51
|
Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001116. [PMID: 33101851 PMCID: PMC7578875 DOI: 10.1002/advs.202001116] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Indexed: 05/05/2023]
Abstract
The flourishing development of multifunctional flexible electronics cannot leave the beneficial role of nature, which provides continuous inspiration in their material, structural, and functional designs. During the evolution of flexible electronics, some originated from nature, some were even beyond nature, and others were implantable or biodegradable eventually to nature. Therefore, the relationship between flexible electronics and nature is undoubtedly vital since harmony between nature and technology evolution would promote the sustainable development. Herein, materials selection and functionality design for flexible electronics that are mostly inspired from nature are first introduced with certain functionality even beyond nature. Then, frontier advances on flexible electronics including the main individual components (i.e., energy (the power source) and the sensor (the electric load)) are presented from nature, beyond nature, and to nature with the aim of enlightening the harmonious relationship between the modern electronics technology and nature. Finally, critical issues in next-generation flexible electronics are discussed to provide possible solutions and new insights in prospective exploration directions.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Mengmeng Hu
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Hua Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Zhe Chen
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yuping Feng
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Jiaqi Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Wei Ling
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| |
Collapse
|
52
|
Singh R, Bathaei MJ, Istif E, Beker L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv Healthc Mater 2020; 9:e2000790. [PMID: 32790033 DOI: 10.1002/adhm.202000790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Implantable medical devices (IMDs) are designed to sense specific parameters or stimulate organs and have been actively used for treatment and diagnosis of various diseases. IMDs are used for long-term disease screening or treatments and cannot be considered for short-term applications since patients need to go through a surgery for retrieval of the IMD. Advances in bioresorbable materials has led to the development of transient IMDs that can be resorbed by bodily fluids and disappear after a certain period. These devices are designed to be implanted in the adjacent of the targeted tissue for predetermined times with the aim of measurement of pressure, strain, or temperature, while the bioelectronic devices stimulate certain tissues. They enable opportunities for monitoring and treatment of acute diseases. To realize such transient and miniaturized devices, researchers utilize a variety of materials, novel fabrication methods, and device design strategies. This review discusses potential bioresorbable materials for each component in an IMD followed by programmable degradation and safety standards. Then, common fabrication methods for bioresorbable materials are introduced, along with challenges. The final section provides representative examples of bioresorbable IMDs for various applications with an emphasis on materials, device functionality, and fabrication methods.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Emin Istif
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Levent Beker
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| |
Collapse
|
53
|
Chen L, Yu H, Dirican M, Fang D, Tian Y, Yan C, Xie J, Jia D, Liu H, Wang J, Tang F, Zhang X, Tao J. Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics. Macromol Rapid Commun 2020; 41:e2000292. [PMID: 32833274 DOI: 10.1002/marc.202000292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/09/2020] [Indexed: 11/11/2022]
Abstract
Flexible electronics require its substrate to have adequate thermal stability, but current thermally stable polymer substrates are difficult to be disintegrated and recycled; hence, generate enormous electronic solid waste. Here, a thermally stable and green solvent-disintegrable polymer substrate is developed for flexible electronics to promote their recyclability and reduce solid waste generation. Thanks to the proper design of rigid backbones and rational adjustments of polar and bulky side groups, the polymer substrate exhibits excellent thermal and mechanical properties with thermal decomposition temperature (Td,5% ) of 430 °C, upper operating temperature of over 300 °C, coefficient of thermal expansion of 48 ppm K-1 , tensile strength of 103 MPa, and elastic modulus of 2.49 GPa. Furthermore, the substrate illustrates outstanding optical and dielectric properties with high transmittance of 91% and a low dielectric constant of 2.30. Additionally, it demonstrates remarkable chemical and flame resistance. A proof-of-concept flexible printed circuit device is fabricated with this substrate, which demonstrates outstanding mechanical-electrical stability. Most importantly, the substrate can be quickly disintegrated and recycled with alcohol. With outstanding thermally stable properties, accompanied by excellent recyclability, the substrate is particularly attractive for a wide range of electronics to reduce solid waste generation, and head toward flexible and "green" electronics.
Collapse
Affiliation(s)
- Linlin Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huang Yu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, USA
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yan Tian
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, USA
| | - Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiasheng Wang
- Guangzhou Lushan New Materials Co., Ltd, Guangzhou, 510530, China
| | - Fangcheng Tang
- Guangzhou Lushan New Materials Co., Ltd, Guangzhou, 510530, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, USA
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
54
|
|
55
|
Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK. Biodegradable Materials and Green Processing for Green Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001591. [PMID: 32584502 DOI: 10.1002/adma.202001591] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 06/11/2023]
Abstract
There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods. In response to these issues, the construction of electronic devices from renewable or biodegradable materials that decompose to harmless by-products is becoming a topic of great interest. Such "green" electronic devices need to be fabricated on industrial scale through low-energy and low-cost methods that involve low/non-toxic functional materials or solvents. This review highlights recent advances in the development of biodegradable materials and processing strategies for electronics with an emphasis on areas where green electronic devices show the greatest promise, including solar cells, organic field-effect transistors, light-emitting diodes, and other electronic devices.
Collapse
Affiliation(s)
- Wenhui Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuniu Zhang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang'an Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfei He
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
56
|
Al‐Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide‐perylene
derivative for blue biodegradable organic light‐emitting diodes. POLYM INT 2020. [DOI: 10.1002/pi.6083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hameed Al‐Attar
- Department of Physics, College of Science University of Basrah Basrah Iraq
- Department of Physics University of Durham Durham UK
| | - Aula A Alwattar
- Department of Chemistry, College of Science University of Basrah Basrah Iraq
- Departmment of Chemistry University of Manchester Manchester UK
| | - Athir Haddad
- Department of Chemistry, College of Science University of Basrah Basrah Iraq
- Departmment of Chemistry University of Manchester Manchester UK
| | - Bassil A Abdullah
- Department of Physics, College of Science University of Basrah Basrah Iraq
| | - Peter Quayle
- Departmment of Chemistry University of Manchester Manchester UK
| | | |
Collapse
|
57
|
Palmroth A, Salpavaara T, Vuoristo P, Karjalainen S, Kääriäinen T, Miettinen S, Massera J, Lekkala J, Kellomäki M. Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31148-31161. [PMID: 32568505 PMCID: PMC7467565 DOI: 10.1021/acsami.0c07278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioresorbable passive resonance sensors based on inductor-capacitor (LC) circuits provide an auspicious sensing technology for temporary battery-free implant applications due to their simplicity, wireless readout, and the ability to be eventually metabolized by the body. In this study, the fabrication and performance of various LC circuit-based sensors are investigated to provide a comprehensive view on different material options and fabrication methods. The study is divided into sections that address different sensor constituents, including bioresorbable polymer and bioactive glass substrates, dissolvable metallic conductors, and atomic layer deposited (ALD) water barrier films on polymeric substrates. The manufactured devices included a polymer-based pressure sensor that remained pressure responsive for 10 days in aqueous conditions, the first wirelessly readable bioactive glass-based resonance sensor for monitoring the complex permittivity of its surroundings, and a solenoidal coil-based compression sensor built onto a polymeric bone fixation screw. The findings together with the envisioned orthopedic applications provide a reference point for future studies related to bioresorbable passive resonance sensors.
Collapse
Affiliation(s)
- Aleksi Palmroth
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Timo Salpavaara
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Petri Vuoristo
- Materials
Science and Environmental Engineering, Faculty of Engineering and
Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere 33720, Finland
| | - Sanna Karjalainen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Tommi Kääriäinen
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Susanna Miettinen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jonathan Massera
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jukka Lekkala
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Minna Kellomäki
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| |
Collapse
|
58
|
Huo W, Li J, Ren M, Ling W, Xu H, Tee CATH, Huang X. Recent development of bioresorbable electronics using additive manufacturing. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Atreya M, Dikshit K, Marinick G, Nielson J, Bruns C, Whiting GL. Poly(lactic acid)-Based Ink for Biodegradable Printed Electronics With Conductivity Enhanced through Solvent Aging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23494-23501. [PMID: 32326695 DOI: 10.1021/acsami.0c05196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biodegradable electronics is a rapidly growing field, and the development of controllably biodegradable, high-conductivity materials suitable for additive manufacturing under ambient conditions remains a challenge. In this report, printable conductive pastes that employ poly(lactic acid) (PLA) as a binder and tungsten as a conductor are demonstrated. These composite conductors can provide enhanced stability in applications where moisture may be present, such as environmental monitoring or agriculture. Post-processing the printed traces using a solvent-aging technique increases their conductivity by up to 2 orders of magnitude, with final conductivities approaching 5000 S/m. Such techniques could prove useful when thermal processes including heating or laser sintering are limited by the temperature constraints of typical biodegradable substrates. Both accelerated oxidative and hydrolytic degradation of the printed composite conductors are examined, and a fully biodegradable capacitive soil moisture sensor is fabricated and tested.
Collapse
Affiliation(s)
- Madhur Atreya
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Karan Dikshit
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309 United States
| | - Gabrielle Marinick
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jenna Nielson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gregory L Whiting
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309 United States
| |
Collapse
|
60
|
Liu S, Dong S, Wang X, Shi L, Xu H, Huang S, Luo J. Flexible and fully biodegradable resistance random access memory based on a gelatin dielectric. NANOTECHNOLOGY 2020; 31:255204. [PMID: 32101798 DOI: 10.1088/1361-6528/ab7a2c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increased public concerns on healthcare, the environment and sustainable development inspired the development of biodegradable and biocompatible electronics that could be used as degradable electronics in implants. In this work, a fully biodegradable and flexible resistance random access memory (RRAM) was developed with low-cost biomaterial gelatin as the dielectric layer and the biodegradable polymer poly(lactide-coglycolide) acid (PLGA) as the substrate. PLGA can be synthesized by a simple solution process, and the PLGA substrate can be peeled off the handling substrate for operation once the devices are fabricated. The fabricated memory devices exhibited reliable nonvolatile resistive switching characteristics with a long retention time over 104 s and a near-constant on/off resistance ratio of 102 even after 200 bending cycles, showing the promising potential for application in flexible electronics. Degradation of the devices in deionized water and in phosphate buffered saline (PBS) solution showed that the whole devices can be completely degraded in water. The dissolution time of the metals and the gelatin layer was a few days, while that for PLGA is about 6 months, and can be modified by changing the synthesis conditions of the film, thus allowing the development of biodegradable electronics with designed dissolution time.
Collapse
Affiliation(s)
- Shuting Liu
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
61
|
Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903558. [PMID: 31559670 DOI: 10.1002/adma.201903558] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Indexed: 05/08/2023]
Abstract
Flexible neuromorphic electronics that emulate biological neuronal systems constitute a promising candidate for next-generation wearable computing, soft robotics, and neuroprosthetics. For realization, with the achievement of simple synaptic behaviors in a single device, the construction of artificial synapses with various functions of sensing and responding and integrated systems to mimic complicated computing, sensing, and responding in biological systems is a prerequisite. Artificial synapses that have learning ability can perceive and react to events in the real world; these abilities expand the neuromorphic applications toward health monitoring and cybernetic devices in the future Internet of Things. To demonstrate the flexible neuromorphic systems successfully, it is essential to develop artificial synapses and nerves replicating the functionalities of the biological counterparts and satisfying the requirements for constructing the elements and the integrated systems such as flexibility, low power consumption, high-density integration, and biocompatibility. Here, the progress of flexible neuromorphic electronics is addressed, from basic backgrounds including synaptic characteristics, device structures, and mechanisms of artificial synapses and nerves, to applications for computing, soft robotics, and neuroprosthetics. Finally, future research directions toward wearable artificial neuromorphic systems are suggested for this emerging area.
Collapse
Affiliation(s)
- Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Naryung Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gyeong-Tak Go
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research Research Institute of Advanced Materials, Nano Systems Institute (NSI), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
62
|
Jamshidi R, Chen Y, Montazami R. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. MATERIALS 2020; 13:ma13071514. [PMID: 32224921 PMCID: PMC7177843 DOI: 10.3390/ma13071514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Transient materials/electronics is an emerging class of technology concerned with materials and devices that are designed to operate over a pre-defined period of time, then undergo controlled degradation when exposed to stimuli. Degradation/transiency rate in solvent-triggered devices is strongly dependent on the chemical composition of the constituents, as well as their interactions with the solvent upon exposure. Such interactions are typically slow, passive, and diffusion-driven. In this study, we are introducing and exploring the integration of gas-forming reactions into transient materials/electronics to achieve expedited and active transiency. The integration of more complex chemical reaction paths to transiency not only expedites the dissolution mechanism but also maintains the pre-transiency stability of the system while under operation. A proof-of-concept transient electronic device, utilizing sodium-bicarbonate/citric-acid pair as gas-forming agents, is demonstrated and studied vs. control devices in the absence of gas-forming agents. While exhibiting enhanced transiency behavior, substrates with gas-forming agents also demonstrated sufficient mechanical properties and physical stability to be used as platforms for electronics.
Collapse
Affiliation(s)
- Reihaneh Jamshidi
- Department of Mechanical Engineering, University of Hartford, West Hartford, CT 06117, USA
- Correspondence:
| | - Yuanfen Chen
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
63
|
Zhang C, Wen TH, Razak KA, Lin J, Xu C, Seo C, Villafana E, Jimenez H, Liu H. Magnesium-based biodegradable microelectrodes for neural recording. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110614. [PMID: 32204062 DOI: 10.1016/j.msec.2019.110614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/23/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
This article reports fabrication, characterization, degradation and electrical properties of biodegradable magnesium (Mg) microwires coated with two functional polymers, and the first in vivo evidence on the feasibility of Mg-based biodegradable microelectrodes for neural recording. Conductive poly(3,4‑ethylenedioxythiophene) (PEDOT) coating was first electrochemically deposited onto Mg microwire surface, and insulating biodegradable poly(glycerol sebacate) (PGS) was then spray-coated onto PEDOT surface to improve the overall properties of microelectrode. The assembled PGS/PEDOT-coated Mg microelectrodes showed high homogeneity in coating thickness, surface morphology and composition before and after in vivo recording. The charge storage capacity (CSC) of PGS/PEDOT-coated Mg microwire (1.72 mC/cm2) was nearly 5 times higher than the standard platinum (Pt) microwire widely used in implantable electrodes. The Mg-based microelectrode demonstrated excellent neural-recording capability and stability during in vivo multi-unit neural recordings in the auditory cortex of a mouse. Specifically, the Mg-based electrode showed clear and stable onset response, and excellent signal-to-noise ratio during spontaneous-activity recordings and three repeats of stimulus-evoked recordings at two different anatomical locations in the auditory cortex. During 10 days of immersion in artificial cerebrospinal fluid (aCSF) in vitro, PGS/PEDOT-coated Mg microelectrodes showed slower degradation and less change in impedance than PEDOT-coated Mg electrodes. The biodegradable PGS coating protected the PEDOT coating from delamination, and prolonged the mechanical integrity and electrical properties of Mg-based microelectrode. Mg-based novel microelectrodes should be further studied toward clinical translation because they can potentially eliminate the risks and costs associated with secondary surgeries for removal of failed or no longer needed electrodes.
Collapse
Affiliation(s)
- Chaoxing Zhang
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Teresa H Wen
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jiajia Lin
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Changlu Xu
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Catherine Seo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Edgar Villafana
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Hector Jimenez
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Biomedical Sciences Program, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Stem Cell Center, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| |
Collapse
|
64
|
Chen Y, Jamshidi R, Montazami R. Study of Partially Transient Organic Epidermal Sensors. MATERIALS 2020; 13:ma13051112. [PMID: 32131433 PMCID: PMC7085048 DOI: 10.3390/ma13051112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
In this study, an all-organic, partially transient epidermal sensor with functional poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conjugated polymer printed onto a water-soluble polyethylene oxide (PEO) substrate is studied and presented. The sensor's electronic properties were studied under static stress, dynamic load, and transient status. Electrode resistance remained approximately unchanged for up to 2% strain, and increased gradually within 6.5% strain under static stress. The electronic properties' dependence on dynamic load showed a fast response time in the range of 0.05-3 Hz, and a reversible stretching threshold of 3% strain. A transiency study showed that the PEO substrate dissolved completely in water, while the PEDOT:PSS conjugated polymer electrode remained intact. The substrate-less, intrinsically soft PEDOT:PSS electrode formed perfect contact on human skin and stayed attached by Van der Waals force, and was demonstrated as a tattoolike epidermal sensor.
Collapse
Affiliation(s)
- Yuanfen Chen
- College of Mechanical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China
- Correspondence: (Y.C.); (R.M.)
| | - Reihaneh Jamshidi
- Department of Mechanical Engineering, University of Hartford, West Hartford, CT 06117, USA;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Correspondence: (Y.C.); (R.M.)
| |
Collapse
|
65
|
Kamarudin SF, Mustapha M, Kim JK. Green Strategies to Printed Sensors for Healthcare Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1729180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siti Fatimah Kamarudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
66
|
Degradable and Dissolvable Thin-Film Materials for the Applications of New-Generation Environmental-Friendly Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The environmental pollution generated by electronic waste (e-waste), waste-gas, and wastewater restricts the sustainable development of society. Environmental-friendly electronics made of degradable, resorbable, and compatible thin-film materials were utilized and explored, which was beneficial for e-waste dissolution and sustainable development. In this paper, we present a literature review about the development of various degradable and disposable thin-films for electronic applications. The corresponding preparation methods were simply reviewed and one of the most exciting and promising methods was discussed: Printing electronics technology. After a short introduction, detailed applications in the environment sensors and eco-friendly devices based on these degradable and compatible thin-films were mainly reviewed, finalizing with the main conclusions and promising perspectives. Furthermore, the future on these upcoming environmental-friendly electronic devices are proposed and prospected, especially on resistive switching devices, showing great potential applications in artificial intelligence (AI) and the Internet of Thing (IoT). These resistive switching devices combine the functions of storage and computations, which can complement the off-shelf computing based on the von Neumann architecture and advance the development of the AI.
Collapse
|
67
|
La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902872. [PMID: 32099766 PMCID: PMC7029671 DOI: 10.1002/advs.201902872] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Over the last decade, scientists have dreamed about the development of a bioresorbable technology that exploits a new class of electrical, optical, and sensing components able to operate in physiological conditions for a prescribed time and then disappear, being made of materials that fully dissolve in vivo with biologically benign byproducts upon external stimulation. The final goal is to engineer these components into transient implantable systems that directly interact with organs, tissues, and biofluids in real-time, retrieve clinical parameters, and provide therapeutic actions tailored to the disease and patient clinical evolution, and then biodegrade without the need for device-retrieving surgery that may cause tissue lesion or infection. Here, the major results achieved in bioresorbable technology are critically reviewed, with a bottom-up approach that starts from a rational analysis of dissolution chemistry and kinetics, and biocompatibility of bioresorbable materials, then moves to in vivo performance and stability of electrical and optical bioresorbable components, and eventually focuses on the integration of such components into bioresorbable systems for clinically relevant applications. Finally, the technology readiness levels (TRLs) achieved for the different bioresorbable devices and systems are assessed, hence the open challenges are analyzed and future directions for advancing the technology are envisaged.
Collapse
Affiliation(s)
- Antonino A. La Mattina
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| |
Collapse
|
68
|
Koduvayur Ganeshan S, Selamneni V, Sahatiya P. Water dissolvable MoS2 quantum dots/PVA film as an active material for destructible memristors. NEW J CHEM 2020. [DOI: 10.1039/d0nj02053b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This report demonstrates the fabrication of a flexible, water-soluble MoS2 QDs/PVA (polyvinyl alcohol) film sandwiched between Cu electrodes as a resistive memory.
Collapse
Affiliation(s)
- Sankalp Koduvayur Ganeshan
- Department of Electrical and Electronics Engineering
- Birla Institute of Technology and Science Pilani Hyderabad Campus
- Hyderabad 500078
- India
| | - Venkatarao Selamneni
- Department of Electrical and Electronics Engineering
- Birla Institute of Technology and Science Pilani Hyderabad Campus
- Hyderabad 500078
- India
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering
- Birla Institute of Technology and Science Pilani Hyderabad Campus
- Hyderabad 500078
- India
| |
Collapse
|
69
|
Tu T, Liang B, Cao Q, Fang L, Zhu Q, Cai Y, Ye X. Fully transient electrochemical testing strips for eco-friendly point of care testing. RSC Adv 2020; 10:7241-7250. [PMID: 35493906 PMCID: PMC9049791 DOI: 10.1039/c9ra09847j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/08/2020] [Indexed: 01/28/2023] Open
Abstract
Transient electrochemical strips with in-time degradability offer possibility for eco-friendly POCT detection.
Collapse
Affiliation(s)
- Tingting Tu
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Bo Liang
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Qingpeng Cao
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Lu Fang
- College of Automation
- Hangzhou Dianzi University
- Hangzhou 310018
- PR China
| | - Qin Zhu
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Yu Cai
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Xuesong Ye
- Biosensor National Special Laboratory
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou 310027
- PR China
| |
Collapse
|
70
|
Lin R, Yan X, Hao H, Gao W, Liu R. Introducing Temperature-Controlled Phase Transition Elastin-like Polypeptides to Transient Electronics: Realization of Proactive Biotriggered Electronics with Local Transience. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46490-46496. [PMID: 31808331 DOI: 10.1021/acsami.9b14798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transient electronics have dramatically changed inner-body therapy in health care. They stand out because of their harmless dissolution in the human body with no lingering electronic trash. However, high-precision biomedical implants require programmable and serial remedy operations, and controlling the whole-device destruction is not proactive and precise. Thus, a novel biotriggered and temperature-controlled transient electronics fabrication method using elastin-like polypeptides (ELPs) as triggers is proposed. Biocompatible ELPs simply mixed with trace silver nanowire (AgNW) can serve as the "switch" for the electronics to respond to local temperature changes in deionized water, exhibiting an agile response time. A ratio gradient experiment of the ELPs and AgNW shows that more programmable and precise transience properties (initial resistance, ready time, response time, and stable resistance) can be achieved by using a designated proportion. Further, we validated that the 3D-printing-based ELP-triggering transient electronics fabrication method is very simple yet effective for preparing transient wireless charging LEDs. Transient devices comprising ELPs-AgNW and PLGA-Ag respond within 160 s below 10 °C and degrade within a certain period.
Collapse
Affiliation(s)
- Rongzan Lin
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Xinghui Yan
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Hanjun Hao
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
71
|
Kumar R, Ranwa S, Kumar G. Biodegradable Flexible Substrate Based on Chitosan/PVP Blend Polymer for Disposable Electronics Device Applications. J Phys Chem B 2019; 124:149-155. [DOI: 10.1021/acs.jpcb.9b08897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ritesh Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Sapana Ranwa
- Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, West Bengal 713209, India
| | - Gulshan Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| |
Collapse
|
72
|
Liu D, Zhang S, Cheng H, Peng R, Luo Z. Thermally Triggered Vanishing Bulk Polyoxymethylene for Transient Electronics. Sci Rep 2019; 9:18107. [PMID: 31792303 PMCID: PMC6888842 DOI: 10.1038/s41598-019-54565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/10/2019] [Indexed: 01/19/2023] Open
Abstract
Transient materials capable of disappearing rapidly and completely are critical for transient electronics. End-capped polyoxymethylene (POM) has excellent mechanical properties and thermal stability. However, research concerning the inherent thermal instability of POM without end-capping to obtain transient rather than stable materials, has never been reported. Here, POM without end-capping is proposed as a novel thermally triggered transient solid material that can vanish rapidly by undergoing conversion to a volatile gas, and a chemical vapor deposition method is developed to obtain a smooth POM substrate from the synthesized POM powder. Experimental and theoretical analysis was employed to reveal the mechanism whereby the POM substrate formed and vanished. A Cr/Au/SiO2/Cu memristor device, which was successfully deposited on the POM substrate by physical vapor deposition, exhibits bipolar resistive switching, suggesting that the POM substrate is suitable for use in electrical devices. Thermal triggering causes the POM substrate to vanish as the memristor disintegrates, confirming excellent transient performance. The deposited bulk POM material can completely vanish by thermally triggered depolymerization, and is suitable for physically transient substrates and packaging materials, demonstrating great prospects for application in transient electronics for information security.
Collapse
Affiliation(s)
- Dongqing Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China.
| | - Songhe Zhang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Renfu Peng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Zhijian Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| |
Collapse
|
73
|
Kasuga T, Yagyu H, Uetani K, Koga H, Nogi M. "Return to the Soil" Nanopaper Sensor Device for Hyperdense Sensor Networks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43488-43493. [PMID: 31659891 DOI: 10.1021/acsami.9b13886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A nanopaper sensor device that combines humidity sensing, wireless information transmission, and degradability has been fabricated using wood-derived nanopaper as the substrate and dielectric layers. The nanopaper shows excellent suitability for capacitor dielectric layers because of its high dielectric constant, insulating properties suitable for thin-film formation, and lamination properties. A wireless transmission circuit containing the nanopaper capacitor can transmit radio signals in the megahertz band, and the relative humidity change can be output as a change in the radio signal owing to the humidity sensitivity of the nanopaper capacitor. More than 95% of the total volume of the nanopaper sensor device decomposes in soil after 40 days. Because the nanopaper sensor device does not need to be recovered, it is expected to greatly contribute to a sustainable society through realization of hyperdense observation networks by mass installation of sensor devices.
Collapse
Affiliation(s)
- Takaaki Kasuga
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Hitomi Yagyu
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Kojiro Uetani
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Hirotaka Koga
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Masaya Nogi
- The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
74
|
Qin G, Pei Z, Zhang Y, Lan K, Li Q, Li L, Yu S, Chen X. Dielectric ceramics/TiO 2/single-crystalline silicon nanomembrane heterostructure for high performance flexible thin-film transistors on plastic substrates. RSC Adv 2019; 9:35289-35296. [PMID: 35530705 PMCID: PMC9074119 DOI: 10.1039/c9ra06572e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/20/2019] [Indexed: 12/03/2022] Open
Abstract
A dielectric ceramics/TiO2/single-crystalline silicon nanomembrane (SiNM) heterostructure is designed and fabricated for high performance flexible thin-film transistors (TFTs). Both the dielectric ceramics (Nb2O3-Bi2O3-MgO) and TiO2 are deposited by radio frequency (RF) magnetron sputtering at room temperature, which is compatible with flexible plastic substrates. And the single-crystalline SiNM is transferred and attached to the dielectric ceramics/TiO2 layers to form the heterostructure. The experimental results demonstrate that the room temperature processed heterostructure has high quality because: (1) the Nb2O3-Bi2O3-MgO/TiO2 heterostructure has a high dielectric constant (∼76.6) and low leakage current. (2) The TiO2/single-crystalline SiNM structure has a relatively low interface trap density. (3) The band gap of the Nb2O3-Bi2O3-MgO/TiO2 heterostructure is wider than TiO2, which increases the conduction band offset between Si and TiO2, lowering the leakage current. Flexible TFTs have been fabricated with the Nb2O3-Bi2O3-MgO/TiO2/SiNM heterostructure on plastic substrates and show a current on/off ratio over 104, threshold voltage of ∼1.2 V, subthreshold swing (SS) as low as ∼0.2 V dec-1, and interface trap density of ∼1012 eV-1 cm-2. The results indicate that the dielectric ceramics/TiO2/SiNM heterostructure has great potential for high performance TFTs.
Collapse
Affiliation(s)
- Guoxuan Qin
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Zhihui Pei
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Yibo Zhang
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Kuibo Lan
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology Tianjin 300072 P. R. China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin 300072 P. R. China
| | - Lingxia Li
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
| | - Shihui Yu
- School of Microelectronics, Tianjin University Tianjin 300072 P. R. China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
75
|
Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The Future of Cardiovascular Stents: Bioresorbable and Integrated Biosensor Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900856. [PMID: 31637160 PMCID: PMC6794628 DOI: 10.1002/advs.201900856] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease is the greatest cause of death worldwide. Atherosclerosis is the underlying pathology responsible for two thirds of these deaths. It is the age-dependent process of "furring of the arteries." In many scenarios the disease is caused by poor diet, high blood pressure, and genetic risk factors, and is exacerbated by obesity, diabetes, and sedentary lifestyle. Current pharmacological anti-atherosclerotic modalities still fail to control the disease and improvements in clinical interventions are urgently required. Blocked atherosclerotic arteries are routinely treated in hospitals with an expandable metal stent. However, stented vessels are often silently re-blocked by developing "in-stent restenosis," a wound response, in which the vessel's lumen renarrows by excess proliferation of vascular smooth muscle cells, termed hyperplasia. Herein, the current stent technology and the future of biosensing devices to overcome in-stent restenosis are reviewed. Second, with advances in nanofabrication, new sensing methods and how researchers are investigating ways to integrate biosensors within stents are highlighted. The future of implantable medical devices in the context of the emerging "Internet of Things" and how this will significantly influence future biosensor technology for future generations are also discussed.
Collapse
Affiliation(s)
- Daniel Hoare
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| | - Anubhav Bussooa
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| | - Steven Neale
- James Watt South BuildingSchool of EngineeringUniversity of GlasgowG12 8QQGlasgowScotland
| | - Nosrat Mirzai
- Bioelectronics UnitCollege of Medical, Veterinary & Life Sciences (MVLS)University of GlasgowG12 8QQGlasgowScotland
| | - John Mercer
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| |
Collapse
|
76
|
Chatterjee S, Saxena M, Padmanabhan D, Jayachandra M, Pandya HJ. Futuristic medical implants using bioresorbable materials and devices. Biosens Bioelectron 2019; 142:111489. [DOI: 10.1016/j.bios.2019.111489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022]
|
77
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
78
|
Yang Q, Huang Z, Li X, Liu Z, Li H, Liang G, Wang D, Huang Q, Zhang S, Chen S, Zhi C. A Wholly Degradable, Rechargeable Zn-Ti 3C 2 MXene Capacitor with Superior Anti-Self-Discharge Function. ACS NANO 2019; 13:8275-8283. [PMID: 31244041 DOI: 10.1021/acsnano.9b03650] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Degradable energy storage systems (ESSs) have been proposed to tackle increasing e-wastes such as heavy metals and toxic organic electrolytes. However, currently reported degradable ESSs are scarce because it is very difficult to make all of the electrochemical components degradable as they must be stable for energy storage. Here, we designed an all-component degradable and rechargeable Zn-MXene capacitor with outstanding anti-self-discharge function using zinc nanosheets and Ti3C2 MXene as electrodes. The whole capacitor can retain ca. 82.5% of the capacitance after 1000 cycles and be totally degraded within 7.25 days, comprehensively surpassing the current degradable supercapacitors (120 days, 400 cycles) and batteries (19 days, 0-20 cycles). In addition, while supercapacitors are notorious for intensive self-discharge, the Zn-MXene capacitor demonstrated the lowest self-discharge rate of 6.4 mV h-1, better than all the previous supercapacitors with specifically designed anti-self-discharge components including electrodes (>300 mV h-1), electrolytes (12-50 mV h-1), and separators (20-400 mV h-1). This is illustrated by the as-proposed "static electricity-immune mechanism" which refers to breaking the electrostatic adsorption. This Zn-MXene capacitor represents a great advance in degradable rechargeable ESSs and provides a strategy to fundamentally overcome the self-discharge problem encountered by supercapacitors.
Collapse
Affiliation(s)
- Qi Yang
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Zhaodong Huang
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Xinliang Li
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Zhuoxin Liu
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Hongfei Li
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Guojin Liang
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Donghong Wang
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials , Ningbo Institute of Industrial Technology, Chinese Academy of Sciences , Ningbo , Zhejiang 315201 , China
| | - Suojiang Zhang
- Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Shimou Chen
- Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Chunyi Zhi
- Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong , SAR 999077 , China
- Shenzhen Research Institute , City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
79
|
Rasel S, Bhatkar O, Smith D, Kowal MD, Anderson M, Rizvi R, Kaner RB. Self-Assembled Functionally Graded Graphene Films with Tunable Compositions and Their Applications in Transient Electronics and Actuation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23463-23473. [PMID: 31252496 DOI: 10.1021/acsami.9b05236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The facile fabrication of functionally graded all-graphene films using a single-step casting process is reported. The films consist of a self-assembled graphene oxide (GO) precursor that can be reduced to different levels on an active metal substrate. Control of processing conditions such as the underlying substrate metal and the film-drying environment results in an ability to tailor the internal architecture of the films as well as to functionally grade the reduction of GO. A gradient arrangement within each film, where one side is electrically conductive reduced GO (rGO) and the other side is insulating GO, was confirmed by scanning electron microscopy, Raman, X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy characterization studies. All-graphene-based freestanding films with selectively reduced GO were used in transient electronic applications such as flexible circuitry and RFID tag antennas, where their decommissioning is easily achieved by capitalizing on GO's ability to readily dissociate and create a stable suspension in water. Furthermore, the functionally graded structure was found to exhibit differential swelling behavior, and its potential applications in graphene-based actuators are outlined.
Collapse
Affiliation(s)
- Sheikh Rasel
- Department of Mechanical, Industrial and Manufacturing Engineering , University of Toledo , 2801 W. Bancroft Str., MS312 , Toledo , Ohio 43606-3390 , United States
| | - Omkar Bhatkar
- Department of Mechanical, Industrial and Manufacturing Engineering , University of Toledo , 2801 W. Bancroft Str., MS312 , Toledo , Ohio 43606-3390 , United States
| | - David Smith
- Department of Mechanical, Industrial and Manufacturing Engineering , University of Toledo , 2801 W. Bancroft Str., MS312 , Toledo , Ohio 43606-3390 , United States
| | - Matt D Kowal
- Department of Chemistry and Biochemistry and California NanoSystems Institute , University of California, Los Angeles (UCLA) , Los Angeles , California 90095-1569 , United States
| | - Mackenzie Anderson
- Department of Chemistry and Biochemistry and California NanoSystems Institute , University of California, Los Angeles (UCLA) , Los Angeles , California 90095-1569 , United States
| | - Reza Rizvi
- Department of Mechanical, Industrial and Manufacturing Engineering , University of Toledo , 2801 W. Bancroft Str., MS312 , Toledo , Ohio 43606-3390 , United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute , University of California, Los Angeles (UCLA) , Los Angeles , California 90095-1569 , United States
- Department of Materials Science and Engineering , UCLA , Los Angeles , California 90095-1595 , United States
| |
Collapse
|
80
|
Shin J, Liu Z, Bai W, Liu Y, Yan Y, Xue Y, Kandela I, Pezhouh M, MacEwan MR, Huang Y, Ray WZ, Zhou W, Rogers JA. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. SCIENCE ADVANCES 2019; 5:eaaw1899. [PMID: 31281889 PMCID: PMC6611687 DOI: 10.1126/sciadv.aaw1899] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/29/2019] [Indexed: 05/20/2023]
Abstract
Continuous measurements of pressure and temperature within the intracranial, intraocular, and intravascular spaces provide essential diagnostic information for the treatment of traumatic brain injury, glaucoma, and cardiovascular diseases, respectively. Optical sensors are attractive because of their inherent compatibility with magnetic resonance imaging (MRI). Existing implantable optical components use permanent, nonresorbable materials that must be surgically extracted after use. Bioresorbable alternatives, introduced here, bypass this requirement, thereby eliminating the costs and risks of surgeries. Here, millimeter-scale bioresorbable Fabry-Perot interferometers and two dimensional photonic crystal structures enable precise, continuous measurements of pressure and temperature. Combined mechanical and optical simulations reveal the fundamental sensing mechanisms. In vitro studies and histopathological evaluations quantify the measurement accuracies, operational lifetimes, and biocompatibility of these systems. In vivo demonstrations establish clinically relevant performance attributes. The materials, device designs, and fabrication approaches outlined here establish broad foundational capabilities for diverse classes of bioresorbable optical sensors.
Collapse
Affiliation(s)
- Jiho Shin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhonghe Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yonghao Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yeguang Xue
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Irawati Kandela
- Developmental Therapeutics Core, Northwestern University, Evanston, IL 60208, USA
| | - Maryam Pezhouh
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Matthew R. MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weidong Zhou
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Corresponding author. (J.A.R.); (W.Z.)
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.A.R.); (W.Z.)
| |
Collapse
|
81
|
Park SA, Jeon H, Kim H, Shin SH, Choy S, Hwang DS, Koo JM, Jegal J, Hwang SY, Park J, Oh DX. Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nat Commun 2019; 10:2601. [PMID: 31197142 PMCID: PMC6565616 DOI: 10.1038/s41467-019-10582-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Environmental and health concerns force the search for sustainable super engineering plastics (SEPs) that utilise bio-derived cyclic monomers, e.g. isosorbide instead of restricted petrochemicals. However, previously reported bio-derived thermosets or thermoplastics rarely offer thermal/mechanical properties, scalability, or recycling that match those of petrochemical SEPs. Here we use a phase transfer catalyst to synthesise an isosorbide-based polymer with a high molecular weight >100 kg mol-1, which is reproducible at a 1-kg-scale production. It is transparent and solvent/melt-processible for recycling, with a glass transition temperature of 212 °C, a tensile strength of 78 MPa, and a thermal expansion coefficient of 23.8 ppm K-1. Such a performance combination has not been reported before for bio-based thermoplastics, petrochemical SEPs, or thermosets. Interestingly, quantum chemical simulations show the alicyclic bicyclic ring structure of isosorbide imposes stronger geometric restraint to polymer chain than the aromatic group of bisphenol-A.
Collapse
Affiliation(s)
- Seul-A Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sung-Ho Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Seunghwan Choy
- Devision of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Soo Hwang
- Devision of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
82
|
Oh JY, Bao Z. Second Skin Enabled by Advanced Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900186. [PMID: 31179225 PMCID: PMC6548954 DOI: 10.1002/advs.201900186] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Indexed: 05/18/2023]
Abstract
Electronic second skin is touted as the next interface to expand applications of electronics for natural and seamless interactions with humans to enable smart health care, the Internet of Things, and even to amplify human sensory abilities. Thus, electronic materials are now being actively investigated to construct "second skin." Accordingly, electronic devices are desirable to have skin-like properties such as stretchability, self-healing ability, biocompatibility, and biodegradability. This work reviews recent major progress in the development of both electronic materials and devices toward the second skin. It is concluded with comments on future research directions of the field.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical EngineeringKyung Hee UniversityYongin17104Republic of Korea
| | - Zhenan Bao
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
83
|
Cha GD, Kang D, Lee J, Kim D. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthc Mater 2019; 8:e1801660. [PMID: 30957984 DOI: 10.1002/adhm.201801660] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Medical implants, either passive implants for structural support or implantable devices with active electronics, have been widely used for the diagnosis and treatment of various diseases and clinical issues. These implants offer various functions, including mechanical support of biological structures in orthopedic and dental applications, continuous electrophysiological monitoring and feedback of electrical stimulation in neuronal and cardiac applications, and controlled drug delivery while maintaining arterial structure in drug-eluting stents. Although these implants exhibit long-term biocompatibility, surgery for their retrieval is often required, which imposes physical, biological, and economical burdens on the patients. Therefore, as an alternative to such secondary surgeries, bioresorbable implants that disappear after a certain period of time inside the body, including bioresorbable active electronics, have been highlighted recently. This review first discusses the historical background of medical implants and briefly define related terminology. Representative examples of non-degradable medical implants for passive structural support and/or for diagnosis and therapy with active electronics are also provided. Then, recent progress in bioresorbable active implants composed of biosignal sensors, actuators for therapeutics, wireless power supply components, and their integrated systems are reviewed. Finally, clinical applications of these bioresorbable electronic implants are exemplified with brief conclusion and future outlook.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
84
|
Wang L, Gao Y, Dai F, Kong D, Wang H, Sun P, Shi Z, Sheng X, Xu B, Yin L. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18013-18023. [PMID: 31010291 DOI: 10.1021/acsami.9b03546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable electronic devices that physically disappear in physiological or environmental solutions are of critical importance for widespread applications in healthcare management and environmental sustainability. The precise modulation of materials and devices dissolution with on-demand operational lifetime, however, remain a key challenge. Silicon nanomembranes (Si NMs) are one of the essential semiconductor components for high-performance biodegradable electronics at the system level. In this work, we discover unusual hydrolysis behaviors of Si NMs that are significantly dependent on the dimensions of devices as well as their surface chemistry statuses. The experiments show a pronounced increase in hydrolysis rates of p-type Si NMs with larger sizes, and mechanical stirring introduces a significant decrease in dissolution rates. The presence of phosphates and potassium ions in solutions, or lower dopant levels of Si NMs will facilitate the degradation of Si NMs and will also lead to a stronger size-dependent effect. Molecular dynamics simulations are performed to reveal ion adsorption mechanisms of Si NMs under different surface charge statuses and confirm our experimental observations. Through geometrical designs, Si NM-based electrode arrays with tunable dissolution lifetime are formed, and their electrochemical properties are analyzed in vitro. These results offer new controlling strategies to modulate the operational time frames of Si NMs through geometrical design and surface chemistry modification and provide crucial fundamental understandings for engineering high-performance biodegradable electronics.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | | | | | | | | | | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | |
Collapse
|
85
|
Wu X, Peng H. Polymer-based flexible bioelectronics. Sci Bull (Beijing) 2019; 64:634-640. [PMID: 36659632 DOI: 10.1016/j.scib.2019.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Due to the mechanical mismatch between conventional rigid electronic devices and soft tissues at nature, a lot of interests have been attracted to develop flexible bioelectronics that work well both in vitro and in vivo. To this end, polymers that can be used for both key components and substrates are indispensable to achieve high performances such as high sensitivity and long-term stability for sensing applications. Here we will summarize the recent advances on the synthesis of a variety of polymers, the design of typical architectures and the integration of different functions for the flexible bioelectronic devices. The remaining challenges and promising directions are highlighted to provide inspirations for the future study on the emerging flexible bioelectronics at end.
Collapse
Affiliation(s)
- Xiaoying Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
86
|
Jiang J, Phillips O, Engler A, Vong MH, Kohl PA. Time‐delayed photo‐induced depolymerization of poly(phthalaldehyde) self‐immolative polymer via in situ formation of weak conjugate acid. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jisu Jiang
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332‐0100 USA
| | - Oluwadamilola Phillips
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332‐0100 USA
| | - Anthony Engler
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332‐0100 USA
| | - Man Hou Vong
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332‐0100 USA
| | - Paul A. Kohl
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332‐0100 USA
| |
Collapse
|
87
|
Li H, Zhao C, Wang X, Meng J, Zou Y, Noreen S, Zhao L, Liu Z, Ouyang H, Tan P, Yu M, Fan Y, Wang ZL, Li Z. Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801625. [PMID: 30937259 PMCID: PMC6425441 DOI: 10.1002/advs.201801625] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 05/18/2023]
Abstract
Implantable medical electronic devices are usually powered by batteries or capacitors, which have to be removed from the body after completing their function due to their non-biodegradable property. Here, a fully bioabsorbable capacitor (BC) is developed for life-time implantation. The BC has a symmetrical layer-by-layer structure, including polylactic acid (PLA) supporting substrate, PLA nanopillar arrays, self-assembled zinc oxide nanoporous layer, and polyvinyl alcohol/phosphate buffer solution (PVA/PBS) hydrogel. The as-fabricated BC can not only work normally in air but also in a liquid environment, including PBS and the animal body. Long-term normal work time is achieved to 30 days in PBS and 50 days in Sprague-Dawley (SD) rats. The work time of BC in the liquid environment is tunable from days to weeks by adopting different encapsulations along BC edges. Capacitance retention of 70% is achieved after 3000 cycles. Three BCs in series can light up 15 green light-emitting diodes (LEDs) in vivo. Additionally, after completing its mission, the BC can be fully degraded in vivo and reabsorbed by a SD rat. Considering its performance, the developed BC has a great potential as a fully bioabsorbable power source for transient electronics and implantable medical devices.
Collapse
Affiliation(s)
- Hu Li
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Chaochao Zhao
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinxin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Jianping Meng
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yang Zou
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sehrish Noreen
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Luming Zhao
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zhuo Liu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Han Ouyang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Puchuan Tan
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Min Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityKey Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
- National Research Center for Rehabilitation Technical AidsBeijing100176P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332‐0245USA
| | - Zhou Li
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
88
|
Hao M, Li L, Wang S, Sun F, Bai Y, Cao Z, Qu C, Zhang T. Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. MICROSYSTEMS & NANOENGINEERING 2019; 5:9. [PMID: 31057936 PMCID: PMC6409363 DOI: 10.1038/s41378-019-0047-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 05/25/2023]
Abstract
Flexible and stretchable electronics are emerging in mainstream technologies and represent promising directions for future lifestyles. Multifunctional stretchable materials with a self-healing ability to resist mechanical damage are highly desirable but remain challenging to create. Here, we report a stretchable macromolecular elastomeric gel with the unique abilities of not only self-healing but also transient properties at room temperature. By inserting small molecule glycerol into hydroxyethylcellulose (HEC), forming a glycerol/hydroxyethylcellulose (GHEC) macromolecular elastomeric gel, dynamic hydrogen bonds occur between the HEC chain and the guest small glycerol molecules, which endows the GHEC with an excellent stretchability (304%) and a self-healing ability under ambient conditions. Additionally, the GHEC elastomeric gel is completely water-soluble, and its degradation rate can be tuned by adjusting the HEC molecular weight and the ratio of the HEC to glycerol. We demonstrate several flexible and stretchable electronics devices, such as self-healing conductors, transient transistors, and electronic skins for robots based on the GHEC elastomeric gel to illustrate its multiple functions.
Collapse
Affiliation(s)
- Mingming Hao
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
- Nano Science and Technology Institute, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui China
| | - Lianhui Li
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Shuqi Wang
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Fuqin Sun
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Yuanyuan Bai
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhiguang Cao
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Chunyan Qu
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
- Nano Science and Technology Institute, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui China
| | - Ting Zhang
- i-Lab, Key Laboratory of multifunctional nanomaterials and smart systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
89
|
Cai X, Zhou Z, Tao TH. Programmable Vanishing Multifunctional Optics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801746. [PMID: 30828536 PMCID: PMC6382307 DOI: 10.1002/advs.201801746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/24/2018] [Indexed: 05/24/2023]
Abstract
Physically transient optics, a form of optics that can physically disappear with precisely controlled degradation behaviors, has widespread applications including information security, drug release, and degradable implants. Here, a set of silk-based programmable vanishing, biologically functional, multichromatic diffractive optical elements (MC-DOEs) is reported. Silk proteins produced by silkworms and spiders are mechanically robust, biocompatible, biodegradable, and importantly, optically transparent, which open up new opportunities for a set of fully degradable transient optical devices with no need of metallic or semiconductor components. Compared with monochromatic DOEs, MC-DOEs carry out richer information for more practical applications such as encryption and decryption of multilevel information, quantitative sensing/monitoring of chemical/biological cascade reactions, and effective treatment of infections caused by multiple pathogens.
Collapse
Affiliation(s)
- Xiaoqing Cai
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhitao Zhou
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
90
|
Zhou H, Qin W, Yu Q, Cheng H, Yu X, Wu H. Transfer Printing and its Applications in Flexible Electronic Devices. NANOMATERIALS 2019; 9:nano9020283. [PMID: 30781651 PMCID: PMC6410120 DOI: 10.3390/nano9020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Flexible electronic systems have received increasing attention in the past few decades because of their wide-ranging applications that include the flexible display, eyelike digital camera, skin electronics, and intelligent surgical gloves, among many other health monitoring devices. As one of the most widely used technologies to integrate rigid functional devices with elastomeric substrates for the manufacturing of flexible electronic devices, transfer printing technology has been extensively studied. Though primarily relying on reversible interfacial adhesion, a variety of advanced transfer printing methods have been proposed and demonstrated. In this review, we first summarize the characteristics of a few representative methods of transfer printing. Next, we will introduce successful demonstrations of each method in flexible electronic devices. Moreover, the potential challenges and future development opportunities for transfer printing will then be briefly discussed.
Collapse
Affiliation(s)
- Honglei Zhou
- Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Weiyang Qin
- Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Qingmin Yu
- Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China.
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xudong Yu
- Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Zhejiang University of Technology, Ministry of Education and Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
91
|
Kook G, Jeong S, Kim SH, Kim MK, Lee S, Cho IJ, Choi N, Lee HJ. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:115-124. [PMID: 30480426 DOI: 10.1021/acsami.8b13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silk fibroin is an excellent candidate for biomedical implantable devices because of its biocompatibility, controllable biodegradability, solution processability, flexibility, and transparency. Thus, fibroin has been widely explored in biomedical applications as biodegradable films as well as functional microstructures. Although there exists a large number of patterning methods for fibroin thin films, multilayer micropatterning of fibroin films interleaved with metal layers still remains a challenge. Herein, we report a new wafer-scale multilayer microfabrication process named aluminum hard mask on silk fibroin (AMoS), which is capable of micropatterning multiple layers composed of both fibroin and inorganic materials (e.g., metal and dielectrics) with high-precision microscale alignment. To the best of our knowledge, our AMoS process is the first demonstration of wafer-scale multilayer processing of both silk fibroin and metal micropatterns. In the AMoS process, aluminum deposited on fibroin is first micropatterned using conventional ultraviolet (UV) photolithography, and the patterned aluminum layer is then used as a mask to pattern fibroin underneath. We demonstrate the versatility of our fabrication process by fabricating fibroin microstructures with different dimensions, passive electronic components composed of both fibroin and metal layers, and functional fibroin microstructures for drug delivery. Furthermore, because one of the crucial advantages of fibroin is biocompatibility, we assess the biocompatibility of our fabrication process through the culture of highly susceptible primary neurons. Because the AMoS process utilizes conventional UV photolithography, the principal advantages of our process are multilayer fabrication with high-precision alignment, high resolution, wafer-scale large area processing, no requirement for chemical modification of the protein, and high throughput and thus low cost, all of which have not been feasible with silk fibroin. Therefore, the proposed fabrication method is a promising candidate for batch fabrication of functional fibroin microelectronics (e.g., memristors and organic thin film transistors) for next-generation implantable biomedical applications.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sohyeon Jeong
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - So Hyun Kim
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- SK Biopharmaceuticals Co., Ltd. , 221 Pangyoyeok-ro , Bundang-gu, Seongnam-si , Gyeonggi-do 13494 , Republic of Korea
| | - Mi Kyung Kim
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sungwoo Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
92
|
McCracken JM, Rauzan BM, Kjellman JCE, Kandel ME, Liu YH, Badea A, Miller LA, Rogers SA, Popescu G, Nuzzo RG. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Adv Healthc Mater 2019; 8:e1800788. [PMID: 30565889 DOI: 10.1002/adhm.201800788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Materials chemistries for hydrogel scaffolds that are capable of programming temporal (4D) attributes of cellular decision-making in supported 3D microcultures are described. The scaffolds are fabricated using direct-ink writing (DIW)-a 3D-printing technique using extrusion to pattern scaffolds at biologically relevant diameters (≤ 100 µm). Herein, DIW is exploited to variously incorporate a rheological nanoclay, Laponite XLG (LAP), into 2-hydroxyethyl methacrylate (HEMA)-based hydrogels-printing the LAP-HEMA (LH) composites as functional modifiers within otherwise unmodified 2D and 3D HEMA microstructures. The nanoclay-modified domains, when tested as thin films, require no activating (e.g., protein) treatments to promote robust growth compliances that direct the spatial attachment of fibroblast (3T3) and preosteoblast (E1) cells, fostering for the latter a capacity to direct long-term osteodifferentiation. Cell-to-gel interfacial morphologies and cellular motility are analyzed with spatial light interference microscopy (SLIM). Through combination of HEMA and LH gels, high-resolution DIW of a nanocomposite ink (UniH) that translates organizationally dynamic attributes seen with 2D gels into dentition-mimetic 3D scaffolds is demonstrated. These analyses confirm that the underlying materials chemistry and geometry of hydrogel nanocomposites are capable of directing cellular attachment and temporal development within 3D microcultures-a useful material system for the 4D patterning of hydrogel scaffolds.
Collapse
Affiliation(s)
- Joselle M. McCracken
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Brittany M. Rauzan
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Jacob C. E. Kjellman
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Mikhail E. Kandel
- Department of Electrical and Computer Engineering 4055 Beckman Institute MC 251, 405 N. Mathews Urbana IL 61801 USA
| | - Yu Hao Liu
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
| | - Adina Badea
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Lou Ann Miller
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering University of Illinois–Urbana Champaign 600 S. Matthews Avenue Urbana IL 61801 USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering 4055 Beckman Institute MC 251, 405 N. Mathews Urbana IL 61801 USA
| | - Ralph G. Nuzzo
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
- Surface and Corrosion Science School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Drottning Kristinasväg 51 100 44 Stockholm Sweden
| |
Collapse
|
93
|
Ni S, Wang B, Zhang H, Zhang Y, Liu Z, Wu W, Xiao H, Dai H. Glyoxal improved functionalization of starch with AZC enhances the hydrophobicity, strength and UV blocking capacities of co-crosslinked polymer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
94
|
Xu J, Zhao X, Wang Z, Xu H, Hu J, Ma J, Liu Y. Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803970. [PMID: 30500108 DOI: 10.1002/smll.201803970] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.
Collapse
Affiliation(s)
- Jiaqi Xu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoning Zhao
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhongqiang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Junli Hu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jiangang Ma
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yichun Liu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
95
|
Kim HS, Yang SM, Jang TM, Oh N, Kim HS, Hwang SW. Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors. Adv Healthc Mater 2018; 7:e1801071. [PMID: 30450726 DOI: 10.1002/adhm.201801071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/20/2018] [Indexed: 12/26/2022]
Abstract
A strategy of materials synthesis, characteristic evaluations, and manufacturing process for a mechanically elastic, biologically safe silicon-based dopamine detector that is designed to be completely transient, i.e., dissolved in water and/or biofluids, potentially in the brain after a desired period of operation, is introduced. Use of inexpensive, bioresorbable iron (Fe)-based nanoparticles (NPs) is one of the attractive choices for efficient catalytic oxidation of dopamine as an alternative for noble, nontransient platinum (Pt) nanoparticles, based on extensive studies of synthesized materials and catalytic reactions. Arrays of transient dopamine sensors validate electrochemical functionality to determine physiological levels of dopamine and to selectively sense dopamine in a variety of neurotransmitters, illuminating feasibilities for a higher level of soft, transient electronic implants integrated with other components of overall system.
Collapse
Affiliation(s)
- Hyun-Seung Kim
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Hee-Soo Kim
- Analytical Instrumentation Center; Hanyang University; 222 Wangsimni-ro Seongdong-gu Seoul 04763 Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
96
|
Zhang H, Liu Y, Yang C, Xiang L, Hu Y, Peng LM. Wafer-Scale Fabrication of Ultrathin Flexible Electronic Systems via Capillary-Assisted Electrochemical Delamination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805408. [PMID: 30311331 DOI: 10.1002/adma.201805408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Electronic systems on ultrathin polymer films are generally processed with rigid supporting substrates during fabrication, followed by delamination and transfer to the targeted working areas. The challenge associated with an efficient and innocuous delamination operation is one of the major hurdles toward high-performance ultrathin flexible electronics at large scale. Herein, a facile, rapid, damage-free approach is reported for detachment of wafer-scale ultrathin electronic foils from Si wafers by capillary-assisted electrochemical delamination (CAED). Anodic etching and capillary action drive an electrolyte solution to penetrate and split the polymer/Si interface, leading to complete peel-off of the electronic foil with a 100% success rate. The delamination speed can be controlled by the applied voltage and salt concentration, reaching a maximum value of 1.66 mm s-1 at 20 V using 2 m NaCl solution. Such a process incurs neither mechanical damage nor chemical contamination; therefore, the delaminated electronic systems remain intact, as demonstrated by high-performance carbon nanotube (CNT)-based thin-film transistors and integrated circuits constructed on a 5.5 cm × 5.0 cm parylene-based film with 4 µm thickness. Furthermore, the CAED strategy can be applied for prevalent polymer films and confers great flexibility and capability for designing and manufacturing diverse ultrathin electronic systems.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Youdi Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Chao Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| |
Collapse
|
97
|
Hawker MJ, Guo C, Omenetto FG, Kaplan DL. Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS APPLIED BIO MATERIALS 2018; 1:1677-1686. [PMID: 34996217 PMCID: PMC11047755 DOI: 10.1021/acsabm.8b00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Implantable electronics hold enormous clinical potential for diagnosis and treatment of neurodegenerative and cardiac diseases and abnormalities. Transient devices are attractive alternatives to conventional silicon electrodes, as they can provide short-term electrical stimulation/recording followed by complete device degradation, mitigating the need for removal surgeries. Packaging transient metals is inherently challenging as they degrade upon contact with aqueous conditions. Development of new transient metal packaging strategies is a critical step toward transient device development. In this fundamental work, a solvent-free compression molding approach to encapsulate magnesium, a resorbable metal, in silk fibroin protein is reported. Silk fibroin was selected because of its processing versatility, desirable mechanical properties, compatibility with biological environments, and controllable degradation behavior in aqueous environments. The silk/magnesium composites were fabricated via compression molding, followed by water annealing to modify the secondary structure of the silk protein matrix to tune physical properties. Transient composite properties as a function of water annealing time are presented, which elucidate synergies between silk physical properties and degradation kinetics of the encapsulated magnesium, information useful in the design of multifunctional, transient metal-based constructs.
Collapse
Affiliation(s)
- Morgan J Hawker
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
98
|
Yi N, Cheng Z, Yang L, Edelman G, Xue C, Ma Y, Zhu H, Cheng H. Fully Water-Soluble, High-Performance Transient Sensors on a Versatile Galactomannan Substrate Derived from the Endosperm. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36664-36674. [PMID: 30261722 DOI: 10.1021/acsami.8b11682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Green electronics on biodegradable substrates from natural sources have gained broad interest because of the advantages of being biodegradable, recyclable, sustainable, and cost-efficient. This study presents a low-cost, yet simple extraction and purification method that explores aqueous extraction and precipitation with ethanol for the synthesis of galactomannan films. In salient contrast to the other materials of natural origin, the process to obtain galactomannan films is energy efficient and environmentally friendly. As an alternative biodegradable material, galactomannan has direct relevance to the recent emerging biodegradable or transient electronics. The galactomannan substrate with temperature sensors and electrodes fabricated from zinc, a biodegradable material noted for its essential biological function, demonstrates a high-precision measurement of temperature and high-fidelity monitoring of electrophysiological signals (electromyogram or electrocardiogram). The resulting disposable sensors disappear without a trace in water and produce environmentally benign end products that could even be used for alkaline soil amendments. The set of materials explored in this study is also stable in organic solutions, enabling solvent-based fabrication that may be combined with recent advances in additive manufacturing techniques for a novel manufacturing method.
Collapse
Affiliation(s)
| | - Zheng Cheng
- Department of Mechanical and Industrial Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Lei Yang
- Department of Mechanical and Industrial Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | | | - Cuili Xue
- School of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Yi Ma
- Department of Mechanical and Industrial Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | | |
Collapse
|
99
|
Li R, Wang L, Yin L. Materials and Devices for Biodegradable and Soft Biomedical Electronics. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2108. [PMID: 30373154 PMCID: PMC6267565 DOI: 10.3390/ma11112108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
Biodegradable and soft biomedical electronics that eliminate secondary surgery and ensure intimate contact with soft biological tissues of the human body are of growing interest, due to their emerging applications in high-quality healthcare monitoring and effective disease treatments. Recent systematic studies have significantly expanded the biodegradable electronic materials database, and various novel transient systems have been proposed. Biodegradable materials with soft properties and integration schemes of flexible or/and stretchable platforms will further advance electronic systems that match the properties of biological systems, providing an important step along the path towards clinical trials. This review focuses on recent progress and achievements in biodegradable and soft electronics for biomedical applications. The available biodegradable materials in their soft formats, the associated novel fabrication schemes, the device layouts, and the functionality of a variety of fully bioresorbable and soft devices, are reviewed. Finally, the key challenges and possible future directions of biodegradable and soft electronics are provided.
Collapse
Affiliation(s)
- Rongfeng Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| | - Liu Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
100
|
Tunable Adhesion for Bio-Integrated Devices. MICROMACHINES 2018; 9:mi9100529. [PMID: 30424462 PMCID: PMC6215118 DOI: 10.3390/mi9100529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
Abstract
With the rapid development of bio-integrated devices and tissue adhesives, tunable adhesion to soft biological tissues started gaining momentum. Strong adhesion is desirable when used to efficiently transfer vital signals or as wound dressing and tissue repair, whereas weak adhesion is needed for easy removal, and it is also the essential step for enabling repeatable use. Both the physical and chemical properties (e.g., moisture level, surface roughness, compliance, and surface chemistry) vary drastically from the skin to internal organ surfaces. Therefore, it is important to strategically design the adhesive for specific applications. Inspired largely by the remarkable adhesion properties found in several animal species, effective strategies such as structural design and novel material synthesis were explored to yield adhesives to match or even outperform their natural counterparts. In this mini-review, we provide a brief overview of the recent development of tunable adhesives, with a focus on their applications toward bio-integrated devices and tissue adhesives.
Collapse
|