the TME. This review summarizes the progress about CNM-based cancer therapy strategies, which mainly focuses on both the treatment for cancer cells and TME-targeted modulation. In the last, the challenges for TME-based therapy via CNMs are discussed, which will be important in guiding current basic research to clinical translation in the future.
Collapse
Affiliation(s)
- Jabran Saleem
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| |
Collapse
|
65
|
Li W, Balachandran YL, Hao Y, Hao X, Li R, Nan Z, Zhang H, Shao Y, Liu Y. Amantadine Surface-Modified Silver Nanorods Improves Immunotherapy of HIV Vaccine Against HIV-Infected Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28494-28501. [PMID: 30085647 DOI: 10.1021/acsami.8b10948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface modifications can endow nanomaterials with presupposed immunoregulatory functions to optimize vaccine-induced immune responses. In this work, we modified an immunoregulatory molecule, amantadine (Ada), on the outermost layer of PVP-PEG-coated silver nanorods (Ada-PVP-PEG silver nanorods). Such Ada surface-modified silver nanorods promote HIV vaccine-triggered cytotoxic lymphocytes (CTLs) to produce around eightfold stronger tumor necrosis factor alpha (TNF-α) in vivo. The enhancement of HIV-specific CTL-derived TNF-α significantly facilitates the death of HIV-infected cells (from 28.86 to 84.19%) and reduces HIV production (around sixfold). This work supports the critical role of surface modifications of nanomaterials in fundamentally improving the immunotherapy of HIV vaccine against HIV-infected cells.
Collapse
Affiliation(s)
- Weiyu Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Yekkuni L Balachandran
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention , Chinese Center for Disease Control and Prevention , Beijing 100190 , China
| | - Xie Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Zhangjie Nan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education , Beijing University of Agriculture , Beijing 102206 , China
| | - Hongying Zhang
- College of Tobacco Science , Henan Agricultural University , Zhengzhou 450002 , China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention , Chinese Center for Disease Control and Prevention , Beijing 100190 , China
| | - Ye Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
66
|
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234:298-319. [PMID: 30078182 DOI: 10.1002/jcp.26899] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
One of the major components in the development of nanomedicines is the choice of the right biomaterial, which notably determines the subsequent biological responses. The popularity of carbon nanomaterials (CNMs) has been on the rise due to their numerous applications in the fields of drug delivery, bioimaging, tissue engineering, and biosensing. Owing to their considerably high surface area, multifunctional surface chemistry, and excellent optical activity, novel functionalized CNMs possess efficient drug-loading capacity, biocompatibility, and lack of immunogenicity. Over the past few decades, several advances have been made on the functionalization of CNMs to minimize their health concerns and enhance their biosafety. Recent evidence has also implied that CNMs can be functionalized with bioactive peptides, proteins, nucleic acids, and drugs to achieve composites with remarkably low toxicity and high pharmaceutical efficiency. This review focuses on the three main classes of CNMs, including fullerenes, graphenes, and carbon nanotubes, and their recent biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
67
|
Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS NANO 2018; 12:5121-5129. [PMID: 29771487 DOI: 10.1021/acsnano.7b09041] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumor vaccines for cancer prevention and treatment have attracted tremendous interests in the area of cancer immunotherapy in recent years. In this work, we present a strategy to construct cancer vaccines by encapsulating immune-adjuvant nanoparticles with cancer cell membranes modified by mannose. Poly(d,l-lactide- co-glycolide) nanoparticles are first loaded with toll-like receptor 7 agonist, imiquimod (R837). Those adjuvant nanoparticles (NP-R) are then coated with cancer cell membranes (NP-R@M), whose surface proteins could act as tumor-specific antigens. With further modification with mannose moiety (NP-R@M-M), the obtained nanovaccine shows enhanced uptake by antigen presenting cells such as dendritic cells, which would then be stimulated to the maturation status to trigger antitumor immune responses. With great efficacy to delay tumor development as a prevention vaccine, vaccination with such NP-R@M-M in combination with checkpoint-blockade therapy further demonstrates outstanding therapeutic efficacy to treat established tumors. Therefore, our work presents an innovative way to fabricate cancer nanovaccines, which in principle may be applied for a wide range of tumor types.
Collapse
Affiliation(s)
- Rong Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiaoqi Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuhuan Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
68
|
Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, Lin J, Xing B. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjug Chem 2018; 29:838-851. [PMID: 29509403 DOI: 10.1021/acs.bioconjchem.8b00103] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In terms of the extremely small size and large specific surface area, nanomaterials often exhibit unusual physical and chemical properties, which have recently attracted considerable attention in bionanotechnology and nanomedicine. Currently, the extensive usage of nanotechnology in medicine holds great potential for precise diagnosis and effective therapeutics of various human diseases in clinical practice. However, a detailed understanding regarding how nanomedicine interacts with the intricate environment in complex living systems remains a pressing and challenging goal. Inspired by the diversified membrane structures and functions of natural prototypes, research activities on biomimetic and bioinspired membranes, especially for those cloaking nanosized platforms, have increased exponentially. By taking advantage of the flexible synthesis and multiple functionality of nanomaterials, a variety of unique nanostructures including inorganic nanocrystals and organic polymers have been widely devised to substantially integrate with intrinsic biomoieties such as lipids, glycans, and even cell and bacteria membrane components, which endow these abiotic nanomaterials with specific biological functionalities for the purpose of detailed investigation of the complicated interactions and activities of nanomedicine in living bodies, including their immune response activation, phagocytosis escape, and subsequent clearance from vascular system. In this review, we summarize the strategies established recently for the development of biomimetic membrane-cloaked nanoplatforms derived from inherent host cells (e.g., erythrocytes, leukocytes, platelets, and exosomes) and invasive pathogens (e.g., bacteria and viruses), mainly attributed to their versatile membrane properties in biological fluids. Meanwhile, the promising biomedical applications based on nanoplatforms inspired by diverse moieties, such as selective drug delivery in targeted sites and effective vaccine development for disease prevention, have also been outlined. Finally, the potential challenges and future prospects of the biomimetic membrane-cloaked nanoplatforms are also discussed.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Juan Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huanghao Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
69
|
Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm 2018; 542:253-265. [PMID: 29555438 DOI: 10.1016/j.ijpharm.2018.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Crosstalk among immune cells has attracted considerable attention with the advent of immunotherapy as a novel therapeutic approach for challenging diseases, especially cancer, which is the leading cause of mortality worldwide. Dendritic cells-the key antigen-presenting cells-play a pivotal role in immunological response by presenting exogenous epitopes to T cells, which induces the self-defense mechanisms of the body. Furthermore, nanotechnology has provided promising ways for diagnosing and treating cancer in the last decade. The progress in nanoparticle drug carrier development, combined with enhanced understanding of the immune system, has enabled harnessing of anti-tumor immunity. This review focuses on the recent advances in nanotechnology that have improved the therapeutic efficacy of immunotherapies, with emphasis on dendritic cell physiology and its role in presenting antigens and eliciting therapeutic T cell response.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
70
|
Tang J, Zhang R, Guo M, Shao L, Liu Y, Zhao Y, Zhang S, Wu Y, Chen C. Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials 2018; 167:205-215. [PMID: 29571055 DOI: 10.1016/j.biomaterials.2018.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
Chemodrugs have been widely used to treat cancer; however, the chemotherapy usually leads to serious side effects and failure. Various nanomaterials and strategies have been explored for drug delivery to improve the efficacy of chemodrugs. One key to loading chemodrugs onto a nano-delivery system is enhancement of the encapsulation efficiency, especially for polymeric nanoparticles being loaded with hydrophilic drugs. Inspired by the ability of eukaryote to package millions of genes in the nucleus wrapping and condensing DNA around histones to form chromosomes, here we developed a karyon-like hybrid nanoparticle to achieve ultra-high encapsulation of doxorubicin (Dox) with reduced side effects. We utilized fullerenol as a "histone", packaged a great number of Dox, and used PEG-PLGA as the "karyotheca" coating the "nucleosome" (fullerenol and Dox complex) to stabilize the complex. It is noteworthy that the encapsulation efficiency of Dox in the polymeric micelles was increased from ∼5% to ∼79%. What's more, the biomimetic-inspired delivery system significantly reduced the chemodrug side effects by utilizing the radical scavenging ability of fullerenol. This novel drug-delivery design approach provides useful insights for improving the applicability of fullerenol in drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; School of Public Health, Qingdao University, Qingdao 226021, China
| | - Ruirui Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
71
|
Zheng S, Qin T, Lu Y, Huang Y, Luo L, Liu Z, Bo R, Hu Y, Liu J, Wang D. Maturation of dendritic cells in vitro and immunological enhancement of mice in vivo by pachyman- and/or OVA-encapsulated poly(d,l-lactic acid) nanospheres. Int J Nanomedicine 2018; 13:569-583. [PMID: 29416336 PMCID: PMC5790079 DOI: 10.2147/ijn.s153567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Poly lactide (PLA) was proved in the last years to be good for use in sustained drug delivery and as carriers for vaccine antigens. In our previous research, pachyman (PHY)-encapsulated PLA (PHYP) nanospheres were synthesized and their function of controlling drug release was demonstrated. Purpose In order to modify the fast drug-release rate of PHY when inoculated alone, the maturation of bone marrow dendritic cells (BMDCs) in vitro and their immunological enhancement in vivo were explored using PHYP nanospheres. Methods The maturation and antigen uptake of BMDCs were evaluated, both alone and with formulated antigen PHYP nanospheres, ie, ovalbumin (OVA)-loaded PHYP nanospheres, as an antigen delivery system, to investigate antigen-specific humoral and cellular immune responses. Results The results indicated that, when stimulated by PHYP, the BMDCs matured as a result of upregulated expression of co-stimulatory molecules; the mechanism was elucidated by tracing fluorescently labeled antigens in confocal laser scanning microscopy images and observing the uptake of nanospheres by transmission electron microscopy. It was further revealed that mice inoculated with OVA-PHYP had augmented antigen-specific IgG antibodies, increased cytokine secretion by splenocytes, increased splenocyte proliferation, and activation of cluster of differentiation (CD)4+ and CD8+ T cells in vivo. Elevated immune responses were produced by OVA-PHYP, possibly owing to the activation and maturation of dendritic cells (in draining lymph nodes). Conclusion It was corroborated that PHY- and/or OVA-encapsulated PLA nanospheres elicited prominent antigen-presenting effects on BMDCs and heightened humoral and cellular immune responses compared with other formulations.
Collapse
Affiliation(s)
- Sisi Zheng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Tao Qin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal, Fujian Agriculture and Forestry University, Fuzhou
| | - Yu Lu
- National Veterinary Product Engineering Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yifan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal, Fujian Agriculture and Forestry University, Fuzhou
| | - Li Luo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal, Fujian Agriculture and Forestry University, Fuzhou
| |
Collapse
|
72
|
Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat Commun 2017; 8:1109. [PMID: 29061960 PMCID: PMC5653675 DOI: 10.1038/s41467-017-01015-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH2) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline. Understanding the interaction of nanomaterials and immune cells at the biomolecular level is of great significance in therapeutic applications. Here, the authors investigated the interaction of graphene oxide nanomaterials and several immune cell subpopulations using single-cell mass cytometry and genome-wide transcriptome analysis.
Collapse
|
73
|
Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials 2017; 148:16-30. [PMID: 28961532 DOI: 10.1016/j.biomaterials.2017.09.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is quickly growing to be the fourth most important cancer therapy, after surgery, radiation therapy, and chemotherapy. Immunotherapy is the most promising cancer management strategy because it orchestrates the body's own immune system to target and eradicate cancer cells, which may result in durable antitumor responses and reduce metastasis and recurrence more than traditional treatments. Nanomaterials hold great promise in further improving the efficiency of cancer immunotherapy - in many cases, they are even necessary for effective delivery. In this review, we briefly summarize the basic principles of cancer immunotherapy and explain why and where to apply nanomaterials in cancer immunotherapy, with special emphasis on cancer vaccines and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
74
|
Shen C, Li J, Zhang Y, Li Y, Shen G, Zhu J, Tao J. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. Int J Nanomedicine 2017; 12:5443-5460. [PMID: 28814862 PMCID: PMC5546778 DOI: 10.2147/ijn.s137980] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses.
Collapse
Affiliation(s)
- Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuce Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
75
|
Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, Dong Z, Zhu W, Peng R, Liu Z. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS NANO 2017; 11:4463-4474. [PMID: 28362496 DOI: 10.1021/acsnano.7b00715] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While immunotherapy has become a highly promising paradigm for cancer treatment in recent years, it has long been recognized that photodynamic therapy (PDT) has the ability to trigger antitumor immune responses. However, conventional PDT triggered by visible light has limited penetration depth, and its generated immune responses may not be robust enough to eliminate tumors. Herein, upconversion nanoparticles (UCNPs) are simultaneously loaded with chlorin e6 (Ce6), a photosensitizer, and imiquimod (R837), a Toll-like-receptor-7 agonist. The obtained multitasking UCNP-Ce6-R837 nanoparticles under near-infrared (NIR) irradiation with enhanced tissue penetration depth would enable effective photodynamic destruction of tumors to generate a pool of tumor-associated antigens, which in the presence of those R837-containing nanoparticles as the adjuvant are able to promote strong antitumor immune responses. More significantly, PDT with UCNP-Ce6-R837 in combination with the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint blockade not only shows excellent efficacy in eliminating tumors exposed to the NIR laser but also results in strong antitumor immunities to inhibit the growth of distant tumors left behind after PDT treatment. Furthermore, such a cancer immunotherapy strategy has a long-term immune memory function to protect treated mice from tumor cell rechallenge. This work presents an immune-stimulating UCNP-based PDT strategy in combination with CTLA-4 checkpoint blockade to effectively destroy primary tumors under light exposure, inhibit distant tumors that can hardly be reached by light, and prevent tumor reoccurrence via the immune memory effect.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Rong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
76
|
Han Q, Wang X, Jia X, Cai S, Liang W, Qin Y, Yang R, Wang C. CpG loaded MoS 2 nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy. NANOSCALE 2017; 9:5927-5934. [PMID: 28436514 DOI: 10.1039/c7nr01460k] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single or few-layered MoS2 nanosheets, as a novel class of 2D nanomaterials, have received tremendous attention due to their fantastic physical and chemical properties. Here, we fabricated MoS2-PEG-CpG with a small and uniform size as a multifunctional platform for photothermal enhanced immunotherapy. MoS2 nanosheets were fabricated by chemical exfoliation and further probe sonication. To realize MoS2-based adjuvant delivery, MoS2 nanosheets were functionalized with cytosine-phosphate-guanine (CpG) and polyethylene glycol (PEG) to form MoS2-PEG-CpG nanoconjugates. As an efficient nanocarrier with excellent near infrared-light (NIR) absorbing performance, MoS2-PEG-CpG significantly promotes CpG intracellular accumulation and the effect can be further enhanced by photothermal treatment. In addition, the enhanced uptake can stimulate the production of proinflammatory cytokines and remarkably elevate the immune response level. Finally, we found that MoS2-PEG-CpG could reduce the proliferative activity of cancer cells when co-cultured with a macrophage-like cell upon NIR irradiation, implying a novel strategy for multifunctional therapeutics against cancers.
Collapse
Affiliation(s)
- Qiusen Han
- CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant. NANOMATERIALS 2017; 7:nano7030059. [PMID: 28336893 PMCID: PMC5388161 DOI: 10.3390/nano7030059] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023]
Abstract
The application of graphene oxide (GO) as a potential vaccine adjuvant has recently attracted considerable attention. However, appropriate surface functionalization of GO is crucial to improve its biocompatibility and enhance its adjuvant activity. In this study, we developed a simple method to prepare chitosan (CS)-functionalized GO (GO-CS) and further investigated its potential as a nanoadjuvant. Compared with GO, GO-CS possessed considerably smaller size, positive surface charge, and better thermal stability. The functionalization of GO with CS was effective in decreasing the non-specific protein adsorption and improving its biocompatibility. Furthermore, GO-CS significantly activated RAW264.7 cells and stimulated more cytokines for mediating cellular immune response, which was mainly due to the synergistic immunostimulatory effect of both GO and CS. GO-CS exhibits strong potential as a safe nanoadjuvant for vaccines and immunotherapy.
Collapse
|
78
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
79
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|
80
|
Abstract
This review focuses on summarizing the existing work about nanomaterial-based cancer immunotherapy in detail.
Collapse
Affiliation(s)
- Lijia Luo
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Rui Shu
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- Key Laboratory of Marine Materials and Related Technology
- CAS & Ningbo Institute of Materials Technology and Engineering
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| |
Collapse
|
81
|
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016; 7:13193. [PMID: 27767031 PMCID: PMC5078754 DOI: 10.1038/ncomms13193] [Citation(s) in RCA: 1076] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours. Photothermal therapy can induce an anti-tumour immune response by producing tumour-associated antigens. Here, the authors design a nanoparticle that simultaneously acts as a photothermal agent and an immune-adjuvant and demonstrate the anti-tumour efficacy in combination with anti-CTLA4 therapy in preclinical murine cancer models.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
82
|
Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 2016; 103:76-89. [PMID: 26952542 DOI: 10.1016/j.addr.2016.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/25/2022]
Abstract
HIV/AIDS is one of the worst crises affecting global health and influencing economic development and social stability. Preventing and treating HIV infection is a crucial task. However, there is still no effective HIV vaccine for clinical application. Nanotechnology has the potential to solve the problems associated with traditional HIV vaccines. At present, various nano-architectures and nanomaterials can function as potential HIV vaccine carriers or adjuvants, including inorganic nanomaterials, liposomes, micelles and polymer nanomaterials. In this review, we summarize the current progress in the use of nanotechnology for the development of an HIV/AIDS vaccine and discuss its potential to greatly improve the solubility, permeability, stability and pharmacokinetics of HIV vaccines. Although nanotechnology holds great promise for applications in HIV/AIDS vaccines, there are still many inadequacies that result in a variety of risks and challenges. The potential hazards to the human body and environment associated with some nano-carriers, and their underlying mechanisms require in-depth study. Non-toxic or low-toxic nanomaterials with adjuvant activity have been identified. However, studying the confluence of factors that affect the adjuvant activity of nanomaterials may be more important for the optimization of the dosage and immunization strategy and investigations into the exact mechanism of action. Moreover, there are no uniform standards for investigations of nanomaterials as potential vaccine adjuvants. These limitations make it harder to analyze and deduce rules from the existing data. Developing vaccine nano-carriers or adjuvants with high benefit-cost ratios is important to ensure their broad usage. Despite some shortcomings, nanomaterials have great potential and application prospects in the fields of AIDS treatment and prevention.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
83
|
Liu Z, Luo L, Zheng S, Niu Y, Bo R, Huang Y, Xing J, Li Z, Wang D. Cubosome nanoparticles potentiate immune properties of immunostimulants. Int J Nanomedicine 2016; 11:3571-83. [PMID: 27536099 PMCID: PMC4973726 DOI: 10.2147/ijn.s110406] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cubosomes have been explored as drug and antigen carriers in the past few years. A few reports have described that cubosomes can enhance the ability of immunostimulants to generate strong immune responses. Polysaccharide (PS), an immunostimulant, has been reported to be a promising adjuvant for vaccines. Herein, we incorporated PS into cubosomes to generate PS-cubosome (Cub-PS) nanoparticles, and Cub-PS was characterized by small-angle X-ray scattering scattering and cryo-field emission scanning electron microscopy. The immunological activity of Cub-PS was compared with that of Cub and PS. The results demonstrated that Cub-PS elicited more potent immune responses than Cub or PS alone. The enhanced immune responses might be attributed to the promotion of antigen transport into draining lymph nodes and efficient dendritic cell activation and memory T-helper cell differentiation in draining lymph nodes. Overall, these findings indicate that cubosomes have the potential to enhance the ability of immunostimulants to generate an immune response.
Collapse
Affiliation(s)
- Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Luo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Sisi Zheng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yale Niu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yee Huang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Xing
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhihua Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
84
|
Wang L, Chen C. Pathophysiologic mechanisms of biomedical nanomaterials. Toxicol Appl Pharmacol 2016; 299:30-40. [DOI: 10.1016/j.taap.2016.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/09/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
|
85
|
|
86
|
Xu L, Xiang J, Liu Y, Xu J, Luo Y, Feng L, Liu Z, Peng R. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. NANOSCALE 2016; 8:3785-95. [PMID: 26814441 DOI: 10.1039/c5nr09208f] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.
Collapse
Affiliation(s)
- Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, 215123, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Tang J, Chen Z, Sun B, Dong J, Liu J, Zhou H, Wang L, Bai R, Miao Q, Zhao Y, Chen C, Liu Y. Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:945-954. [PMID: 26733256 DOI: 10.1016/j.nano.2015.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Adoptive immunotherapy is a highly effective approach for cancer treatment. Several potential adoptive immunotherapies have high (though reversible) toxicities with disappointing results. Polyhydroxylated fullerenols have been demonstrated as promising antitumor drugs with low toxicities. In this study, we investigate whether polyhydroxylated fullerenols (C60(OH)22 and Gd@C82(OH)22) contribute to cancer immunotherapy by regulating macrophages. Our results show that fullerenols treatment enhances mitochondrial metabolism, phagocytosis and cytokine secretion. Moreover, activated macrophages inhibit the growth of several cancer cell types. It is likely that this inhibition is dependent on an NF-κB-mediated release of multiple cytokines. Using a lung metastasis model, we also show that autologous macrophages greatly suppress cancer cell metastasis to lung when they are activated by C60(OH)22 and Gd@C82(OH)22. More importantly, Gd@C82(OH)22 are shown to have stronger ability than C60(OH)22 to improve the macrophage function, which shed light on the rational design for nanomedicine and clinical application. FROM THE CLINICAL EDITOR The interest in the use of immunotherapy in cancer has rekindled recently. However, many approaches have shown disappointing results. In this study, the authors investigated the effects of polyhydroxylated fullerenol nanoparticles on regulating macrophages for immunotherapy. These positive findings may point a novel way to cancer treatment.
Collapse
Affiliation(s)
- Jinglong Tang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China; Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoyun Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinquan Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jing Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Huige Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liming Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ru Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qing Miao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chunying Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
88
|
Gong H, Xiang J, Xu L, Song X, Dong Z, Peng R, Liu Z. Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant. NANOSCALE 2015; 7:19282-19292. [PMID: 26530014 DOI: 10.1039/c5nr06081h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( PEDOT PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.
Collapse
Affiliation(s)
- Hua Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | |
Collapse
|
89
|
Huang M, Hu M, Song Q, Song H, Huang J, Gu X, Wang X, Chen J, Kang T, Feng X, Jiang D, Zheng G, Chen H, Gao X. GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease. ACS NANO 2015; 9:10801-16. [PMID: 26440073 DOI: 10.1021/acsnano.5b03124] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular β-amyloid (Aβ) is crucial in AD pathogenesis, and Aβ-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aβ clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aβ, facilitates Aβ degradation by microglia, and Aβ efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aβ(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aβ deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Huahua Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jialin Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaolin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Ting Kang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xingye Feng
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Di Jiang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Gang Zheng
- Department of Medical Biophysics and Ontario Cancer Institute, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| |
Collapse
|
90
|
Xiang J, Xu L, Gong H, Zhu W, Wang C, Xu J, Feng L, Cheng L, Peng R, Liu Z. Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. ACS NANO 2015; 9:6401-11. [PMID: 26028363 DOI: 10.1021/acsnano.5b02014] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A dendritic cell (DC) vaccine, which is based on efficient antigen delivery into DCs and migration of antigen-pulsed DCs to draining lymph nodes after vaccination, is an effective strategy in initiating CD8(+) T cell immunity for immunotherapy. Herein, antigen-loaded upconversion nanoparticles (UCNPs) are used to label and stimulate DCs, which could be precisely tracked after being injected into animals and induce an antigen-specific immune response. It is discovered that a model antigen, ovalbumin (OVA), could be adsorbed on the surface of dual-polymer-coated UCNPs via electrostatic interaction, forming nanoparticle-antigen complexes, which are efficiently engulfed by DCs and induce DC maturation and cytokine release. Highly sensitive in vivo upconversion luminescence (UCL) imaging of nanoparticle-labeled DCs is successfully carried out, observing the homing of DCs to draining lymph nodes after injection. In addition, strong antigen-specific immune responses including enhanced T cell proliferation, interferon gamma (IFN-γ) production, and cytotoxic T lymphocyte (CTL)-mediated responses are induced by a nanoparticle-pulsed DC vaccine, which is promising for DC-based immunotherapy potentially against cancer.
Collapse
|
91
|
Adhikary RR, More P, Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. NANOSCALE 2015; 7:7520-7534. [PMID: 25874901 DOI: 10.1039/c5nr01285f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Collapse
Affiliation(s)
- Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | |
Collapse
|
92
|
Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat Commun 2015; 6:5988. [PMID: 25612916 PMCID: PMC4354030 DOI: 10.1038/ncomms6988] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
The contemporary use of nanomedicines for cancer treatment has been largely limited to serving as carriers for existing therapeutic agents. Here, we provide definitive evidence that, the metallofullerenol nanomaterial Gd@C82(OH)22, while essentially not toxic to normal mammary epithelial cells, possesses intrinsic inhibitory activity against triple-negative breast cancer cells. Gd@C82(OH)22 blocks epithelial-to-mesenchymal transition with resultant efficient elimination of breast cancer stem cells (CSCs) resulting in abrogation of tumour initiation and metastasis. In normoxic conditions, Gd@C82(OH)22 mediates these effects by blocking TGF-β signalling. Moreover, under hypoxic conditions found in the tumour microenvironment, cellular uptake of Gd@C82(OH)22 is facilitated where it functions as a bi-potent inhibitor of HIF-1α and TGF-β activities, enhancing CSC elimination. These studies indicate that nanomaterials can be engineered to directly target CSCs. Thus, Gd-metallofullerenol is identified as a kind of non-toxic CSC specific inhibitors with significant therapeutic potential. A metallofullerenol nanomaterial, Gd@C82(OH)22, was shown to inhibit growth of several solid cancers in preclinical models and yet exhibit low toxicity. Herein the authors show that Gd@C82(OH)22 functions as an inhibitor of breast cancer stem cell function via blocking TGF-β and HIF-1α signalling, while sparing normal tissue.
Collapse
|
93
|
Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, Fresta M, Nie G, Chen C, Shen H, Ferrari M, Zhao Y. Safety of Nanoparticles in Medicine. Curr Drug Targets 2015; 16:1671-81. [PMID: 26601723 PMCID: PMC4964712 DOI: 10.2174/1389450115666140804124808] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/20/2023]
Abstract
Nanomedicine involves the use of nanoparticles for therapeutic and diagnostic purposes. During the past two decades, a growing number of nanomedicines have received regulatory approval and many more show promise for future clinical translation. In this context, it is important to evaluate the safety of nanoparticles in order to achieve biocompatibility and desired activity. However, it is unwarranted to make generalized statements regarding the safety of nanoparticles, since the field of nanomedicine comprises a multitude of different manufactured nanoparticles made from various materials. Indeed, several nanotherapeutics that are currently approved, such as Doxil and Abraxane, exhibit fewer side effects than their small molecule counterparts, while other nanoparticles (e.g. metallic and carbon-based particles) tend to display toxicity. However, the hazardous nature of certain nanomedicines could be exploited for the ablation of diseased tissue, if selective targeting can be achieved. This review discusses the mechanisms for molecular, cellular, organ, and immune system toxicity, which can be observed with a subset of nanoparticles. Strategies for improving the safety of nanoparticles by surface modification and pretreatment with immunomodulators are also discussed. Additionally, important considerations for nanoparticle safety assessment are reviewed. In regards to clinical application, stricter regulations for the approval of nanomedicines might not be required. Rather, safety evaluation assays should be adjusted to be more appropriate for engineered nanoparticles.
Collapse
Affiliation(s)
- Joy Wolfram
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
| | - Yong Yang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Emanuela Gentile
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Health Science, University Magna Grœcia of Catanzaro, Germaneto 88100, Italy
| | - Donatella Paolino
- Department of Health Science, University Magna Grœcia of Catanzaro, Germaneto 88100, Italy
| | - Massimo Fresta
- Department of Health Science, University Magna Grœcia of Catanzaro, Germaneto 88100, Italy
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
94
|
Liu Y, Xu Y, Tian Y, Chen C, Wang C, Jiang X. Functional nanomaterials can optimize the efficacy of vaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4505-20. [PMID: 25238620 PMCID: PMC7169483 DOI: 10.1002/smll.201401707] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Indexed: 05/03/2023]
Abstract
Nanoscale materials can improve the efficacy of vaccines. Herein we review latest developments that use nanomaterials for vaccines. By highlighting the relationships between the nanoscale physicochemical characteristics and working mechanisms of nanomaterials, this paper shows the current status of the developments where researchers employ functional nanomaterials as vector and/or immunoregulators for vaccines. It also provides us some clues for improving the design and application of nanomaterials to optimize the efficacy of vaccines.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Engineering Research Center for, BioNanotechnology and CAS Key Lab for, Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | | | | | | | | | | |
Collapse
|
95
|
Chen Z, Liu Y, Sun B, Li H, Dong J, Zhang L, Wang L, Wang P, Zhao Y, Chen C. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP₃ inflammasome activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2362-72. [PMID: 24619705 DOI: 10.1002/smll.201302825] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/07/2014] [Indexed: 05/20/2023]
Abstract
Polyhydroxylated fullerenols especially gadolinium endohedral metallofullerenols (Gd@C82(OH)22) are shown as a promising agent for antitumor chemotherapeutics and good immunoregulatory effects with low toxicity. However, their underlying mechanism remains largely unclear. We found for the first time the persistent uptake and subcellular distribution of metallofullerenols in macrophages by taking advantages of synchrotron-based scanning transmission X-ray microscopy (STXM) with high spatial resolution of 30 nm. Gd@C82(OH)22 can significantly activate primary mouse macrophages to produce pro-inflammatory cytokines like IL-1β. Small interfering RNA (siRNA) knockdown shows that NLRP3 inflammasomes, but not NLRC4, participate in fullerenol-induced IL-1β production. Potassium efflux, activation of P2X7 receptor and intracellular reactive oxygen speciesare also important factors required for fullerenols-induced IL-1β release. Stronger NF-κB signal triggered by Gd@C82(OH)22 is in agreement with higher pro-IL-1β expression than C60(OH)22. Interestingly, TLR4/MyD88 pathway but not TLR2 mediates IL-1β secretion in Gd@C82(OH)22 exposure confirmed by macrophages from MyD88(-/-)/TLR4(-/-)/TLR2(-/-) knockout mice, which is different from C60(OH)22. Our work demonstrated that fullerenols can greatly activate macrophage and promote IL-1β production via both TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation, while Gd@C82(OH)22 had stronger ability C60(OH)22 due to the different electron affinity on the surface of carbon cage induced by the encaged gadolinium ion.
Collapse
Affiliation(s)
- Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, Liu W, Zheng W, Zhao Y, Kong D, Yang Z, Zhang W, Shao Y, Jiang X. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. NANO LETTERS 2014; 14:1439-45. [PMID: 24564254 DOI: 10.1021/nl404560v] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This report shows that a nanovector composed of peptide-based nanofibrous hydrogel can condense DNA to result in strong immune responses against HIV. This nanovector can strongly activate both humoral and cellular immune responses to a balanced level rarely reported in previous studies, which is crucial for HIV prevention and therapy. In addition, this nanovector shows good biosafety in vitro and in vivo. Detailed characterizations show that the nanofibrous structure of the hydrogel is critical for the dramatically improved immune responses compared to existing materials. This peptide-based nanofibrous hydrogel shows great potential for efficacious HIV DNA vaccines and can be potentially used for delivering other vaccines and drugs.
Collapse
Affiliation(s)
- Yue Tian
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , No., 11 Zhongguancun Beiyitiao, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Li YF, Gao Y, Chai Z, Chen C. Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics 2014; 6:220-32. [DOI: 10.1039/c3mt00316g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 2013; 28:51-8. [PMID: 24832075 DOI: 10.1016/j.copbio.2013.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022]
Abstract
Vaccine adjuvants are an essential component of vaccine design, helping to generate immunity to pathogen antigens in the absence of infection. Recent advances in nanoscale engineering have created a new class of particulate bionanotechnology that uses biomimicry to better integrate adjuvant and antigen. These pathogen-like particles, or PLPs, can come from a variety of sources, ranging from fully synthetic platforms to biologically derived, self-assembling systems. By employing molecularly engineered targeting and stimulation of key immune cells, recent studies utilizing PLPs as vaccine delivery platforms have shown great promise against high-impact, unsolved vaccine targets ranging from bacterial and viral pathogens to cancer and addiction.
Collapse
Affiliation(s)
- Joseph A Rosenthal
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Linxiao Chen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Matthew P DeLisa
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|