51
|
He X, Jiang H, Li J, Ma Y, Fu B, Hu C. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101388. [PMID: 34173337 DOI: 10.1002/smll.202101388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s-1 ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO2 /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.
Collapse
Affiliation(s)
- Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
52
|
Cafarelli A, Marino A, Vannozzi L, Puigmartí-Luis J, Pané S, Ciofani G, Ricotti L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS NANO 2021; 15:11066-11086. [PMID: 34251189 PMCID: PMC8397402 DOI: 10.1021/acsnano.1c03087] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 05/19/2023]
Abstract
Electrical stimulation has shown great promise in biomedical applications, such as regenerative medicine, neuromodulation, and cancer treatment. Yet, the use of electrical end effectors such as electrodes requires connectors and batteries, which dramatically hamper the translation of electrical stimulation technologies in several scenarios. Piezoelectric nanomaterials can overcome the limitations of current electrical stimulation procedures as they can be wirelessly activated by external energy sources such as ultrasound. Wireless electrical stimulation mediated by piezoelectric nanoarchitectures constitutes an innovative paradigm enabling the induction of electrical cues within the body in a localized, wireless, and minimally invasive fashion. In this review, we highlight the fundamental mechanisms of acoustically mediated piezoelectric stimulation and its applications in the biomedical area. Yet, the adoption of this technology in a clinical practice is in its infancy, as several open issues, such as piezoelectric properties measurement, control of the ultrasound dose in vitro, modeling and measurement of the piezo effects, knowledge on the triggered bioeffects, therapy targeting, biocompatibility studies, and control of the ultrasound dose delivered in vivo, must be addressed. This article explores the current open challenges in piezoelectric stimulation and proposes strategies that may guide future research efforts in this field toward the translation of this technology to the clinical scene.
Collapse
Affiliation(s)
- Andrea Cafarelli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Attilio Marino
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Lorenzo Vannozzi
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Josep Puigmartí-Luis
- Departament
de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Salvador Pané
- Multi-Scale
Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems
(IRIS), ETH Zurich, 8092 Zurich, Switzerland
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
- Tel: +39 050 883074. Mobile: +39 366 6868242.
| |
Collapse
|
53
|
Hall HJ, McDaniel S, Shah P, Torres D, Figueroa J, Starman L. Photothermal Optical Beam Steering Using Large Deformation Multi-Layer Thin Film Structures. MICROMACHINES 2021; 12:mi12040428. [PMID: 33919730 PMCID: PMC8070700 DOI: 10.3390/mi12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Photothermal actuation of microstructures remains an active area of research for microsystems that demand electrically isolated, remote, on-chip manipulation. In this study, large-deformation structures constructed from thin films traditional to microsystems were explored through both simulation and experiment as a rudimentary means to both steer and shape an incident light beam through photothermal actuation. A series of unit step infrared laser exposures were applied at increasing power levels to both uniformly symmetric and deliberately asymmetric absorptive structures with the intent of characterizing the photothermal tilt response. The results indicate that a small angle (<4° at ~74 W/cm2) mechanical tilt can be instantiated through central placement of an infrared beam, although directional control appears highly sensitive to initial beam placement. Greater responsivity (up to ~9° mechanical tilt at ~54 W/cm2) and gross directional control was demonstrated with an asymmetrical absorptive design, although this response was accompanied by a large amount (~5–10°) of mechanical tilt burn-in and drift. Rigorous device cycling remains to be explored, but the results suggest that these structures, and those similar in construction, can be further matured to achieve controllable photoactuation suitable for optical beam control or other applications.
Collapse
Affiliation(s)
- Harris J. Hall
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA; (S.M.); (D.T.); (L.S.)
- Correspondence:
| | - Sean McDaniel
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA; (S.M.); (D.T.); (L.S.)
| | - Piyush Shah
- Apex Microdevices LLC, West Chester, OH 45431, USA;
| | - David Torres
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA; (S.M.); (D.T.); (L.S.)
| | | | - LaVern Starman
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA; (S.M.); (D.T.); (L.S.)
| |
Collapse
|
54
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
55
|
Moran JL, Wheat PM, Marine NA, Posner JD. Chemokinesis-driven accumulation of active colloids in low-mobility regions of fuel gradients. Sci Rep 2021; 11:4785. [PMID: 33637781 PMCID: PMC7910604 DOI: 10.1038/s41598-021-83963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Many motile cells exhibit migratory behaviors, such as chemotaxis (motion up or down a chemical gradient) or chemokinesis (dependence of speed on chemical concentration), which enable them to carry out vital functions including immune response, egg fertilization, and predator evasion. These have inspired researchers to develop self-propelled colloidal analogues to biological microswimmers, known as active colloids, that perform similar feats. Here, we study the behavior of half-platinum half-gold (Pt/Au) self-propelled rods in antiparallel gradients of hydrogen peroxide fuel and salt, which tend to increase and decrease the rods' speed, respectively. Brownian Dynamics simulations, a Fokker-Planck theoretical model, and experiments demonstrate that, at steady state, the rods accumulate in low-speed (salt-rich, peroxide-poor) regions not because of chemotaxis, but because of chemokinesis. Chemokinesis is distinct from chemotaxis in that no directional sensing or reorientation capabilities are required. The agreement between simulations, model, and experiments bolsters the role of chemokinesis in this system. This work suggests a novel strategy of exploiting chemokinesis to effect accumulation of motile colloids in desired areas.
Collapse
Affiliation(s)
- Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, USA.
| | - Philip M Wheat
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Nathan A Marine
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, USA. .,Department of Family Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
56
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
57
|
Wang Q, Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS NANO 2021; 15:149-174. [PMID: 33417764 DOI: 10.1021/acsnano.0c07753] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Untethered micro/nanorobots have been widely investigated owing to their potential in performing various tasks in different environments. The significant progress in this emerging interdisciplinary field has benefited from the distinctive features of those tiny active agents, such as wireless actuation, navigation under feedback control, and targeted delivery of small-scale objects. In recent studies, collective behaviors of these tiny machines have received tremendous attention because swarming agents can enhance the delivery capability and adaptability in complex environments and the contrast of medical imaging, thus benefiting the imaging-guided navigation and delivery. In this review, we summarize the recent research efforts on investigating collective behaviors of external power-driven micro/nanorobots, including the fundamental understanding of swarm formation, navigation, and pattern transformation. The fundamental understanding of swarming tiny machines provides the foundation for targeted delivery. We also summarize the swarm localization using different imaging techniques, including the imaging-guided delivery in biological environments. By highlighting the critical steps from understanding the fundamental interactions during swarm control to swarm localization and imaging-guided delivery applications, we envision that the microrobotic swarm provides a promising tool for delivering agents in an active, controlled manner.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
58
|
|
59
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
60
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
61
|
Xing Y, Du X, Xu T, Zhang X. Janus dendritic silica/carbon@Pt nanomotors with multiengines for H 2O 2, near-infrared light and lipase powered propulsion. SOFT MATTER 2020; 16:9553-9558. [PMID: 32969461 DOI: 10.1039/d0sm01355b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid micro/nanomotors with multiple distinct propulsion modes are expected to improve their motion ability in complex body fluids. Herein, we report a multi-stimuli propelled Janus lipase-modified dendritic silica/carbon@Pt (DMS/C@Pt) nanomotor with built-in engines for hybrid propulsions of H2O2, light, and enzyme. The enhanced motion of the DMS/C@Pt nanomotor is achieved under the stimulus of H2O2 that produces an oxygen concentration gradient derived from the asymmetric catalysis of Pt nanoparticles. Irradiated with near-infrared (NIR) light, the uneven photothermal effect of the carbon part propels this nanomotor by self-thermophoresis. Besides, lipase is efficiently loaded into the dendritic pores, which decomposes triglyceride on the silica part and induces self-diffusiophoretic propulsion. These multiple propulsions shed light on the rational integration of various functional building blocks into one micro/nanomotor for complex tasks in biomedical applications.
Collapse
Affiliation(s)
- Yi Xing
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xin Du
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
62
|
Salinas G, Pavel I, Sojic N, Kuhn A. Electrochemistry‐Based Light‐Emitting Mobile Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS Bordeaux INP, ISM, UMR 5255 33607 Pessac France
| |
Collapse
|
63
|
Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal–Organic Frameworks in Motion. Chem Rev 2020; 120:11175-11193. [DOI: 10.1021/acs.chemrev.0c00535] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - James D. Nicholas
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
64
|
Terzopoulou A, Wang X, Chen X, Palacios‐Corella M, Pujante C, Herrero‐Martín J, Qin X, Sort J, deMello AJ, Nelson BJ, Puigmartí‐Luis J, Pané S. Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs). Adv Healthc Mater 2020; 9:e2001031. [PMID: 32902185 DOI: 10.1002/adhm.202001031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Microrobots and metal-organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF-based small-scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro- and nanoswimmers including small-scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selective degradation in cell cultures is reported for the first time. The MOF used in the investigations does not only allow a superior loading of chemotherapeutic drugs and their controlled release via a pH-responsive degradation but it also enables the controlled locomotion of enzymatically biodegradable gelatin-based helical microrobots under magnetic fields. The degradation of the integrated MOFBOT is observed after two weeks, when all its components fully degrade. Additionally, drug delivery studies performed in cancer cell cultures show reduced viability upon delivery of Doxorubicin within short time frames. This MOFBOT system opens new avenues for highly integrated fully biodegradable small-scale robots.
Collapse
Affiliation(s)
- Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Xiang‐Zhong Chen
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Mario Palacios‐Corella
- Instituto de Ciencia Molecular Universidad de Valencia Catedratico Jose Beltran 2 Paterna 46980 Spain
| | - Carlos Pujante
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1‐5/10 Zurich 8093 Switzerland
| | | | - Xiao‐Hua Qin
- Institute for Biomechanics ETH Zurich Leopold‐Ruzicka‐Weg 4 Zurich 8093 Switzerland
| | - Jordi Sort
- Departament de Física Universitat Autonoma de Barcelona Cerdanyola del Valles Barcelona 08193 Spain
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1‐5/10 Zurich 8093 Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional Barcelona 08028 Spain
- ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| |
Collapse
|
65
|
Cabanach P, Pena-Francesch A, Sheehan D, Bozuyuk U, Yasa O, Borros S, Sitti M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003013. [PMID: 32864804 PMCID: PMC7610461 DOI: 10.1002/adma.202003013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 05/19/2023]
Abstract
Microrobots offer transformative solutions for non-invasive medical interventions due to their small size and untethered operation inside the human body. However, they must face the immune system as a natural protection mechanism against foreign threats. Here, non-immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Fully zwitterionic photoresists are developed for two-photon polymerization 3D microprinting of hydrogel microrobots with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (>90 hours), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Collapse
Affiliation(s)
- Pol Cabanach
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Abdon Pena-Francesch
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; Department of Materials Science and Engineering Robotics Institute University of Michigan Ann Arbor, MI 48109, USA
| | - Devin Sheehan
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Oncay Yasa
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany
| | - Salvador Borros
- Grup d‘Enginyeria de Materials Institut Químic de Sarrià Universitat Ramon Llull Barcelona 08017, Spain
| | - Metin Sitti
- Physical Intelligence Department Max Planck Institute for Intelligent Systems Stuttgart 70569, Germany; School of Medicine and School of Engineering Koç University Istanbul 34450, Turkey; Institute for Biomedical Engineering ETH Zurich Zurich 8092, Switzerland
| |
Collapse
|
66
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
67
|
Voß J, Wittkowski R. On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. NANOSCALE ADVANCES 2020; 2:3890-3899. [PMID: 36132771 PMCID: PMC9417689 DOI: 10.1039/d0na00099j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
We address the propulsion mechanism of ultrasound-propelled nano- and microparticles that are exposed to a traveling ultrasound wave. Based on direct computational fluid dynamics simulations, we study the effect of two important aspects of the particle shape on the propulsion: rounded vs. pointed and filled vs. hollow shapes. We also study the flow field generated around such particles. Our results reveal that pointedness leads to an increase of the propulsion speed, whereas it is not significantly affected by hollowness. Furthermore, we show that the flow field near to ultrasound-propelled particles can look similar to the flow field generated by pusher squirmers.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| |
Collapse
|
68
|
Hernández RJ, Sevilla FJ, Mazzulla A, Pagliusi P, Pellizzi N, Cipparrone G. Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam. SOFT MATTER 2020; 16:7704-7714. [PMID: 32734983 DOI: 10.1039/c9sm02404b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the emergence of circular collective motion in a system of spherical light-propelled Brownian particles. Light-propulsion occurs as consequence of the coupling between the chirality of polymeric particles - left (L)- or right (R)-type - and the circularly-polarized light that irradiates them. Irradiation with light that has the same helicity as the particle material leads to a circular cooperative vortical motion between the chiral Brownian particles. In contrast, opposite circular-polarization does not induce such coupling among the particles but only affects their Brownian motion. The mean angular momentum of each particle has a value and sign that distinguishes between chiral activity dynamics and typical Brownian motion. These outcomes have relevant implications for chiral separation technologies and provide new strategies for optical torque tunability in mesoscopic optical array systems, micro- and nanofabrication of light-activated engines with selective control and collective motion.
Collapse
Affiliation(s)
- Raúl Josué Hernández
- Cátedra CONACYT Consejo Nacional de Ciencia y Tecnología - Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510 Cd. de México, Mexico.
| | | | | | | | | | | |
Collapse
|
69
|
Peng X, Chen Z, Kollipara PS, Liu Y, Fang J, Lin L, Zheng Y. Opto-thermoelectric microswimmers. LIGHT, SCIENCE & APPLICATIONS 2020; 9:141. [PMID: 32864116 PMCID: PMC7429954 DOI: 10.1038/s41377-020-00378-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/26/2023]
Abstract
Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Yaoran Liu
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jie Fang
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
70
|
Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020; 12:E665. [PMID: 32679772 PMCID: PMC7407549 DOI: 10.3390/pharmaceutics12070665] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Micro/nanorobot, as a research field, has attracted interest in recent years. It has great potential in medical treatment, as it can be applied in targeted drug delivery, surgical operation, disease diagnosis, etc. Differently from traditional drug delivery, which relies on blood circulation to reach the target, the designed micro/nanorobots can move autonomously, which makes it possible to deliver drugs to the hard-to-reach areas. Micro/nanorobots were driven by exogenous power (magnetic fields, light energy, acoustic fields, electric fields, etc.) or endogenous power (chemical reaction energy). Cell-based micro/nanorobots and DNA origami without autonomous movement ability were also introduced in this article. Although micro/nanorobots have excellent prospects, the current research is mainly based on in vitro experiments; in vivo research is still in its infancy. Further biological experiments are required to verify in vivo drug delivery effects of micro/nanorobots. This paper mainly discusses the research status, challenges, and future development of micro/nanorobots.
Collapse
Affiliation(s)
- Mengyi Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wenwei Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xiuping Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| |
Collapse
|
71
|
Khalesi R, Nejat Pishkenari H, Vossoughi G. Independent control of multiple magnetic microrobots: design, dynamic modelling, and control. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00136-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020; 5:5/43/eaba6137. [DOI: 10.1126/scirobotics.aba6137] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.
Collapse
Affiliation(s)
- Songsong Tang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Fanan Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chuying Huang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
73
|
Wang Y, Liu Y, Li Y, Xu D, Pan X, Chen Y, Zhou D, Wang B, Feng H, Ma X. Magnetic Nanomotor-Based Maneuverable SERS Probe. RESEARCH 2020; 2020:7962024. [PMID: 32566931 PMCID: PMC7293755 DOI: 10.34133/2020/7962024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful sensing technique capable of capturing ultrasensitive fingerprint signal of analytes with extremely low concentration. However, conventional SERS probes are passive nanoparticles which are usually massively applied for biochemical sensing, lacking controllability and adaptability for precise and targeted sensing at a small scale. Herein, we report a "rod-like" magnetic nanomotor-based SERS probe (MNM-SP) that integrates a mobile and controllable platform of micro-/nanomotors with a SERS sensing technique. The "rod-like" structure is prepared by coating a thin layer of silica onto the self-assembled magnetic nanoparticles. Afterwards, SERS hotspots of silver nanoparticles (AgNPs) are decorated as detecting nanoprobes. The MNM-SPs can be navigated on-demand to avoid obstacles and target sensing sites by the guidance of an external gradient magnetic field. Through applying a rotating magnetic field, the MNM-SPs can actively rotate to efficiently stir and mix surrounding fluid and thus contact with analytes quickly for SERS sensing. Innovatively, we demonstrate the self-cleaning capability of the MNM-SPs which can be used to overcome the contamination problem of traditional single-use SERS probes. Furthermore, the MNM-SPs could precisely approach the targeted single cell and then enter into the cell by endocytosis. It is worth mentioning that by the effective mixing of intracellular biocomponents, much more informative Raman signals with improved signal-to-noise ratio can be captured after active rotation. Therefore, the demonstrated magnetically activated MNM-SPs that are endowed with SERS sensing capability pave way to the future development of smart sensing probes with maneuverability for biochemical analysis at the micro-/nanoscale.
Collapse
Affiliation(s)
- Yong Wang
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yuhuan Liu
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yang Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Dandan Xu
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xi Pan
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yuduo Chen
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Dekai Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanhuan Feng
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
74
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
75
|
Li D, Liu C, Yang Y, Wang L, Shen Y. Micro-rocket robot with all-optic actuating and tracking in blood. LIGHT, SCIENCE & APPLICATIONS 2020; 9:84. [PMID: 32411369 PMCID: PMC7214411 DOI: 10.1038/s41377-020-0323-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 05/10/2023]
Abstract
Micro/nanorobots have long been expected to reach all parts of the human body through blood vessels for medical treatment or surgery. However, in the current stage, it is still challenging to drive a microrobot in viscous media at high speed and difficult to observe the shape and position of a single microrobot once it enters the bloodstream. Here, we propose a new micro-rocket robot and an all-optic driving and imaging system that can actuate and track it in blood with microscale resolution. To achieve a high driving force, we engineer the microrobot to have a rocket-like triple-tube structure. Owing to the interface design, the 3D-printed micro-rocket can reach a moving speed of 2.8 mm/s (62 body lengths per second) under near-infrared light actuation in a blood-mimicking viscous glycerol solution. We also show that the micro-rocket robot is successfully tracked at a 3.2-µm resolution with an optical-resolution photoacoustic microscope in blood. This work paves the way for microrobot design, actuation, and tracking in the blood environment, which may broaden the scope of microrobotic applications in the biomedical field.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Yuanyuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
76
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
77
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
78
|
Rehor I, Maslen C, Moerman PG, van Ravensteijn BGP, van Alst R, Groenewold J, Eral HB, Kegel WK. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Robot 2020; 8:10-18. [PMID: 32320334 DOI: 10.1089/soro.2019.0169] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mimicking the locomotive abilities of living organisms on the microscale, where the downsizing of rigid parts and circuitry presents inherent problems, is a complex feat. In nature, many soft-bodied organisms (inchworm, leech) have evolved simple, yet efficient locomotion strategies in which reciprocal actuation cycles synchronize with spatiotemporal modulation of friction between their bodies and environment. We developed microscopic (∼100 μm) hydrogel crawlers that move in aqueous environment through spatiotemporal modulation of the friction between their bodies and the substrate. Thermo-responsive poly-n-isopropyl acrylamide hydrogels loaded with gold nanoparticles shrink locally and reversibly when heated photothermally with laser light. The out-of-equilibrium collapse and reswelling of the hydrogel is responsible for asymmetric changes in the friction between the actuating section of the crawler and the substrate. This friction hysteresis, together with off-centered irradiation, results in directional motion of the crawler. We developed a model that predicts the order of magnitude of the crawler motion (within 50%) and agrees with the observed experimental trends. Crawler trajectories can be controlled enabling applications of the crawler as micromanipulator that can push small cargo along a surface.
Collapse
Affiliation(s)
- Ivan Rehor
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Charlie Maslen
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
| | - Pepijn G Moerman
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bas G P van Ravensteijn
- Netherlands Organization for Applied Scientific Research (TNO), Materials Solutions, Eindhoven, The Netherlands
| | - Renee van Alst
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Jan Groenewold
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Huseyin Burak Eral
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Process and Energy Laboratory, 3ME Faculty, TU Delft, Delft, The Netherlands
| | - Willem K Kegel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
79
|
Dyck O, Lingerfelt D, Kim S, Jesse S, Kalinin SV. Direct matter disassembly via electron beam control: electron-beam-mediated catalytic etching of graphene by nanoparticles. NANOTECHNOLOGY 2020; 31:245303. [PMID: 32160595 DOI: 10.1088/1361-6528/ab7ef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report electron-beam activated motion of a catalytic nanoparticle along a graphene step edge and associated etching of the edge. The catalytic hydrogenation process was observed to be activated by a combination of elevated temperature and electron beam irradiation. Reduction of beam fluence on the particle was sufficient to stop the process, leading to the ability to switch on and off the etching. Such an approach enables the targeting of individual nanoparticles to induce motion and beam-controlled etching of matter through activated electrocatalytic processes. The applications of electron-beam control as a paradigm for molecular-scale robotics are discussed.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | | | | | | | | |
Collapse
|
80
|
Liu J, Ruan H. Modeling of an acoustically actuated artificial micro-swimmer. BIOINSPIRATION & BIOMIMETICS 2020; 15:036002. [PMID: 31923908 DOI: 10.1088/1748-3190/ab6a61] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some recent achievements in microfabrication have demonstrated ultrasound-actuated artificial micro-swimmers for medical applications. However, the theoretical model of actuation and swimming is still lacking. Here we report a theoretical study of an acoustically actuated sperm-like artificial micro-swimmer which consists of a rigid head and a flexible flagellum. We provide the quantitative relation between head oscillation amplitude and acoustic pressure and frequency, and the theoretical account of how the flagellum is whipped, which brings about propulsion. The resistive force theory is employed in our model to relate the dynamic response of a flagellum and the motility of the swimmer. In order to make our theoretical model applicable in a realistic design of sperm-like micro-swimmer, we have involved the inertia term and material damping in the governing equation and considered the variable cross-section of a flagellum. The numerical results reveal that the micro-swimmer actuated by ultrasound can achieve a perceptible velocity, especially at resonance. Influences of non-dimensional parameters, such as the resonance index, sperm number, and material damping coefficient, are discussed and a comparison with experimental results demonstrates the validity of the proposed model.
Collapse
Affiliation(s)
- Jinan Liu
- Department of Mechanical Engineering, Research Center for Fluid-Structure Interactions, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | | |
Collapse
|
81
|
Performance Optimization of Polymer Fibre Actuators for Soft Robotics. Polymers (Basel) 2020; 12:polym12020454. [PMID: 32075203 PMCID: PMC7077620 DOI: 10.3390/polym12020454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Analytical modeling of soft pneumatic actuators constitutes a powerful tool for the systematic design and characterization of these key components of soft robotics. Here, we maximize the quasi-static bending angle of a soft pneumatic actuator by optimizing its cross-section for a fixed positive pressure inside it. We begin by formulating a general theoretical framework for the analytical calculation of the bending angle of pneumatic actuators with arbitrary cross-sections, which is then applied to an actuator made of a circular polymer tube and an asymmetric patch in the shape of a hollow-cylinder sector on its outer surface. It is shown that the maximal bending angle of this actuator can be achieved using a wide range of patches with different optimal dimensions and approximately the same cross-sectional area, which decreases with pressure. We also calculate the optimal dimensions of thin and small patches in thin pneumatic actuators. Our analytical results lead to clear design guidelines, which may prove useful for engineering and optimization of the key components of soft robotics with superior features.
Collapse
|
82
|
Abstract
Untethered synthetic microrobots have significant potential to revolutionize minimally invasive medical interventions in the future. However, their relatively slow speed and low controllability near surfaces typically are some of the barriers standing in the way of their medical applications. Here, we introduce acoustically powered microrobots with a fast, unidirectional surface-slipping locomotion on both flat and curved surfaces. The proposed three-dimensionally printed, bullet-shaped microrobot contains a spherical air bubble trapped inside its internal body cavity, where the bubble is resonated using acoustic waves. The net fluidic flow due to the bubble oscillation orients the microrobot's axisymmetric axis perpendicular to the wall and then propels it laterally at very high speeds (up to 90 body lengths per second with a body length of 25 µm) while inducing an attractive force toward the wall. To achieve unidirectional locomotion, a small fin is added to the microrobot's cylindrical body surface, which biases the propulsion direction. For motion direction control, the microrobots are coated anisotropically with a soft magnetic nanofilm layer, allowing steering under a uniform magnetic field. Finally, surface locomotion capability of the microrobots is demonstrated inside a three-dimensional circular cross-sectional microchannel under acoustic actuation. Overall, the combination of acoustic powering and magnetic steering can be effectively utilized to actuate and navigate these microrobots in confined and hard-to-reach body location areas in a minimally invasive fashion.
Collapse
|
83
|
Mou F, Li X, Xie Q, Zhang J, Xiong K, Xu L, Guan J. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator-Prey Interactions. ACS NANO 2020; 14:406-414. [PMID: 31860277 DOI: 10.1021/acsnano.9b05996] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by chasing-escaping behaviors of predator and swarming prey in nature, here we demonstrate a concept to create active micromotor systems from two species of passive microparticles with biomimetic predator-prey interactions. In this concept, the biomimetic predator-prey interactions are established in a binary particle system comprising the diffusiophoretic attractive microparticles (prey particles) and the diffusiophoretic repulsive ones (predator particles). In the absence of additional chemical fuels and external fields, the predator particles are attracted by and constantly chase the swarming prey particles, which, in response, escape from the former and show dynamic group reconfigurations because of the local repulsion. Based on this concept, various synthetic active micromotor systems have been demonstrated, including active ZnO-TiO2, Ag3PO4-TiO2, and ZnO-AgBr micromotor systems. As the predator and prey particles are powered by each other through the biomimetic predator-prey interactions, the concept proposed here provides an advanced method to develop not only a class of single micromotors powered by passive particles or "solid fuels" but also micromotor swarms capable of manipulating "moving cargo". In addition, it also illustrates a proof-of-concept implementation of intelligent micro/nanomotor systems composed of heterogeneous individuals with complementary or cooperative functions.
Collapse
Affiliation(s)
- Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Xiaofeng Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Qi Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Jianhua Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Kang Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , People's Republic of China
| |
Collapse
|
84
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
85
|
Lu X, Zhao K, Liu W, Yang D, Shen H, Peng H, Guo X, Li J, Wang J. A Human Microrobot Interface Based on Acoustic Manipulation. ACS NANO 2019; 13:11443-11452. [PMID: 31425653 DOI: 10.1021/acsnano.9b04930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micro/nanorobotic systems capable of targeted transporting and releasing hold considerable promise for drug delivery, cellular surgery, biosensing, nano assembling, etc. However, on-demand precise control of the micro/nanorobot movement remains a major challenge. In particular, a practical interface to realize instant and customized interactions between human and micro/nanorobots, which is quite essential for developing next generation intelligent micro/nanorobots, has seldom been explored. Here, we present a human-microrobot user interface to perform direct and agile recognition of user commands and signal conversion for driving the microrobot. The microrobot platform is built based on locally enhanced acoustic streaming which could precisely transport microparticles and cells along a given pathway, while the interface is enabled by tuning the actuation frequency and time with different instructions and inputs. Our numerical simulations and experimental demonstrations illustrate that microparticles can be readily transported along the path by the acoustic robotic system, due to the vibration-induced locally enhanced acoustic streaming and resultant propulsion force. The acoustic robotic platform allows large-scale parallel transportation for microparticles and cells along given paths. The human microrobot interface enables the micromanipulator to response promptly to the users' commands input by typing or music playing for accurate transport. For example, the music tone of a playing melody is used for manipulating a cancer cell to a targeted position. The interface offers several attractive capabilities, including tunable speed and orientation, quick response, considerable delivery capacities, high precision and favorable controllability. We expect that such interface will work as a compelling and versatile platform for myriad potential scenarios in transportation units of microrobots, single cell analysis instruments, lab-on-chip systems, microfactories, etc.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu 210016 , China
| | - Kangdong Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu 210016 , China
| | - Wenjuan Liu
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 211816 , China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Hui Shen
- State Key Laboratory of Mechanics and Control of Mechanical Structures , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu 210016 , China
| | - Hanmin Peng
- State Key Laboratory of Mechanics and Control of Mechanical Structures , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu 210016 , China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Jinxing Li
- Department of NanoEngineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Joseph Wang
- Department of NanoEngineering , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
86
|
Wang B, Ji F, Yu J, Yang L, Wang Q, Zhang L. Bubble-Assisted Three-Dimensional Ensemble of Nanomotors for Improved Catalytic Performance. iScience 2019; 19:760-771. [PMID: 31499337 PMCID: PMC6734180 DOI: 10.1016/j.isci.2019.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Combining catalysts with active colloidal matter could keep catalysts from aggregating, a major problem in chemical reactions. We report a kind of ensemble of bubble-cross-linked magnetic colloidal swarming nanomotors (B-MCS) with enhanced catalytic activity because of the local increase of the nanocatalyst concentration and three-dimensional (3D) fluid convection. Compared with the two-dimensional swarming collective without bubbles, the integral rotation was boosted because of the dynamic dewetting and increased slip length caused by the continuously ejected tiny bubbles. The bubbles cross-link the nanocatalysts and form stack along the vertical axis, generating the 3D network-like B-MCS ensemble with high dynamic stability and low drag resistance. The generated B-MCS ensemble exhibits controllable locomotion performance when applying a rotating magnetic field. Benefiting from locally increased catalyst concentration, good mobility, and 3D fluidic convection, the B-MCS ensemble offers a promising approach to heterogeneous catalysis.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiangfan Yu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Lidong Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China; Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
87
|
Iacovacci V, Blanc A, Huang H, Ricotti L, Schibli R, Menciassi A, Behe M, Pané S, Nelson BJ. High-Resolution SPECT Imaging of Stimuli-Responsive Soft Microrobots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900709. [PMID: 31304653 DOI: 10.1002/smll.201900709] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Untethered small-scale robots have great potential for biomedical applications. However, critical barriers to effective translation of these miniaturized machines into clinical practice exist. High resolution tracking and imaging in vivo is one of the barriers that limit the use of micro- and nanorobots in clinical applications. Here, the inclusion of radioactive compounds in soft thermoresponsive magnetic microrobots is investigated to enable their single-photon emission computed tomography imaging. Four microrobotic platforms differing in hydrogel structure and four 99m Tc[Tc]-based radioactive compounds are investigated in order to achieve optimal contrast agent retention and optimal imaging. Single microrobot imaging of structures as low as 100 µm in diameter, as well as tracking of shape switching from tubular to planar configurations by inclusion of 99m Tc[Tc] colloid in the hydrogel structure, is reported.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 50126, Italy
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
| | - Henwei Huang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 50126, Italy
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 50126, Italy
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
88
|
Pena-Francesch A, Giltinan J, Sitti M. Multifunctional and biodegradable self-propelled protein motors. Nat Commun 2019; 10:3188. [PMID: 31320630 PMCID: PMC6639312 DOI: 10.1038/s41467-019-11141-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
A diversity of self-propelled chemical motors, based on Marangoni propulsive forces, has been developed in recent years. However, most motors are non-functional due to poor performance, a lack of control, and the use of toxic materials. To overcome these limitations, we have developed multifunctional and biodegradable self-propelled motors from squid-derived proteins and an anesthetic metabolite. The protein motors surpass previous reports in performance output and efficiency by several orders of magnitude, and they offer control of their propulsion modes, speed, mobility lifetime, and directionality by regulating the protein nanostructure via local and external stimuli, resulting in programmable and complex locomotion. We demonstrate diverse functionalities of these motors in environmental remediation, microrobot powering, and cargo delivery applications. These versatile and degradable protein motors enable design, control, and actuation strategies in microrobotics as modular propulsion sources for autonomous minimally invasive medical operations in biological environments with air-liquid interfaces.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Joshua Giltinan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
| |
Collapse
|
89
|
Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q. Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23392-23400. [PMID: 31252507 DOI: 10.1021/acsami.9b07979] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer therapeutic strategy, which typically kills cancer cells through converting nontoxic oxygen into reactive oxygen species using photosensitizers (PSs). However, the existing PDTs are still limited by the tumor hypoxia and poor targeted accumulation of PSs. To address these challenges, we here report an acoustically powered and magnetically navigated red blood cell-mimicking (RBCM) micromotor capable of actively transporting oxygen and PS for enhanced PDT. The RBCM micromotors consist of biconcave RBC-shaped magnetic hemoglobin cores encapsulating PSs and natural RBC membrane shells. Upon exposure to an acoustic field, they are able to move in biological media at a speed of up to 56.5 μm s-1 (28.2 body lengths s-1). The direction of these RBCM micromotors can be navigated using an external magnetic field. Moreover, RBCM micromotors can not only avoid the serum fouling during the movement toward the targeted cancer cells but also possess considerable oxygen- and PS-carrying capacity. Such fuel-free RBCM micromotors provide a new approach for efficient and rapid active delivery of oxygen and PSs in a biofriendly manner for future PDT.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Hui Xie
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| |
Collapse
|
90
|
François Q, André A, Duplat B, Haliyo S, Régnier S. Tracking systems for intracranial medical devices: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/mds3.10033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quentin François
- Institute of Intelligent and Robotic Systems (ISIR) Sorbonne University Paris France
- Robeauté Paris France
| | - Arthur André
- Department of Neurosurgery La Pitié‐Salpêtrière Hospital Paris France
| | | | - Sinan Haliyo
- Institute of Intelligent and Robotic Systems (ISIR) Sorbonne University Paris France
| | - Stéphane Régnier
- Institute of Intelligent and Robotic Systems (ISIR) Sorbonne University Paris France
| |
Collapse
|
91
|
Zhang J, Mou F, Wu Z, Tang S, Xie H, You M, Liang X, Xu L, Guan J. Simple-Structured Micromotors Based on Inherent Asymmetry in Crystalline Phases: Design, Large-Scale Preparation, and Environmental Application. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16639-16646. [PMID: 30990654 DOI: 10.1021/acsami.9b03579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The key principle of designing a micro/nanomotor is to introduce asymmetry to a micro/nanoparticle. However, micro/nanomotors designed based on external asymmetry and inherent chemical and geometrical asymmetry usually suffer from tedious small-scale preparation, high cost, and/or complexity of external power and control devices, making them face insurmountable hurdles in practical applications. Herein, considering the possible distinct properties of different polymorphs, we propose a novel design strategy of simple-structured micromotors by introducing inherent asymmetry in crystalline phases. The inherent phase asymmetry can be easily introduced in spherical TiO2 particles by adjusting the calcination temperature to control the phase transition and growth of primary grains. The as-designed anatase/rutile TiO2 micromotors not only show efficient autonomous motions controlled by light in liquid media stemming from the asymmetric surface photocatalytic redox reactions but also have a promising application in environmental remediation due to their high photocatalytic activity in "on-the-fly" degradation of organic pollutants, facile large-scale fabrication, and low cost. The proposed design strategy may pave the way for the large-scale productions and applications of micro/nanomotors.
Collapse
Affiliation(s)
- Jianhua Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Zhen Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Shaowen Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Huarui Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Xiong Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , 122 Luoshi Road , Wuhan 430070 , China
| |
Collapse
|
92
|
Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H. Catalytic antimicrobial robots for biofilm eradication. Sci Robot 2019; 4:eaaw2388. [PMID: 31531409 PMCID: PMC6748647 DOI: 10.1126/scirobotics.aaw2388] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetically driven robots can perform complex functions in biological settings with minimal destruction. However, robots designed to damage deleterious biostructures could also have important impact. In particular, there is an urgent need for new strategies to eradicate bacterial biofilms as we approach a post-antibiotic era. Biofilms are intractable and firmly attached structures ubiquitously associated with drug-resistant infections and destruction of surfaces. Existing treatments are inadequate to both kill and remove bacteria leading to reinfection. Here we design catalytic antimicrobial robots (CARs) that precisely and controllably kill, degrade and remove biofilms with remarkable efficiency. CARs exploit iron oxide nanoparticles (NPs) with dual catalytic-magnetic functionality that (i) generate bactericidal free radicals, (ii) breakdown the biofilm exopolysaccharide (EPS) matrix, and (iii) remove the fragmented biofilm debris via magnetic field driven robotic assemblies. We develop two distinct CAR platforms. The first platform, the biohybrid CAR, is formed from NPs and biofilm degradation products. After catalytic bacterial killing and EPS disruption, magnetic field gradients assemble NPs and the biodegraded products into a plow-like superstructure. When driven with an external magnetic field, the biohybrid CAR completely removes biomass in a controlled manner, preventing biofilm regrowth. Biohybrid CARs can be swept over broad swathes of surface or can be moved over well-defined paths for localized removal with microscale precision. The second platform, the 3D molded CAR, is a polymeric soft robot with embedded catalytic-magnetic NPs, formed in a customized 3D printed mold to perform specific tasks in enclosed domains. Vane-shaped CARs remove biofilms from curved walls of cylindrical tubes, and helicoid-shaped CARs drill through biofilm clogs, while simultaneously killing bacteria. In addition, we demonstrate applications of CARs to target highly confined anatomical surfaces in the interior of human teeth. These 'kill-degrade-and-remove' CARs systems could have significant impact in fighting persistent biofilm-infections and in mitigating biofouling of medical devices and diverse surfaces.
Collapse
Affiliation(s)
- Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Amauri J. Paula
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA
- Solid-Biological Interface Group (SolBIN), Department of Physics, Universidade Federal do Ceará, Fortaleza-CE, Brazil
| | - Elizabeth E. Hunter
- GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, USA
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Alaa Babeer
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Bekir Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Kathleen Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Kumar
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Edward Steager
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, USA
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA
| |
Collapse
|
93
|
Alcântara CCJ, Kim S, Lee S, Jang B, Thakolkaran P, Kim JY, Choi H, Nelson BJ, Pané S. 3D Fabrication of Fully Iron Magnetic Microrobots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805006. [PMID: 30829003 DOI: 10.1002/smll.201805006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of "conventional 3D printed helical microswimmers." The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.
Collapse
Affiliation(s)
- Carlos C J Alcântara
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sangwon Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sunkey Lee
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobotics Research Center (DEMRC), 711-873, Daegu, South Korea
| | - Bumjin Jang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Prakash Thakolkaran
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jin-Young Kim
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobotics Research Center (DEMRC), 711-873, Daegu, South Korea
| | - Hongsoo Choi
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobotics Research Center (DEMRC), 711-873, Daegu, South Korea
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
- Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, South Korea
- DGIST-ETH Microrobotics Research Center (DEMRC), 711-873, Daegu, South Korea
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
94
|
Disharoon D, Neeves KB, Marr DWM. ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3455-3460. [PMID: 30726100 PMCID: PMC6536127 DOI: 10.1021/acs.langmuir.8b04084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microscale devices must overcome fluid reversibility to propel themselves in environments where viscous forces dominate. One approach, used by colloidal microwheels (μwheels) consisting of superparamagnetic particles assembled and powered by rotating ac magnetic fields, is to employ a nearby surface to provide friction. Here, we used total internal reflection microscopy to show that individual 8.3 μm particles roll inefficiently with significant slip because of a particle-surface fluid gap of 20-80 nm. We determined that both gap width and slip increase with the increasing particle rotation rate when the load force is provided by gravity alone, thus providing an upper bound on translational velocity. By imposing an additional load force with a dc magnetic field gradient superimposed on the ac field, we were able to decrease the gap width and thereby enhance translation velocities. For example, an additional load force of 0.2 Fg provided by a dc field gradient increased the translational velocity from 40 to 80 μm/s for a 40 Hz rotation rate. The translation velocity increases with the decreasing gap width whether the gap is varied by dc field gradient-induced load forces or by reducing the Debye length with salt. These results present a strategy to accelerate surface-enabled rolling of microscale particles and open the possibility of high-speed μwheel rolling independent of the gravitational field.
Collapse
|
95
|
Xiao Z, Wei M, Wang W. A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6667-6684. [PMID: 30562451 DOI: 10.1021/acsami.8b13103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the recent frontiers of nanotechnology research involves machines that operate at nano- and microscales, also known as nano/micromotors. Their potential applications in biomedicine, environmental sciences and engineering, military and defense industries, self-assembly, and many other areas have fueled an intense interest in this topic over the last 15 years. Despite deepened understanding of their propulsion mechanisms, we are still in the early days of exploring the dynamics of micromotors in complex and more realistic environments. Confinements, as a typical example of complex environments, are extremely relevant to the applications of micromotors, which are expected to travel in mucus gels, blood vessels, reproductive and digestive tracts, microfluidic chips, and capillary tubes. In this review, we summarize and critically examine recent studies (mostly experimental ones) of micromotor dynamics in confinements in 3D (spheres and porous network, channels, grooves, steps, and obstacles), 2D (liquid-liquid, liquid-solid, and liquid-air interfaces), and 1D (chains). In addition, studies of micromotors moving in the bulk solution and the usefulness of acoustic levitation is discussed. At the end of this article, we summarize how confinements can affect micromotors and offer our insights on future research directions. This review article is relevant to readers who are interested in the interactions of materials with interfaces and structures at the microscale and helpful for the design of smart and multifunctional materials for various applications.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Mengshi Wei
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
96
|
Jang B, Hong A, Alcantara C, Chatzipirpiridis G, Martí X, Pellicer E, Sort J, Harduf Y, Or Y, Nelson BJ, Pané S. Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3214-3223. [PMID: 30588788 DOI: 10.1021/acsami.8b16907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires' speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion.
Collapse
Affiliation(s)
- Bumjin Jang
- Institute of Robotics and Intelligent Systems , ETH Zurich , CH-8092 Zurich , Switzerland
| | - Ayoung Hong
- Institute of Robotics and Intelligent Systems , ETH Zurich , CH-8092 Zurich , Switzerland
| | - Carlos Alcantara
- Institute of Robotics and Intelligent Systems , ETH Zurich , CH-8092 Zurich , Switzerland
| | | | - Xavier Martí
- Institute of Physics , Academy of Sciences of the Czech Republic , Cukrovarnická 10 , 162 00 Praha 6 , Czech Republic
| | - Eva Pellicer
- Departament de Física , Universitat Autònoma de Barcelona , E-08193 Bellaterra , Spain
| | - Jordi Sort
- Departament de Física , Universitat Autònoma de Barcelona , E-08193 Bellaterra , Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Pg. Lluís Companys 23 , E-08010 Barcelona , Spain
| | - Yuval Harduf
- Faculty of Mechanical Engineering , Technion Israel Institute of Technology , 3200003 Haifa , Israel
| | - Yizhar Or
- Faculty of Mechanical Engineering , Technion Israel Institute of Technology , 3200003 Haifa , Israel
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems , ETH Zurich , CH-8092 Zurich , Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems , ETH Zurich , CH-8092 Zurich , Switzerland
| |
Collapse
|
97
|
Hippler M, Blasco E, Qu J, Tanaka M, Barner-Kowollik C, Wegener M, Bastmeyer M. Controlling the shape of 3D microstructures by temperature and light. Nat Commun 2019; 10:232. [PMID: 30651553 PMCID: PMC6335428 DOI: 10.1038/s41467-018-08175-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Stimuli-responsive microstructures are critical to create adaptable systems in soft robotics and biosciences. For such applications, the materials must be compatible with aqueous environments and enable the manufacturing of three-dimensional structures. Poly(N-isopropylacrylamide) (pNIPAM) is a well-established polymer, exhibiting a substantial response to changes in temperature close to its lower critical solution temperature. To create complex actuation patterns, materials that react differently with respect to a stimulus are required. Here, we introduce functional three-dimensional hetero-microstructures based on pNIPAM. By variation of the local exposure dose in three-dimensional laser lithography, we demonstrate that the material parameters can be altered on demand in a single resist formulation. We explore this concept for sophisticated three-dimensional architectures with large-amplitude and complex responses. The experimental results are consistent with numerical calculations, able to predict the actuation response. Furthermore, a spatially controlled response is achieved by inducing a local temperature increase by two-photon absorption of focused light.
Collapse
Affiliation(s)
- Marc Hippler
- Zoologisches Institut, Zell- und Neurobiologie, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institut für Angewandte Physik, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
| | - Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128, Karlsruhe, Germany
| | - Jingyuan Qu
- Institut für Angewandte Physik, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
- Institut für Nanotechnologie, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Institute for Integrated Cell-Materials Science (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128, Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Martin Wegener
- Institut für Angewandte Physik, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany.
- Institut für Nanotechnologie, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Martin Bastmeyer
- Zoologisches Institut, Zell- und Neurobiologie, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
98
|
Abstract
Micro/nanomotors (MNMs) are micro/nanoscale devices that can convert energy from their surroundings into autonomous motion. With this unique ability, they may revolutionize application fields ranging from active drug delivery to biological surgeries, environmental remediation, and micro/nanoengineering. To complete these applications, MNMs are required to have a vital capability to reach their destinations. Employing external fields to guide MNMs to the targets is common and effective way. However, in application scenarios where targets are generally unknown or dynamically change, MNMs must possess the capability of self-navigation or self-targeting. Taking advantage of tactic movements toward or away from signal sources, numerous intelligent MNMs with self-navigation or self-targeting have been demonstrated and attracted much attention during the past few years. In this Account, we elucidate the intelligent response mechanisms of such tactic MNMs, which are summarized as two main models. One is that local vector fields, including those of chemical concentration gradients, gravity, flows, and magnetic fields existing in systems, achieve the overall alignment of asymmetric MNMs via aligning torques, directing the MNMs to swim toward or away from the signal sources. Another is that isotropic MNMs may produce propulsion forces with direction solely determined by the local vector field regardless of their Brownian rotations. Then we discuss and highlight the recent progress in tactic MNMs, including chemotactic, phototactic, rheotactic, gravitactic, and magnetotactic motors. Artificial chemotactic MNMs can be designed with different morphologies and compositions if asymmetric reactions are associated with chemical concentration gradients. In these systems, asymmetric phoretic slip flows are induced, leading to torques that enable the anisotropic particles to align and exhibit chemotaxis. For phototactic MNMs, light irradiation establishes asymmetric fields surrounding the motors via light-induced chemical reactions or physical effects to generate phototactic motion. Shape-asymmetric MNMs reorient in natural fluid flows because of torques applied by the flows, inducing rheotactic movements. MNMs with either the centroid or magnetic components distributed asymmetrically maintain orientation under the torque triggered by gravity or magnetic forces, generating tactic motions. In the end, we envision the future development of synthetic tactic MNMs, including enhancement of the sensitivity of motors to target signals, increasing the diversity of chemical motor systems, and combining multiple mechanisms to endow the tactic motors with multiple functionality. By highlighting the current achievements and offering our perspective on tactic MNMs, we look forward to inspiring the emergence of the next generation of intelligent MNMs with taxis.
Collapse
Affiliation(s)
- Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Chuanrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
99
|
Lee M, Jang B, Yoon J, Mathpal MC, Lee Y, Kim C, Pane S, Nelson BJ, Lee D. Magnetic imaging of a single ferromagnetic nanowire using diamond atomic sensors. NANOTECHNOLOGY 2018; 29:405502. [PMID: 29998847 DOI: 10.1088/1361-6528/aad2fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent advances in nanorobotic manipulation of ferromagnetic nanowires bring new avenues for applications in the biomedical area, such as targeted drug delivery, diagnostics or localized surgery. However, probing a single nanowire and monitoring its dynamics remains a challenge since it demands high precision sensing, high-resolution imaging, and stable operations in fluidic environments. Here, we report on a novel method of imaging and sensing magnetic fields from a single ferromagnetic nanowire with an atomic-scale sensor in diamond, i.e. diamond nitrogen-vacancy (NV) defect center. The distribution of static magnetic fields around a single Co nanowire is mapped out by spatially distributed NV centers and the obtained image is further compared with numerical simulation for quantitative analysis. DC field measurements such as continuous-wave ODMR and Ramsey sequence are used in the paper and sub Gauss level of field sensing is demonstrated. By imaging magnetic fields at a single nanowire level, this work represents an important step toward tracking and probing of ferromagnetic nanowires in biomedical applications.
Collapse
Affiliation(s)
- Myeongwon Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS NANO 2018; 12:9617-9625. [PMID: 30203963 DOI: 10.1021/acsnano.8b05997] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Advances in design and fabrication of functional micro/nanomaterials have sparked growing interest in creating new mobile microswimmers for various healthcare applications, including local drug and other cargo ( e. g., gene, stem cell, and imaging agent) delivery. Such microswimmer-based cargo delivery is typically passive by diffusion of the cargo material from the swimmer body; however, controlled active release of the cargo material is essential for on-demand, precise, and effective delivery. Here, we propose a magnetically powered, double-helical microswimmer of 6 μm diameter and 20 μm length that can on-demand actively release a chemotherapeutic drug, doxorubicin, using an external light stimulus. We fabricate the microswimmers by two-photon-based 3D printing of a natural polymer derivative of chitosan in the form of a magnetic polymer nanocomposite. Amino groups presented on the microswimmers are modified with doxorubicin by means of a photocleavable linker. Chitosan imparts the microswimmers with biocompatibility and biodegradability for use in a biological setting. Controlled steerability of the microswimmers is shown under a 10 mT rotating magnetic field. With light induction at 365 nm wavelength and 3.4 × 10-1 W/cm2 intensity, 60% of doxorubicin is released from the microswimmers within 5 min. Drug release is ceased by controlled patterns of light induction, so as to adjust the desired release doses in the temporal domain. Under physiologically relevant conditions, substantial degradation of the microswimmers is shown in 204 h to nontoxic degradation products. This study presents the combination of light-triggered drug delivery with magnetically powered microswimmer mobility. This approach could be extended to similar systems where multiple control schemes are needed for on-demand medical tasks with high precision and efficiency.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Chemical & Biological Engineering Department , Koç University , 34450 Istanbul , Turkey
| | - Oncay Yasa
- Physical Intelligence Department , Max Planck Institute for Intelligent Systems , 70569 Stuttgart , Germany
| | - I Ceren Yasa
- Physical Intelligence Department , Max Planck Institute for Intelligent Systems , 70569 Stuttgart , Germany
| | - Hakan Ceylan
- Physical Intelligence Department , Max Planck Institute for Intelligent Systems , 70569 Stuttgart , Germany
| | - Seda Kizilel
- Chemical & Biological Engineering Department , Koç University , 34450 Istanbul , Turkey
| | - Metin Sitti
- Physical Intelligence Department , Max Planck Institute for Intelligent Systems , 70569 Stuttgart , Germany
| |
Collapse
|