51
|
Kong X, Wu H, Lu K, Zhang X, Zhu Y, Lei H. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41205-41223. [PMID: 37638534 DOI: 10.1021/acsami.3c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The galvanic replacement reaction (GRR) is recognized as a redox process where one metal undergoes oxidation by the ions of another metal possessing a higher reduction potential. This reaction takes place at the interface between a substrate and a solution containing metal ions. Utilizing metal or metal oxide as sacrificial templates enables the synthesis of metallic nanoparticles, oxide-metal composites, and mixed oxides through GRR. Growing evidence showed that GRR has a direct impact on surface structures and properties. This has generated significant interest in catalysis and opened up new horizons for the application of GRR in energy and chemical transformations. This review provides a comprehensive overview of the synthetic strategies utilizing GRR for the creation of catalytically active structures. It discusses the formation of alloys, intermetallic compounds, single atom alloys, metal-oxide composites, and mixed metal oxides with diverse nanostructures. Additionally, GRR serves as a postsynthesis method to modulate metal-oxide interfaces through the replacement of oxide domains. The review also outlines potential future directions in this field.
Collapse
Affiliation(s)
- Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Hao Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Xinyi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| |
Collapse
|
52
|
Hu X, An Z, Wang W, Lin X, Chan TS, Zhan C, Hu Z, Yang Z, Huang X, Bu L. Sub-Monolayer SbO x on PtPb/Pt Nanoplate Boosts Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023; 145:19274-19282. [PMID: 37585588 DOI: 10.1021/jacs.3c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
To promote the commercialization of direct formic acid fuel cell (DFAFC), it is vital to explore new types of direct formic acid oxidation (FAOR) catalysts with high activity and direct pathway. Here, we report the synthesis of intermetallic platinum-lead/platinum nanoplates inlaid with sub-monolayer antimony oxide surface (PtPb/Pt@sub-SbOx NPs) for efficient catalytic applications in FAOR. Impressively, they can achieve the remarkable FAOR specific and mass activities of 28.7 mA cm-2 and 7.2 A mgPt-1, which are 151 and 60 times higher than those of the state-of-the-art commercial Pt/C, respectively. Furthermore, the X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results collectively reveal the optimization of the local coordination environment by the surface sub-monolayer SbOx, along with the electron transfer from Pb and Sb to Pt, driving the predominant dehydrogenation process. The sub-monolayer SbOx on the surface can effectively attenuate the CO generation, largely improving the FAOR performance of PtPb/Pt@sub-SbOx NPs. This work develops a class of high-performance Pt-based anodic catalyst for DFAFC via constructing the unique intermetallic core/sub-monolayer shell structure.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
53
|
Huang B, Ge Y, Zhang A, Zhu S, Chen B, Li G, Yun Q, Huang Z, Shi Z, Zhou X, Li L, Wang X, Wang G, Guan Z, Zhai L, Luo Q, Li Z, Lu S, Chen Y, Lee CS, Han Y, Shao M, Zhang H. Seeded Synthesis of Hollow PdSn Intermetallic Nanomaterials for Highly Efficient Electrocatalytic Glycerol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302233. [PMID: 37261943 DOI: 10.1002/adma.202302233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd2 Sn and monoclinic Pd3 Sn2 . Benefiting from the rational regulation of the crystal phase and morphology, the obtained hollow orthorhombic Pd2 Sn NPs deliver excellent electrocatalytic performance toward glycerol oxidation reaction (GOR), outperforming solid orthorhombic Pd2 Sn NPs, hollow monoclinic Pd3 Sn2 NPs, and commercial Pd/C, which places it among the best reported Pd-based GOR electrocatalysts. The reaction mechanism of GOR using the hollow orthorhombic Pd2 Sn as the catalyst is investigated by operando infrared reflection absorption spectroscopy, which reveals that the hollow orthorhombic Pd2 Sn catalyst cleaves the CC bond more easily compared to the commercial Pd/C. This work can pave an appealing route to the controlled synthesis of diverse novel intermetallic nanomaterials with hollow morphology for various promising applications.
Collapse
Affiliation(s)
- Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine, Science and Engineering Guangdong Laboratory and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
54
|
Wang Z, Wang H. Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486213 DOI: 10.1021/acsami.3c06654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The past decade has witnessed rapidly growing interest in noble metal nanostructures adopting unconventional metastable crystal phases. In the case of Ru, chemically synthesized nanocrystals typically form thermodynamically favored hexagonal close-packed (hcp) crystal lattices, whereas it remains significantly more challenging to synthesize Ru nanocrystals in the metastable face-centered cubic (fcc) phase. In this work, we have synthesized polydopamine (PDA)-supported hcp and fcc Ru nanocrystals in a phase-selective manner through one-pot thermal reduction of appropriate Ru(III) precursors in a polyol solvent. Benefiting from the unique surface-adhesion function of PDA, we have been able to grow phase-controlled sub-5 nm Ru nanocrystals directly on colloidal PDA supports without prefunctionalizing the particle surfaces with any molecular linkers or surface-capping ligands. Success in phase-controlled synthesis of capping ligand-free Ru nanocrystals dispersed on the same support material enables us to systematically compare the intrinsic mass-specific and surface-specific activities of fcc and hcp Ru nanocatalysts toward the aerobic oxidation of a chromogenic molecular substrate, 3,3',5,5'-tetramethylbenzidine (TMB), under a broad range of reaction conditions. We use UV-vis absorption spectroscopy to monitor the conversion of the reactant molecules into the one-electron and two-electron oxidation products in real time during Ru-catalyzed oxidation of TMB, which is found to be a mechanistically complex molecule-transforming process involving multiple elementary steps. The apparent reaction rates and detailed kinetic features are observed to be not only intimately related to the crystalline structures of the Ru nanocatalysts but also profoundly influenced by several other critical factors, such as the pH of the reaction medium, the initial concentration of TMB, Ru coverage on the PDA supports, and degree of nanoparticle aggregation.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
55
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
56
|
Hu X, Xiao Z, Wang W, Bu L, An Z, Liu S, Pao CW, Zhan C, Hu Z, Yang Z, Wang Y, Huang X. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023. [PMID: 37289521 DOI: 10.1021/jacs.3c00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengyi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
57
|
Zhang S, Yin L, Li Q, Wang S, Wang W, Du Y. Laves phase Ir 2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction. Chem Sci 2023; 14:5887-5893. [PMID: 37293647 PMCID: PMC10246678 DOI: 10.1039/d3sc01052j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 06/10/2023] Open
Abstract
Rare earth (RE) intermetallic nanoparticles (NPs) are significant for fundamental explorations and promising for practical applications in electrocatalysis. However, they are difficult to synthesize because of the unusually low reduction potential and extremely high oxygen affinity of RE metal-oxygen bonds. Herein, intermetallic Ir2Sm NPs were firstly synthesized on graphene as a superior acidic oxygen evolution reaction (OER) catalyst. It was verified that intermetallic Ir2Sm is a new phase belonging to the C15 cubic MgCu2 type in the Laves phase family. Meanwhile, intermetallic Ir2Sm NPs achieved a mass activity of 1.24 A mgIr-1 at 1.53 V and stability of 120 h at 10 mA cm-2 in 0.5 M H2SO4 electrolyte, which corresponds to a 5.6-fold and 12-fold enhancement relative to Ir NPs. Experimental results together with density functional theory (DFT) calculations show that in the structurally ordered intermetallic Ir2Sm NPs, the alloying of Sm with Ir atoms modulates the electronic nature of Ir, thereby reducing the binding energy of the oxygen-based intermediate, resulting in faster kinetics and enhanced OER activity. This study provides a new perspective for the rational design and practical application of high-performance RE alloy catalysts.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Qingqing Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Weihua Wang
- College of Electronic Information and Optical Engineering, Nankai University Tianjin 300350 China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| |
Collapse
|
58
|
Guo J, Liu W, Fu X, Jiao S. Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. NANOSCALE 2023; 15:8508-8531. [PMID: 37114369 DOI: 10.1039/d3nr00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) noble-metal-based nanomaterials have attracted tremendous attention and have widespread promising applications as a result of their unique physical, chemical, and electronic properties. Especially, 2D Pt- and Pd-based intermetallic nanoplates (IMNPs) and nanosheets (IMNSs) are widely studied for fuel cell (FC)-related reactions, including the cathodic oxygen reduction reaction (ORR) and anodic formic acid, methanol and ethanol oxidation reactions (FAOR, MOR and EOR). Wet-chemistry synthesis is a powerful strategy to prepare metallic nanocrystals with well-controlled dispersity, size, and composition. In this review, a fundamental understanding of the FC-related reactions is firstly elaborated. Subsequently, the current wet-chemistry synthesis pathways for 2D Pt- and Pd-based IMNPs and IMNSs are briefly summarized, as well as their electrocatalytic applications including in the ORR, FAOR, MOR, and EOR. Finally, we provide an overview of the opportunities and current challenges and give our perspectives on the development of high-performance 2D Pt- and Pd-based intermetallic electrocatalysts towards FCs. We hope this review offers timely information on the synthesis of 2D Pt- and Pd-based IMNPs and IMNSs and provides guidance for the efficient synthesis and application of them.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Jinming Avenue, Kaifeng 475001, China.
| |
Collapse
|
59
|
Shelte AR, Patil RD, Karan S, Bhadu GR, Pratihar S. Nanoscale Ni-NiO-ZnO Heterojunctions for Switchable Dehydrogenation and Hydrogenation through Modulation of Active Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24329-24345. [PMID: 37186804 DOI: 10.1021/acsami.3c00985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Catalysts consisting of metal-metal hydroxide/oxide interfaces are highly in demand for advanced catalytic applications as their multicomponent active sites will enable different reactions to occur in close proximity through synergistic cooperation when a single component fails to promote it. To address this, herein we disclosed a simple, scalable, and affordable method for synthesizing catalysts consisting of nanoscale nickel-nickel oxide-zinc oxide (Ni-NiO-ZnO) heterojunctions by a combination of complexation and pyrolytic reduction. The modulation of active sites of catalysts was achieved by varying the reaction conditions of pyrolysis, controlling the growth, and inhibiting the interlayer interaction and Ostwald ripening through the efficient use of coordinated acetate and amide moieties of Zn-Ni materials (ZN-O), produced by the reaction between hydrazine hydrate and Zn-Ni-acetate complexes. We found that the coordinated organic moieties are crucial for forming heterojunctions and their superior catalytic activity. We analyzed two antagonistic reactions to evaluate the performance of the catalysts and found that while the heterostructure of Ni-NiO-ZnO and their cooperative synergy were crucial for managing the effectiveness and selectivity of the catalyst for dehydrogenation of aryl alkanes/alkenes, they failed to enhance the hydrogenation of nitro arenes. The hydrogenation reaction was influenced by the shape, surface properties, and interaction of the hydroxide and oxide of both zinc and nickel, particularly accessible Ni(0). The catalysts showed functional group tolerance, multiple reusabilities, broad substrate applicability, and good activity for both reactions.
Collapse
Affiliation(s)
- Amishwar Raysing Shelte
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Daga Patil
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gopala R Bhadu
- Analytical and Environmental Science Division & Centralized Instrument Facility, Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Pratihar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
60
|
Werghi B, Wu L, Ebrahim AM, Chi M, Ni H, Cargnello M, Bare SR. Selective Catalytic Behavior Induced by Crystal-Phase Transformation in Well-Defined Bimetallic Pt-Sn Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207956. [PMID: 36807838 DOI: 10.1002/smll.202207956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The Pt-Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt-Sn phase. Colloidal chemistry offers a route for the synthesis of Pt-Sn bimetallic nanoparticles (NPs) in a systematic, well-defined, tailored fashion over conventional methods. Here, the successful synthesis of well-defined ≈2 nm Pt, PtSn, and Pt3 Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3 Sn show different activity and stability depending on the hydrogen-rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3 Sn/Al2 O3 , which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12 -ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3 Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure-performance relationship on emerging bimetallic systems.
Collapse
Affiliation(s)
- Baraa Werghi
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Liheng Wu
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani M Ebrahim
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Haoyang Ni
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
61
|
Zeng WJ, Wang C, Yin P, Tong L, Yan QQ, Chen MX, Xu SL, Liang HW. Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells. Inorg Chem 2023; 62:5262-5269. [PMID: 36947415 DOI: 10.1021/acs.inorgchem.3c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
62
|
Foucher AC, Yang S, Rosen DJ, Huang R, Pyo JB, Kwon O, Owen CJ, Sanchez DF, Sadykov II, Grolimund D, Kozinsky B, Frenkel AI, Gorte RJ, Murray CB, Stach EA. Synthesis and Characterization of Stable Cu-Pt Nanoparticles under Reductive and Oxidative Conditions. J Am Chem Soc 2023; 145:5410-5421. [PMID: 36825993 DOI: 10.1021/jacs.2c13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.
Collapse
Affiliation(s)
- Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renjing Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun Beom Pyo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ohhun Kwon
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | | | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Robert Bosch Research and Technology Center, Cambridge, Massachusetts 02139, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Raymond J Gorte
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
63
|
Zuo LJ, Xue KZ, Yin P, Xu SL, Liang HW. Synthesis of rhodium intermetallic catalysts by enlarging the inter-particle distance on high-surface-area carbon black supports. Chem Commun (Camb) 2023; 59:1829-1832. [PMID: 36722910 DOI: 10.1039/d2cc06270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we report a "critical distance" method for the synthesis of 9 kinds of sub-5 nm rhodium (Rh)-based intermetallic catalysts. Enlarging the distance between intermetallic particles on high-surface-area carbon black supports could significantly suppress the metal sintering in high-temperature annealing. The prepared Rh2Sn intermetallic catalysts exhibited enhanced activity in catalyzing the hydrogenation of nitrobenzene.
Collapse
Affiliation(s)
- Lu-Jie Zuo
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Kun-Ze Xue
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Peng Yin
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Shi-Long Xu
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Hai-Wei Liang
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
64
|
Guan J, Zhang J, Wang X, Zhang Z, Wang F. Synthesis of L1 0 -Iron Triad (Fe, Co, Ni)/Pt Intermetallic Electrocatalysts via a Phosphide-Induced Structural Phase Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207995. [PMID: 36417324 DOI: 10.1002/adma.202207995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Structurally ordered L10 -iron triad (Fe, Co, Ni)/Pt with a M(iron triad)/Pt ratio ≈1:1 has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis and fuel cell technologies by virtue of the high performance derived from their strong surface strain. However, the synthesis of intermetallic L10 -M(iron triad)Pt generally requires the accurate content control of the multicomponent and the sufficient thermal energy to overcome the kinetic barrier for atom diffusion. This work reports a synthesis of sub ≈5 nm L10 -intermetallic nanoparticles using phosphide intermediate-induced structural phase transition. Taking the L10 -CoPt intermetallic, for example, the formation of the L10 structure depends on the Co2 P intermediates can provide abundant P vacancies to accelerate the Pt diffusion into the orthorhombic Co-rich skeletons, instead of the traditional route of intermetallic from solid solution. L10 -CoPt prepared by this method has a high degree of ordering and shows the broad adaptability of various Pt-based electrocatalysts with different loading and states to improve their electrocatalytic performance. Additionally, the other L10 -M(iron triad)Pt intermetallics, i.e., L10 -NiPt and L10 -FePt, are also prepared through this phosphide-induced phase transition. The findings provide a promising strategy for designing other intermetallic materials alloy materials using a structural phase transition induced by a second phase.
Collapse
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianqi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinliang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
65
|
Zhang H, Li Y, Cheng C, Zhou J, Yin P, Wu H, Liang Z, Zhang J, Yun Q, Wang AL, Zhu L, Zhang B, Cao W, Meng X, Xia J, Yu Y, Lu Q. Isolated Electron-Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angew Chem Int Ed Engl 2023; 62:e202213351. [PMID: 36357325 DOI: 10.1002/anie.202213351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4 + yield rate of 320.6 μmol h-1 mg-1 Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of -0.2 V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology, Beijing Foshan, Beijing, 528399, China
| | - Yanbo Li
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jin Zhou
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Pengfei Yin
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haoming Wu
- School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology, Beijing Foshan, Beijing, 528399, China
| | - Zhiqin Liang
- Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Bin Zhang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology, Beijing Foshan, Beijing, 528399, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology, Beijing Foshan, Beijing, 528399, China
| |
Collapse
|
66
|
Song TW, Zuo LJ, Zuo M, Liang HW. Breaking trade-off between particle size and ordering degree of intermetallic catalysts for fuel cells. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
67
|
Du JS, Dravid VP, Mirkin CA. Intermetallic Nanocrystal Discovery through Modulation of Atom Stacking Hierarchy. ACS NANO 2022; 16:20796-20804. [PMID: 36219780 DOI: 10.1021/acsnano.2c08038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A library of compositionally and structurally well-defined Au-Cu alloy nanocrystals has been prepared via scanning probe block copolymer lithography. These libraries not only allow one to map compositional and structure space but also the conditions (e.g., cooling rate) required to access specific structures. This approach enabled the realization of a previously unobserved architecture, an intermetallic nanoprism, that is a consequence of hierarchical atom stacking. These structures exhibit distinctive diffraction patterns characterized by non-integer-index, forbidden spots, which serve as a diagnostic indicator of such structures. Inspection of the library's pseudospherical particles reveals a high-strain cubic-tetragonal interfacial configuration in the outer regions of the intermetallic nanocrystals. Since it is costly and time-consuming to explore the nanomaterials phase space via conventional wet-chemistry, this parallel kinetic-control approach, which relies on substrate- and positionally isolated particles, may lead to the rapid discovery of complex nanocrystals that may prove useful in applications spanning catalysis and plasmonic sensing.
Collapse
|
68
|
Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun 2022; 13:7654. [PMID: 36496497 PMCID: PMC9741640 DOI: 10.1038/s41467-022-35457-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
69
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Intermetallic Nanocrystals: Seed-Mediated Synthesis and Applications in Electrocatalytic Reduction Reactions. Chemistry 2022; 28:e202202221. [PMID: 36066483 DOI: 10.1002/chem.202202221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 12/14/2022]
Abstract
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Shilong Jiao
- Department School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, Henan, 475001, P.R. China
| | - Xiuying Ya
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huiling Zheng
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Ran Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Jiao Yu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huanyu Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Zhilin Zhang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Congxiao He
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| |
Collapse
|
70
|
Ji Y, Liu S, Zhu H, Xu W, Jiang R, Zhang Y, Yu J, Chen W, Jia L, Jiang J, Zhu T, Zhong Z, Wang D, Xu G, Su F. Isolating Contiguous Ir Atoms and Forming Ir-W Intermetallics with Negatively Charged Ir for Efficient NO Reduction by CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205703. [PMID: 36153834 DOI: 10.1002/adma.202205703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The lack of efficient catalysts with a wide working temperature window and vital O2 and SO2 resistance for selective catalytic reduction of NO by CO (CO-SCR) largely hinders its implementation. Here, a novel Ir-based catalyst with only 1 wt% Ir loading is reported for efficient CO-SCR. In this catalyst, contiguous Ir atoms are isolated into single atoms, and Ir-W intermetallic nanoparticles are formed, which are supported on ordered mesoporous SiO2 (KIT-6). Notably, this catalyst enables complete NO conversion to N2 at 250 °C in the presence of 1% O2 and has a wide temperature window (250-400 °C), outperforming the comparison samples with Ir isolated-single-atomic-sites and Ir nanoparticles, respectively. Also, it possesses a high SO2 tolerance. Both experimental results and theoretical calculations reveal that single Ir atoms are negatively charged, dramatically enhancing the NO dissociation, while the Ir-W intermetallic nanoparticles accelerate the reduction of the N2 O and NO2 intermediates by CO.
Collapse
Affiliation(s)
- Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shaomian Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongdan Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenqing Xu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruihuan Jiang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Chemical Engineering, Qiqihaer University, Heilongjiang Province, Qiqihaer, 161006, China
| | - Yu Zhang
- Institute of Education & Talent, CNPC Managers Training Institute, Beijing, 100096, China
| | - Jian Yu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Qiqihaer University, Heilongjiang Province, Qiqihaer, 161006, China
| | - Jingang Jiang
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
- Technion-Israel Institute of Technology (IIT), Haifa, 32000, Israel
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guangwen Xu
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
71
|
Feng S, Geng Y, Liu H, Li H. Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO 2 Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shumei Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hongyan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| |
Collapse
|
72
|
Kim HY, Jun M, Joo SH, Lee K. Intermetallic Nanoarchitectures for Efficient Electrocatalysis. ACS NANOSCIENCE AU 2022; 3:28-36. [PMID: 37101463 PMCID: PMC10125321 DOI: 10.1021/acsnanoscienceau.2c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Intermetallic structures whose regular atomic arrays of constituent elements present unique catalytic properties have attracted considerable attention as efficient electrocatalysts for energy conversion reactions. Further performance enhancement in intermetallic catalysts hinges on constructing catalytic surfaces possessing high activity, durability, and selectivity. In this Perspective, we introduce recent endeavors to boost the performance of intermetallic catalysts by generating nanoarchitectures, which have well-defined size, shape, and dimension. We discuss the beneficial effects of nanoarchitectures compared with simple nanoparticles in catalysis. We highlight that the nanoarchitectures have high intrinsic activity owing to their inherent structural factors, including controlled facets, surface defects, strained surfaces, nanoscale confinement effects, and a high density of active sites. We next present notable examples of intermetallic nanoarchitectures, namely, facet-controlled intermetallic nanocrystals and multidimensional nanomaterials. Finally, we suggest the future research directions of intermetallic nanoarchitectures.
Collapse
Affiliation(s)
- Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
73
|
Methodical designing of Pt3-xCo0.5+yNi0.5+y/C (x=0, 1, 2; y=0, 0.5, 1) particles using a single-step solid state chemistry method as efficient cathode catalyst in H2-O2 fuel cells. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Song TW, Xu C, Sheng ZT, Yan HK, Tong L, Liu J, Zeng WJ, Zuo LJ, Yin P, Zuo M, Chu SQ, Chen P, Liang HW. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat Commun 2022; 13:6521. [PMID: 36316330 PMCID: PMC9622856 DOI: 10.1038/s41467-022-34037-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Supported ordered intermetallic compounds exhibit superior catalytic performance over their disordered alloy counterparts in diverse reactions. But the synthesis of intermetallic compounds catalysts often requires high-temperature annealing that leads to the sintering of metals into larger crystallites. Herein, we report a small molecule-assisted impregnation approach to realize the general synthesis of a family of intermetallic catalysts, consisting of 18 binary platinum intermetallic compounds supported on carbon blacks. The molecular additives containing heteroatoms (that is, O, N, or S) can be coordinated with platinum in impregnation and thermally converted into heteroatom-doped graphene layers in high-temperature annealing, which significantly suppress alloy sintering and insure the formation of small-sized intermetallic catalysts. The prepared optimal PtCo intermetallics as cathodic oxygen-reduction catalysts exhibit a high mass activity of 1.08 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.17 W cm-2 in H2-air fuel cells.
Collapse
Affiliation(s)
- Tian-Wei Song
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Cong Xu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Zhu-Tao Sheng
- grid.440646.40000 0004 1760 6105College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
| | - Hui-Kun Yan
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lei Tong
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Jun Liu
- grid.454811.d0000 0004 1792 7603Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,Anhui Contango New Energy Technology Co., Ltd, Hefei, 230088 China
| | - Wei-Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lu-Jie Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Peng Yin
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Ming Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Sheng-Qi Chu
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Chen
- grid.252245.60000 0001 0085 4987School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
75
|
Yan Z, Yao B, Hall C, Gao Q, Zang W, Zhou H, He Q, Zhu H. Metal-Metal Oxide Catalytic Interface Formation and Structural Evolution: A Discovery of Strong Metal-Support Bonding, Ordered Intermetallics, and Single Atoms. NANO LETTERS 2022; 22:8122-8129. [PMID: 36194541 DOI: 10.1021/acs.nanolett.2c02568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In-depth investigation of metal-metal oxide interactions and their corresponding evolution is of paramount importance to heterogeneous catalysis as it allows the understanding and maneuvering of the structure of catalytic motifs. Herein, using a series of core/shell metal/iron oxide (M/FeOx, M = Pd, Pt, Au) nanoparticles and through a combination of in situ and ex situ electron and X-ray investigations, we revealed anomalous and dissimilar M-FeOx interactions among different systems under reducing conditions. Pd interacts strongly with FeOx after high-temperature reductive treatment, featured by the formation of Pd single atoms in the FeOx matrix and increased Pd-Fe bonding, while Pt transforms into ordered PtFe intermetallics and Pt single atoms immediately upon the coating of FeOx. In contrast, Au does not manifest strong bonding with FeOx. As a proof of concept of tailoring metal-metal oxide interactions for catalysis, optimized Pd/FeOx demonstrates 100% conversion and 86.5% selectivity at 60 °C for acetylene semihydrogenation.
Collapse
Affiliation(s)
- Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Connor Hall
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Wenjie Zang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
76
|
Chen W, Luo S, Sun M, Wu X, Zhou Y, Liao Y, Tang M, Fan X, Huang B, Quan Z. High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206276. [PMID: 36063819 DOI: 10.1002/adma.202206276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The control of multimetallic ensembles at the atomic-level is challenging, especially for high-entropy alloys (HEAs) possessing five or more elements. Herein, the one-pot synthesis of hexagonal-close-packed (hcp) PtRhBiSnSb high-entropy intermetallic (HEI) nanoplates with intrinsically isolated Pt, Rh, Bi, Sn, and Sb atoms is reported, to boost the electrochemical oxidation of liquid fuels. Taking advantage of these combined five metals, the well-defined PtRhBiSnSb HEI nanoplates exhibit a remarkable mass activity of 19.529, 15.558, and 7.535 A mg-1 Pt+Rh toward the electrooxidation of methanol, ethanol, and glycerol in alkaline electrolytes, respectively, representing a state-of-the-art multifunctional electrocatalyst for alcohol oxidation reactions. In particular, the PtRhBiSnSb HEI achieves record-high methanol oxidation reaction (MOR) activity in an alkaline environment. Theoretical calculations demonstrate that the introduction of the fifth metal Rh enhances the electron-transfer efficiency in PtRhBiSnSb HEI nanoplates, which contributes to the improved oxidation capability. Meanwhile, robust electronic structures of the active sites are achieved due to the synergistic protections from Bi, Sn, and Sb sites. This work offers significant research advances in developing well-defined HEA with delicate control over compositions and properties.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Shuiping Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Wu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongsheng Zhou
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yujia Liao
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Min Tang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xiaokun Fan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
77
|
Castilla-Amorós L, Schouwink P, Oveisi E, Okatenko V, Buonsanti R. Tailoring Morphology and Elemental Distribution of Cu-In Nanocrystals via Galvanic Replacement. J Am Chem Soc 2022; 144:18286-18295. [PMID: 36173602 DOI: 10.1021/jacs.2c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.
Collapse
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
78
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
79
|
Meischein M, Garzón-Manjón A, Hammerschmidt T, Xiao B, Zhang S, Abdellaoui L, Scheu C, Ludwig A. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids. NANOSCALE ADVANCES 2022; 4:3855-3869. [PMID: 36133350 PMCID: PMC9470033 DOI: 10.1039/d2na00363e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Non-equilibrium synthesis methods allow the alloying of bulk-immiscible elements into multinary nanoparticles, which broadens the design space for new materials. Whereas sputtering onto solid substrates can combine immiscible elements into thin film solid solutions, this is not clear for sputtering of nanoparticles in ionic liquids. Thus, the suitability of sputtering in ionic liquids for producing nanoparticles of immiscible elements is investigated by co-sputtering the systems Au-Cu (miscible), Au-Ru and Cu-Ru (both immiscible), and Au-Cu-Ru on the surface of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][(Tf)2N]. The sputtered nanoparticles were analyzed to obtain (i) knowledge concerning the general formation process of nanoparticles when sputtering onto ionic liquid surfaces and (ii) information, if alloy nanoparticles of immiscible elements can be synthesized as well as (iii) evidence if the Hume-Rothery rules for solid solubility are valid for sputtered nanoparticles. Nanoparticle characteristics were found to depend on elemental miscibility: (1) nanoparticles from immiscible elemental combinations showed bigger mean diameters ranging from (3.3 ± 1.4) nm to (5.0 ± 1.7) nm in contrast to mean diameters of nanoparticles from elemental combinations with at least one miscible element pair ((1.7 ± 0.7) nm to (1.8 ± 0.6) nm). (2) Nanoparticles from immiscible combinations showed compositions with one element strongly dominating the ratio and very narrow differences between the highest and lowest fraction of the dominating element (Cu94Ru6 to Cu100Ru0; Au96Ru4 to Au99Ru1) in contrast to the other compositions (Au64Cu36 to Au81Cu19; Au83Cu13Ru4/Au75Cu22Ru3 to Au87Cu11Ru2). Accompanying atomistic simulations using density-functional theory for clusters of different size and ordering confirm that the miscibility of Au-Cu and the immiscibility of Au-Ru and Cu-Ru govern the thermodynamic stability of the nanoparticles. Based on the matching experimental and theoretical results for the NP/IL-systems concerning NP stability, a formation model of multinary NPs in ILs was developed.
Collapse
Affiliation(s)
- Michael Meischein
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Alba Garzón-Manjón
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Thomas Hammerschmidt
- Chair of Atomistic Modelling and Simulation, Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Siyuan Zhang
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Lamya Abdellaoui
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| |
Collapse
|
80
|
Ye X, Shao RY, Yin P, Liang HW, Chen YX. Ordered Intermetallic PtCu Catalysts Made from Pt@Cu Core/Shell Structures for Oxygen Reduction Reaction. Inorg Chem 2022; 61:15239-15246. [PMID: 36094398 DOI: 10.1021/acs.inorgchem.2c02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platinum-based ordered intermetallic compounds are promising low-Pt catalysts toward the oxygen reduction reaction (ORR) for high-performance fuel cells. However, the synthesis of ordered intermetallic catalysts usually requires high-temperature annealing to overcome the energy barrier for atom diffusion, which leads to inevitable sintering of catalysts and greatly reduced mass-specific activity. Herein, we developed a new strategy to synthesize PtCu-ordered intermetallic catalysts by the generation of the Pt@Cu core/shell nanoparticles (Pt@Cu NPs) by Pt-assisted H2 reduction of Cu2+ with subsequent annealing at 500-1000 °C. Compared to the commonly used wet-impregnation method, the core/shell structure starts to form ordered PtCu alloys at a lower annealing temperature (500 °C). The Pt@Cu core/shell structure avoids the necessary process of Cu atoms diffusing to Pt NPs across the carbon supports occurred during high-temperature annealing in the wet-impregnation method, which ensures the formation of PtCu NPs with higher ordering degree while annealing at the same temperature. The highly ordered small-sized PtCu catalysts prepared by the core/shell strategy exhibit higher mass activity and specific activity compared to those prepared by the wet-impregnation method. Moreover, a positive correlation between the ORR activity and the ordering degree of the intermetallic PtCu NPs is identified, which could be associated with the increase of compressive strain with the ordering degree.
Collapse
Affiliation(s)
- Xuxu Ye
- School of Chemistry and Materials Sciences, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ru-Yang Shao
- School of Chemistry and Materials Sciences, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng Yin
- School of Chemistry and Materials Sciences, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- School of Chemistry and Materials Sciences, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Xia Chen
- School of Chemistry and Materials Sciences, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
81
|
Song R, Han J, Okugawa M, Belosludov R, Wada T, Jiang J, Wei D, Kudo A, Tian Y, Chen M, Kato H. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production. Nat Commun 2022; 13:5157. [PMID: 36055985 PMCID: PMC9440032 DOI: 10.1038/s41467-022-32768-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Intermetallic compounds formed from non-precious transition metals are promising cost-effective and robust catalysts for electrochemical hydrogen production. However, the development of monolithic nanoporous intermetallics, with ample active sites and sufficient electrocatalytic activity, remains a challenge. Here we report the fabrication of nanoporous Co7Mo6 and Fe7Mo6 intermetallic compounds via liquid metal dealloying. Along with the development of three-dimensional bicontinuous open porosity, high-temperature dealloying overcomes the kinetic energy barrier, enabling the direct formation of chemically ordered intermetallic phases. Unprecedented small characteristic lengths are observed for the nanoporous intermetallic compounds, resulting from an intermetallic effect whereby the chemical ordering during nanopore formation lowers surface diffusivity and significantly suppresses the thermal coarsening of dealloyed nanostructure. The resulting ultrafine nanoporous Co7Mo6 exhibits high catalytic activity and durability in electrochemical hydrogen evolution reactions. This study sheds light on the previously unexplored intermetallic effect in dealloying and facilitates the development of advanced intermetallic catalysts for energy applications. Nanoscale intermetallic compounds are promising catalysts but the synthesis remains a challenge. The authors develop a dealloying technique to fabricate nanoporous intermetallic electrocatalysts with fine structures for efficient hydrogen production.
Collapse
Affiliation(s)
- Ruirui Song
- Institute for Materials Research, Tohoku University, Sendai, Japan.,Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jiuhui Han
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan. .,WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan. .,Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, China.
| | - Masayuki Okugawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Mathematics for Advanced Materials Open Innovation Laboratory, AIST, Sendai, Japan
| | | | - Takeshi Wada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Jing Jiang
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Daixiu Wei
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Akira Kudo
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Yuan Tian
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Hidemi Kato
- Institute for Materials Research, Tohoku University, Sendai, Japan.
| |
Collapse
|
82
|
Lei P, Zou N, Liu Y, Cai W, Wu M, Tang W, Zhong H. Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. J Environ Sci (China) 2022; 119:78-92. [PMID: 35934468 DOI: 10.1016/j.jes.2022.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Nan Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yujiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough Ontario, K9L 0G2, Canada.
| |
Collapse
|
83
|
Gautam A, Sk S, Pal U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys Chem Chem Phys 2022; 24:20638-20673. [PMID: 36047908 DOI: 10.1039/d2cp02089k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Amit Gautam
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
84
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Ultrathin Pd‐based Perforated Nanosheets for Fuel Cells Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingchun Guo
- West Anhui University Department of Experimental and Practical Teaching Management Yunlu Bridge 237012 Lu'an CHINA
| | - Shilong Jiao
- Henan University School of Materials, Key Lab for Special Functional Materials of Ministry of Education CHINA
| | - Xiuying Ya
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huiling Zheng
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Ran Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Jiao Yu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huanyu Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Zhilin Zhang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Wei Liu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Congxiao He
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Xucheng Fu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| |
Collapse
|
85
|
Zhu D, Zheng K, Qiao J, Xu H, Chen C, Zhang P, Shen C. One-step synthesis of PdCu@Ti 3C 2 with high catalytic activity in the Suzuki-Miyaura coupling reaction. NANOSCALE ADVANCES 2022; 4:3362-3369. [PMID: 36131714 PMCID: PMC9417861 DOI: 10.1039/d2na00327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to their enhanced catalytic stability and cyclability, two-dimensional (2D) material-supported Pd-based bimetallic alloys have promising applications for catalytic reactions. Furthermore, the alloying strategy can effectively reduce costs and improve catalytic performance. In this paper, we report a one-step reduction method to synthesize a novel heterogeneous catalyst, PdCu@Ti3C2, with good catalytic performance. The composition and structure of the as-prepared catalyst were characterized by inductively coupled plasma-mass spectrometry (ICP-MS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The catalyst particles, which were identified as a PdCu bimetallic alloy, exhibited good dispersion on the substrate. The performance of the catalyst in the Suzuki-Miyaura coupling reaction was studied, and the results showed that PdCu@Ti3C2 had excellent catalytic activity, similar to that of homogeneous Pd catalysts such as Pd(PPh3)4. Moreover, the prepared catalyst could be reused at least 10 times in the Suzuki-Miyaura coupling reaction with high yield.
Collapse
Affiliation(s)
- Dancheng Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| | - Kai Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| | - Jun Qiao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| | - Hao Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| | - Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015 China
| |
Collapse
|
86
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
87
|
Song TW, Chen MX, Yin P, Tong L, Zuo M, Chu SQ, Chen P, Liang HW. Intermetallic PtFe Electrocatalysts for the Oxygen Reduction Reaction: Ordering Degree-Dependent Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202916. [PMID: 35810451 DOI: 10.1002/smll.202202916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Platinum-based atomically ordered alloys (i.e., intermetallic compounds) have distinct advantages over disordered solid solution counterparts in boosting the cathodic oxygen-reduction reaction (ORR) in proton-exchange-membrane fuel cells. Nevertheless, the pivotal role of ordering degree of intermetallic catalysts in promoting ORR performance has been ignored heavily so far, probably owing to the lack of synthetic routes for controlling the ordering degree, especially for preparing highly ordered intermetallic catalysts. Herein, a family of intermetallic PtFe catalysts with similar particle size of 3-4 nm but varied ordering degree in a wide range of 10-70% are prepared. After constructing the PtFe/Pt core/shell structure with around 3 Pt-layer skin, a positive correlation between the ordering degree of the intermetallic catalysts and their ORR activity and durability is identified. Notably, the highly ordered PtFe/Pt catalyst exhibits a high mass activity of 0.92 A mgPt -1 at 0.9 ViR-corrected as cathode catalyst in H2 -O2 fuel cell, with only 24% loss after accelerated durability tests. The ordering degree-dependent performance can be ascribed to the compressive strain effect induced by the intermetallic PtFe core with smaller lattice parameters, and the more thermodynamically stable intermetallic structure compared to disordered alloys.
Collapse
Affiliation(s)
- Tian-Wei Song
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Qi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
88
|
Bhatia G, Jagirdar BR. Co-digestive ripening assisted phase-controlled synthesis of Ag-Sn intermetallic nanoparticles and their dye degradation activity. Dalton Trans 2022; 51:12147-12160. [PMID: 35876754 DOI: 10.1039/d2dt01438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ag-Sn based system in the nano-size regime is one of the strongest candidates for lead-free solders. Besides, the investigation of several other applications of Ag-Sn nanostructures, especially in catalysis, remains scarce which makes it an interesting system to synthesize and explore its chemistry. In this report, nearly monodisperse ε-Ag3Sn intermetallic nanoparticles were prepared by a simple and convenient solution-based process of co-digestive ripening using Ag and Sn colloids obtained by the solvated metal atom dispersion (SMAD) method. Optimization of the temperature and stoichiometric ratio between the metal elements and the use of an appropriate capping agent are crucial factors to realise phase pure intermetallic nanoparticles. Ag3Sn nanoparticles with a size of 3.8 nm ± 0.6 nm were obtained within 12 h of reaction when tri-n-octylphosphine/tri-n-octylphosphine oxide was used as the capping agent at 205 °C. Interestingly, Ag3Sn@SnOx core-shell nanostructures were obtained by changing the capping agent to palmitic acid. These nanostructures were thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM and STEM-EDS), X-ray photoelectron spectroscopy and optical spectroscopy. Thereafter, Ag and Ag3Sn nanoparticles were utilized for photocatalytic degradation of methylene blue, methyl orange and a mixture of both the dyes.
Collapse
Affiliation(s)
- Geetanjali Bhatia
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
89
|
Gao R, Zhang M, Liu Y, Xie S, Deng J, Ke X, Jing L, Hou Z, Zhang X, Liu F, Dai H. Engineering Platinum Catalysts via a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9672-9682. [PMID: 35728271 DOI: 10.1021/acs.est.2c00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pt-based catalysts can be poisoned by the chlorine formed during the oxidation of multicomponent volatile organic compounds (VOCs) containing chlorinated VOCs. Improving the low-temperature chlorine resistance of catalysts is important for industrial applications, although it is yet challenging. We hereby demonstrate the essential catalytic roles of a bifunctional catalyst with an atomic-scale metal/oxide interface constructed by an intermetallic compound nanocrystal. Introducing trichloroethylene (TCE) exhibits a less negative effect on the catalytic activity of the bimetallic catalyst for o-xylene oxidation, and the partial deactivation caused by TCE addition is reversible, suggesting that the bimetallic, HCl-etched Pt3Sn(E)/CeO2 catalyst possesses much stronger chlorine resistance than the conventional Pt/CeO2 catalyst. On the site-isolated Pt-Sn catalyst, the presence of aromatic hydrocarbon significantly inhibits the adsorption strength of TCE, resulting in excellent catalytic stability in the oxidation of the VOC mixture. Furthermore, the large amount of surface-adsorbed oxygen species generated on the electronegative Pt is highly effective for low-temperature C-Cl bond dissociation. The adjacent promoter (Sn-O) possesses the functionality of acid sites to provide sufficient protons for HCl formation over the bifunctional catalyst, which is considered critical to maintaining the reactivity of Pt by removing Cl and decreasing the polychlorinated byproducts.
Collapse
Affiliation(s)
- Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Manchen Zhang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxing Ke
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xing Zhang
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
90
|
Extension of Inducing Effect of Support Coordination on Ni-based Ordered Alloys Catalyst for Selective Hydrogenation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
91
|
Wang K, Wang L, Yao Z, Zhang L, Zhang L, Yang X, Li Y, Wang YG, Li Y, Yang F. Kinetic diffusion-controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis. SCIENCE ADVANCES 2022; 8:eabo4599. [PMID: 35731880 PMCID: PMC9217091 DOI: 10.1126/sciadv.abo4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 05/25/2023]
Abstract
Intermetallic catalysts are of immense interest, but how heterometals diffuse and related interface structure remain unclear when there exists a strong metal-support interaction. Here, we developed a kinetic diffusion-controlled method and synthesized intermetallic Pt2Mo nanocrystals with twin boundaries on mesoporous carbon (Pt2Mo/C). The formation of small-sized twinned intermetallic nanocrystals is associated with the strong Mo-C interaction-induced slow Mo diffusion and the heterogeneity of alloying, which is revealed by an in situ aberration-corrected transmission electron microscope (TEM) at high temperature. The twinned Pt2Mo/C constitutes a promising CO-resistant catalyst for highly selective hydrogenation of nitroarenes. Theoretical calculations and environmental TEM suggest that the weakened CO adsorption over Pt sites of Pt2Mo twin boundaries and their local region endows them with high CO resistance, selectivity, and reusability. The present strategy paves the way for tailoring the interface structure of high-melting point Mo/W-based intermetallic nanocrystals that proved to be important for the industrially viable reactions.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Yao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingbo Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang-Gang Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Shenzhen Institute, Shenzhen 518057, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518055, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
92
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
93
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
94
|
Chen M, Liu Y, Song T, Wei R, Zhuang X, Yang Y, Liang H. Intermetallic
PdCd
core promoting
CO
tolerance of Pd shell for electrocatalytic formic acid oxidation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Xi Chen
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yue Liu
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Tian‐Wei Song
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Rui‐Lin Wei
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Xiao‐Dong Zhuang
- The Meso‐Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan RD Shanghai 200240 China
| | - Yao‐Yue Yang
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Hai‐Wei Liang
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
95
|
Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63991-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
96
|
Chen MX, Luo X, Song TW, Jiang B, Liang HW. Ordering Degree-Dependent Activity of Pt 3M (M = Fe, Mn) Intermetallic Nanoparticles for Electrocatalytic Methanol Oxidation. J Phys Chem Lett 2022; 13:3549-3555. [PMID: 35420438 DOI: 10.1021/acs.jpclett.2c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically ordered intermetallic alloys with unique electronic and geometrical structures are highly attractive for heterogeneous catalysis and electrocatalysis. However, the formation of intermetallic phases generally requires high-temperature annealing to overcome the kinetic energy barrier of atom ordering, which unfortunately causes high material heterogeneity and thus makes it challenging to identify the exact contribution of ordered structures to the improved performance. Here, we prepared a family of small-sized intermetallic core/shell Pt3M@Pt (M = Mn or Fe) catalysts with varied ordering degree by a high-temperature sulfur-confined method. We identified a strong correlation between the ordering degree of the intermetallic Pt3M core of the catalysts and their electrocatalytic activity for the methanol oxidation reaction. Density functional theory calculations show that the intermetallic Pt3M core induces a compressive strain on the Pt-skin, which weakens the CO* binding, lowers the free energy change from CO* to COOH*, and therefore promotes electrocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Ming-Xi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xuan Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian-Wei Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
97
|
Jiao WZ, Yin P, Tong L, Xu SL, Ma CS, Zuo LJ, Wang A, Liang HW. Pentacoordinate Al 3+ Sites Anchoring Synthesis of Palladium Intermetallic Catalysts on Al 2O 3 Supports. Inorg Chem 2022; 61:6706-6710. [DOI: 10.1021/acs.inorgchem.2c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Zhong Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Peng Yin
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Song Ma
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lu-Jie Zuo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ao Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
98
|
Lv H, Qin H, Ariga K, Yamauchi Y, Liu B. A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angew Chem Int Ed Engl 2022; 61:e202116179. [PMID: 35146860 PMCID: PMC9311168 DOI: 10.1002/anie.202116179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 12/25/2022]
Abstract
We report a general concurrent template strategy for precise synthesis of mesoporous Pt-/Pd-based intermetallic nanoparticles with desired morphology and ordered mesostructure. The concurrent template not only supplies a mesoporous metal seed for re-crystallization growth of atomically ordered intermetallic phases with unique atomic stoichiometry but also provides a nanoconfinement environment for nanocasting synthesis of mesoporous nanoparticles with ordered mesostructure and rhombic dodecahedral morphology under elevated temperature. Using the selective hydrogenation of 3-nitrophenylacetylene as a proof-of-concept catalytic reaction, mesoporous intermetallic PtSn nanoparticles exhibited remarkably controllable intermetallic phase-dependent catalytic selectivity and excellent catalytic stability. This work provides a very powerful strategy for precise preparation of ordered mesoporous intermetallic nanocrystals for application in selective catalysis and fuel cell electrocatalysis.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan UniversityChengdu610064China
| | - Huaiyu Qin
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan UniversityChengdu610064China
| | - Katsuhiko Ariga
- JST-ERATO Yamauchi Materials Space-Tectonics ProjectInternational Research Centre for Materials Nanoarchitechtonics (WPI-MANA)National Institute for Materials Science (NIMS)1-1 Namiki, TsukubaIbaraki305-0044Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics ProjectInternational Research Centre for Materials Nanoarchitechtonics (WPI-MANA)National Institute for Materials Science (NIMS)1-1 Namiki, TsukubaIbaraki305-0044Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)School of Chemical EngineeringThe University of QueenslandBrisbaneQLD 4072Australia
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationCollege of ChemistrySichuan UniversityChengdu610064China
| |
Collapse
|
99
|
Chen X, Zhang S, Li C, Liu Z, Sun X, Cheng S, Zakharov DN, Hwang S, Zhu Y, Fang J, Wang G, Zhou G. Composition-dependent ordering transformations in Pt-Fe nanoalloys. Proc Natl Acad Sci U S A 2022; 119:e2117899119. [PMID: 35344429 PMCID: PMC9168936 DOI: 10.1073/pnas.2117899119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceDynamically understanding the microscopic processes governing ordering transformations has rarely been attained. The situation becomes even more challenging for nanoscale alloys, where the significantly increased surface-area-to-volume ratio not only opens up a variety of additional freedoms to initiate an ordering transformation but also allows for kinetic interplay between the surface and bulk due to their close proximity. We provide direct evidence of the microscopic processes controlling the ordering transformation through the surface-bulk interplay in Pt-Fe nanoalloys and new features rendered by variations in alloy composition and chemical stimuli. These results provide a mechanistic detail of ordering transformation phenomena which are widely relevant to nanoalloys as chemical ordering occurs in most multicomponent materials under suitable environmental bias.
Collapse
Affiliation(s)
- Xiaobo Chen
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, NY 13902
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902
| | - Siming Zhang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - Zhijuan Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973
| | - Xianhu Sun
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, NY 13902
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902
| | - Shaobo Cheng
- Department of Condensed Matter Physics and Materials, Brookhaven National Laboratory, Upton, NY 11973
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Dmitri N. Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973
| | - Yimei Zhu
- Department of Condensed Matter Physics and Materials, Brookhaven National Laboratory, Upton, NY 11973
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
| | - Guangwen Zhou
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, NY 13902
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902
| |
Collapse
|
100
|
Chen W, Luo S, Sun M, Tang M, Fan X, Cheng Y, Wu X, Liao Y, Huang B, Quan Z. Hexagonal PtBi Intermetallic Inlaid with Sub-Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107803. [PMID: 35212141 DOI: 10.1002/smll.202107803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Engineering multicomponent nanocatalysts is effective to improve electrocatalysis in many applications, yet it remains a challenge in constructing well-defined multimetallic active sites at the atomic level. Herein, the surface inlay of sub-monolayer Pb oxyhydroxide onto hexagonal PtBi intermetallic nanoplates with intrinsically isolated Pt atoms to boost the methanol oxidation reaction (MOR) is reported. The well-defined PtBi@6.7%Pb nanocatalyst exhibits 4.0 and 7.4 times higher mass activity than PtBi nanoplates and commercial Pt/C catalyst toward MOR in the alkaline electrolyte at 30 °C. Meanwhile, it also achieves a record-high mass activity of 51.07 A mg-1 Pt at direct methanol fuel cells operation temperature of 60 °C. DFT calculations reveal that the introduction of Pb oxyhydroxide on the surface not only promotes the electron transfer efficiency but also suppresses the CO poisoning effect, and the efficient p-d coupling optimizes the electroactivity of PtBi@6.7%Pb nanoplates toward the MOR process with low reaction barriers. This work offers a nanoengineering strategy to effectively construct and modulate multimetallic nanocatalysts to improve the electroactivity toward the MOR in future research.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Shuiping Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Min Tang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaokun Fan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yu Cheng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaoyu Wu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yujia Liao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|