51
|
Li N, Wang Y, Li Y, Zhang C, Fang G. Recent Advances in Photothermal Therapy at Near-Infrared-II Based on 2D MXenes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305645. [PMID: 37775938 DOI: 10.1002/smll.202305645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.
Collapse
Affiliation(s)
- Nan Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yang Li
- Cell Department, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Guangyou Fang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
52
|
Jiao H, Mao Q, Razzaq N, Ankri R, Cui J. Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. ULTRASONICS SONOCHEMISTRY 2024; 103:106798. [PMID: 38330546 PMCID: PMC10865478 DOI: 10.1016/j.ultsonch.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Non-invasive and high spatiotemporal resolution mythologies for the diagnosis and treatment of disease in clinical medicine promote the development of modern medicine. Ultrasound (US) technology provides a non-invasive, real-time, and cost-effective clinical imaging modality, which plays a significant role in chemical synthesis and clinical translation, especially in in vivo imaging and cancer therapy. On the one hand, the US treatment is usually accompanied by cavitation, leading to high temperature and pressure, so-called "hot spot", playing a significant role in sonochemical-based colloidal synthesis. Compared with the classical nucleation synthetic method, the sonochemical synthesis strategy presents high efficiency for the fabrication of colloidal nanocrystals due to its fast nucleation and growth procedure. On the other hand, the US is attractive for in vivo and medical treatment, with applications increasing with the development of novel contrast agents, such as the micro and nano bubbles, which are widely used in neuromodulation, with which the US can breach the blood-brain barrier temporarily and safely, opening a new door to neuromodulation and therapy. In terms of cancer treatment, sonodynamic therapy and US-assisted synergetic therapy show great effects against cancer and sonodynamic immunotherapy present unparalleled potentiality compared with other synergetic therapies. Further development of ultrasound technology can revolutionize both chemical synthesis and clinical translation by improving efficiency, precision, and accessibility while reducing environmental impact and enhancing patient care. In this paper, we review the US-assisted sonochemical synthesis and biological applications, to promote the next generation US technology-assisted applications.
Collapse
Affiliation(s)
- Haorong Jiao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Qiulian Mao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Noman Razzaq
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Rinat Ankri
- The Biomolecular and Nanophotonics Lab, Ariel University, 407000, P.O.B. 3, Ariel, Israel.
| | - Jiabin Cui
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
53
|
Zhou Y, Yuan J, Xu K, Li S, Liu Y. Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy. ACS NANO 2024; 18:1846-1864. [PMID: 38180952 DOI: 10.1021/acsnano.3c11260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Mutation burden, hypoxia, and immunoediting contribute to altered metabolic profiles in tumor cells, resulting in a tumor microenvironment (TME) characterized by accumulation of toxic metabolites and depletion of various nutrients, which significantly hinder the antitumor immunity via multiple mechanisms, hindering the efficacy of tumor immunotherapies. In-depth investigation of the mechanisms underlying these phenomena are vital for developing effective antitumor drugs and therapies, while the therapeutic effects of metabolism-targeting drugs are restricted by off-target toxicity toward effector immune cells and high dosage-mediated side effects. Nanotechnologies, which exhibit versatility and plasticity in targeted delivery and metabolism modulation, have been widely applied to boost tumor immunometabolic therapies via multiple strategies, including targeting of metabolic pathways. In this review, recent advances in understanding the roles of tumor cell metabolism in both immunoevasion and immunosuppression are reviewed, and nanotechnology-based metabolic reprogramming strategies for enhanced tumor immunotherapies are discussed.
Collapse
Affiliation(s)
- Yangkai Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
54
|
Liu S, Sun Y, Ye J, Li C, Wang Q, Liu M, Cui Y, Wang C, Jin G, Fu Y, Xu J, Liang X. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS NANO 2024; 18:1516-1530. [PMID: 38172073 DOI: 10.1021/acsnano.3c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yu Sun
- Heilongjiang Vocational Institute Ecological Engineering, Harbin, 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chen Wang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Guanqiao Jin
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinqiang Liang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
55
|
Qian Z, Zhao N, Xu S, Yuan W. In situ injectable thermoresponsive nanocomposite hydrogel based on hydroxypropyl chitosan for precise synergistic calcium-overload, photodynamic and photothermal tumor therapy. Carbohydr Polym 2024; 324:121487. [PMID: 37985082 DOI: 10.1016/j.carbpol.2023.121487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Traditional therapies have poor accuracy and significant toxic side effects in the process of tumor treatment. The non-traditional treatment methods with high accuracy and efficacy are worth exploring and investigating. Herein, a strategy that enables precise and synergistic therapies of calcium-overload, photodynamic, and photothermal through facile near infrared (NIR) irradiation was carried out base on the injectable and self-healable hydrogel encapsulating indocyanine green (ICG)-loaded and bovine serum albumin (BSA)-modified calcium peroxide (CaO2) nanoparticles (ICG@CaO2-BSA NPs) and bismuth sulfide (Bi2S3) nanorods. The hydrogel fabricated through the dynamic Schiff-base bonds between hydroxypropyl chitosan (HPCS) and aldehyde-modified Pluronic F127 (F127-CHO) as the delivery substrate for functional substances could adhere and grip tumor tissues due to the adhesion of hydroxyl groups in HPCS and the hydrophobic aggregation caused by thermoresponsiveness of F127-CHO. CaO2 in ICG@CaO2-BSA NPs decomposed in the tumor micro-acidic environment to produce calcium ions (Ca2+) and hydrogen peroxide (H2O2), while ICG generated reactive oxygen species (ROS) under NIR irradiation, the photothermal effect of Bi2S3 nanorods and ICG under NIR irradiation could increase the temperature of tumor tissues and ultimately achieve precise tumor cell destruction. Therefore, this strategy will provide promising prospects for precise and efficient treatment of tumors.
Collapse
Affiliation(s)
- Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
56
|
He F, Li W, Liu B, Zhong Y, Jin Q, Qin X. Progress of Piezoelectric Semiconductor Nanomaterials in Sonodynamic Cancer Therapy. ACS Biomater Sci Eng 2024; 10:298-312. [PMID: 38124374 DOI: 10.1021/acsbiomaterials.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Sonodynamic therapy is an emerging noninvasive tumor treatment method that utilizes ultrasound to stimulate sonosensitizers to produce a large amount of reactive oxygen species, inducing tumor cell death. Though sonodynamic therapy has very promising prospects in cancer treatment, the application of early organic sonosensitizers has been limited in efficacy due to the high blood clearance-rate, poor water solubility, and low stability. Inorganic sonosensitizers have thus been developed, among which piezoelectric semiconductor materials have received increasing attention in sonodynamic therapy due to their piezoelectric properties and strong stability. In this review, we summarized the designs, principles, modification strategies, and applications of several commonly used piezoelectric materials in sonodynamic therapy and prospected the future clinical applications for piezoelectric semiconductor materials in sonodynamic therapy.
Collapse
Affiliation(s)
- Fang He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Beibei Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaojuan Qin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
57
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
58
|
Zhang Z, Yuan Y, Xue Y, Zhang W, Sun X, Xu X, Liu C. Nanomaterials for Ultrasound Imaging- Guided Sonodynamic Therapy. Technol Cancer Res Treat 2024; 23:15330338241263197. [PMID: 39051705 PMCID: PMC11273702 DOI: 10.1177/15330338241263197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Ultrasound examination is becoming the most popular medical imaging modality because of its low cost and high safety profile. Ultrasound contrast agents enhance the scattering of sound waves, which can improve the clarity and resolution of images. Nanoparticle Ultrasound contrast agents have the characteristics of a large specific surface area and a modifiable surface, which can increase drug loading capacity, prolong circulation time, and enable drug enrichment in specific organs or tissues. This leads to improved therapeutic effects and reducing toxic and side effects. Compared with traditional ultrasound contrast agents, Nano-ultrasound contrast agents overcome the limitation of imaging solely within blood vessels and facilitate imaging within tumor tissues, thereby extending the duration of enhanced imaging. Sonodynamic therapy is an emerging treatment method that has been developed rapidly in recent years, which has the advantages of noninvasive, high spatial and temporal resolution, and low toxicity and side effects. Sonodynamic therapy utilizes a sonosensitizer that, when excited by ultrasound at the tumor site, produces toxic reactive oxygen species, inducing apoptosis or necrosis in tumor cells. Ultrasound-guided sonodynamic therapy allows for real-time observation of lesions, is convenient and flexible, and is free of radiation exposure. With the use of nanomaterials as carriers, ultrasound-guided sonodynamic therapy has made significant strides. This study categorizes and summarizes the current research on acoustic sensitizer carrier materials, including carbon-based, silicon-based, peptide-based, iron-based, metal-organic frameworks, polymers, and liposomes. It concludes by highlighting the current challenges in the integration of ultrasound imaging with sonodynamic therapy and suggests future directions for clinical application development.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yinuo Yuan
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanzhang Xue
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Sun
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Cun Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
59
|
Jiang Q, Xu H, Zhang W, Wang Y, Xia J, Chen Z. Mn(II)-hemoporfin-based metal-organic frameworks as a theranostic nanoplatform for MRI-guided sonodynamic therapy. Biomater Sci 2023; 11:7838-7844. [PMID: 37889225 DOI: 10.1039/d3bm01316b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Imaging-guided therapy holds great potential for enhancing therapeutic performance in a personalized way. However, it is still challenging to develop appropriate multifunctional materials to overcome the limitations of current all-in-one theranostic agents. In this study, we developed a one-for-all theranostic nanoplatform called Mn(II)-hemoporfin MOFs, designed specifically for MRI-guided sonodynamic tumor therapy. The formation of MOF structures not only improves imaging but also enhances therapeutic effects through collective actions. Furthermore, by modifying polyethylene glycol (PEG), Mn(II)-hemoporfin-PEG was able to enhance permeability and retention effects, ensuring long circulation in the blood and accumulation in the tumor. MRI enhancement provided by Mn(II)-hemoporfin-PEG remained localized at the tumor site, with Mn(II)-hemoporfin-PEG demonstrating 88.6% efficacy in sonodynamic therapy testing in vivo. Mn(II)-hemoporfin-PEG exhibits excellent longitudinal relaxation, MRI effects, and sonodynamic performance, making it a promising alternative for clinical cancer treatment.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
60
|
Yu J, Zhu F, Yang Y, Zhang P, Zheng Y, Chen H, Gao Y. Ultrasmall iron-doped zinc oxide nanoparticles for ferroptosis assisted sono-chemodynamic cancer therapy. Colloids Surf B Biointerfaces 2023; 232:113606. [PMID: 37898045 DOI: 10.1016/j.colsurfb.2023.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The efficacy and biosafety of sonodynamic therapy (SDT) are closely related to the properties of sonosensitizers. Inorganic sonosensitizers with high chemical stability and low dark toxicity are generally limited by slow metabolism and accumulation in vivo. Combined treatment strategies by inducing more redox imbalance are expected to improve the efficacy of sonodynamic antitumor therapy. Herein, we report the development of ultra-small iron-doped zinc oxide nanoparticles (FZO NPs) to achieve synergistic sono-chemodynamic therapy and low accumulation in vivo. The surface of FZO NPs with diameter of 5 nm was modified with 3-aminopropyltriethoxysilane and polyethylene glycol 600 to obtain FZO-ASP with good aqueous stability. FZO-ASP with iron doping could trigger Fenton reaction and induce ferroptosis in cancer cells. With the assistance of ultrasonic energy, FZO-ASP demonstrated enhanced inhibitory effects on proliferation of various cancer cells and murine breast tumor growth than undoped counterpart. In addition, FZO-ASP injected intravenously could be effectively excreted in vivo and showed no obvious cumulative toxicity to the treated mice. Hence, this type of ultra-small iron-doped zinc oxide nanoparticles could serve as a safe and efficient sonosensitizer agent for synergistic sono-chemodynamic cancer therapy.
Collapse
Affiliation(s)
- Jing Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Fangyin Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Peixia Zhang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
61
|
Wu M, Yong J, Zhang H, Wang Z, Xu ZP, Zhang R. 2D Ultrathin Iron Doped Bismuth Oxychloride Nanosheets with Rich Oxygen Vacancies for Enhanced Sonodynamic Therapy. Adv Healthc Mater 2023; 12:e2301497. [PMID: 37285593 PMCID: PMC11468327 DOI: 10.1002/adhm.202301497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Sonodynamic therapy (SDT) combines ultrasound and sonosensitizers to produce toxic reactive oxygen species (ROS) for cancer cell killing. Due to the high penetration depth of ultrasound (US), SDT breaks the depth penetration barrier of conventional photodynamic therapy for the treatment of deeply seated tumors. A key point to enhance the therapeutic efficiency of SDT is the development of novel sonosensitizers with promoted ability for ROS production. Herein, ultrathin Fe-doped bismuth oxychloride nanosheets with rich oxygen vacancies and bovine serum albumin coating on surface are designed as piezoelectric sonosensitizers (BOC-Fe NSs) for enhanced SDT. The oxygen vacancies of BOC-Fe NSs provide electron trapping sites to promote the separation of e- -h+ from the band structure, which facilitates the ROS production under the ultrasonic waves. The piezoelectric BOC-Fe NSs create a built-in field and the bending bands, further accelerating the ROS generation with US irradiation. Furthermore, BOC-Fe NSs can induce ROS generation by a Fenton reaction catalyzed by Fe ion with endogenous H2 O2 in tumor tissues for chemodynamic therapy. The as-prepared BOC-Fe NSs efficiently inhibited breast cancer cell growth in both in vitro and in vivo tests. The successfully development of BOC-Fe NSs provides a new nano-sonosensitiser option for enhanced SDT for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
| | - Huayue Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
| | - Zhiliang Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518107P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
62
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
63
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
64
|
Sun W, Xiao H, Zhu J, Hao Z, Sun J, Wang D, Wang X, Ramalingam M, Xie S, Wang R. Multifunctional Oxygen-Generating Nanoflowers for Enhanced Tumor Therapy. ACS APPLIED BIO MATERIALS 2023; 6:4998-5008. [PMID: 37880964 DOI: 10.1021/acsabm.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Sonodynamic therapy (SDT) and chemotherapy have received great attention as effective methods for tumor treatment. However, the inherent hypoxia of the tumor greatly hinders its therapeutic efficacy. In this work, a tumor microenvironment-responsive biodegradable nanoplatform SiO2-MnO2-PEG-Ce6&DOX (designated as SMPC&D) is fabricated by encapsulating manganese oxide (MnO2) into silica nanoparticles and anchoring poly(ethylene glycol) (PEG) onto the surface for tumor hypoxia relief and delivery, then loaded with sonosensitizer Chlorin e6 (Ce6) and chemotherapeutic drug doxorubicin (DOX) for hypoxic tumor treatment. We evaluated the physicochemical properties of SMPC&D nanoparticles and the tumor therapeutic effects of chemotherapy and SDT under ultrasound stimulation in vitro and in vivo. After endocytosis by tumor cells, highly expressed glutathione (GSH) triggers biodegradation of the nanoplatform and MnO2 catalyzes hydrogen peroxide (H2O2) to generate oxygen (O2), thereby alleviating tumor hypoxia. Depleting GSH and self-supplying O2 effectively improve the SDT efficiency both in vitro and in vivo. Ultrasonic stimulation promoted the release and cellular uptake of chemotherapy drugs. In addition, the relieved hypoxia reduced the efflux of chemotherapy drugs by downregulating the expression of the P-gp protein, which jointly improved the effect of chemotherapy. This study demonstrates that the degradable SMPC&D as a therapeutic agent can achieve efficient chemotherapy and SDT synergistic therapy for hypoxic tumors.
Collapse
Affiliation(s)
- Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
- Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Huifang Xiao
- Zhongnan Hospital of Wuhan University, Wuhan 430062, People's Republic of China
| | - Jiazhi Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, People's Republic of China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Murugan Ramalingam
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country(UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Joint Research Laboratory (JRL), Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Drug Formulation Unit 10, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioprinting and Precisión Medicine, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- School of Basic Medical Science, Chengdu University, Chengdu 610106, China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwennigen, Germany
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
- Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, People's Republic of China
| |
Collapse
|
65
|
Chen J, Zhang J, Wei X, Zhang Y, Hu J, Liu H, Zhang S, Yang B. Chemodynamic therapy agent optimized mesoporous TiO 2 nanoparticles for Glutathione-Enhanced and Hypoxia-Tolerant synergistic Chemo-Sonodynamic therapy. J Colloid Interface Sci 2023; 650:1773-1785. [PMID: 37506418 DOI: 10.1016/j.jcis.2023.07.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sonodynamic therapy (SDT) can generate reactive oxygen species to kill cancer cells by activating sonosensitizers under ultrasound (US) irradiation. Nevertheless, its application is greatly limited by low quantum yield of sonosensitizers, high levels of endogenous glutathione (GSH) and tumor hypoxia. Herein, a GSH-activated sonosensitizers with synergistic therapy effect (chemodynamic therapy (CDT) and SDT) are developed by depositing Fe(III)-artemisinin infinite coordination polymers (Fe(III)-ART CPs) in pores of mesoporous TiO2 nanoparticles (NPs). The formed Fe(III)-ART-TiO2 NPs have high sono-induced electron-hole separation efficiency because the deposited Fe(III)-ART CPs can provide isolated intermediate bands to capture sono-induced electrons in TiO2 NPs. Meanwhile, Fe3+ in Fe(III)-ART-TiO2 NPs are reduced to Fe2+ by GSH with oxygen-deficient sites generated to further capture sono-induced electrons in TiO2 NPs. Based on this, the reaction efficiency between water molecules and sono-induced holes is high enough to generate numerous hydroxyl radicals (•OH) without oxygen participated for overcoming tumor hypoxia. Additionally, through consuming GSH, the generated Fe2+ can catalyze ART to produce C-centered free radicals for CDT. Owing to these characteristics, Fe(III)-ART-TiO2 NPs show significant tumor suppression ability and good biocompatibility in vivo. The strategy of using CDT agent to modify sonosensitizers offers new options to improve SDT effect without introducing harmful substances.
Collapse
Affiliation(s)
- Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China; Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou, Henan 450006, China.
| | - Jing Zhang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Xue Wei
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuzhao Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Jiakai Hu
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Huili Liu
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| |
Collapse
|
66
|
Li Y, Li W, Liu Y, Liu J, Yuan X, Zhang J, Shen H. Defect-rich platinum-zinc oxide heterojunction as a potent ROS amplifier for synergistic sono-catalytic therapy. Acta Biomater 2023; 171:543-552. [PMID: 37739245 DOI: 10.1016/j.actbio.2023.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Sonodynamic therapy (SDT) is a physical therapy that utilizes critical sonosensitizers triggered by ultrasound to achieve an effective non-invasive tumor treatment. However, the inadequate sonodynamic efficacy and low responsive activities of traditional inorganic sonosensitizers have hindered its practical application. Here, we rationally design a platinum-zinc oxide (PtZnO) sonosensitizer to significantly enhance the efficacy of SDT through its inherent bandgap structure and dual-nanozyme activities. The PtZnO possesses a narrow bandgap (2.89 eV) and an appropriate amount of oxygen defects, which promote the efficiency of electrons and holes separation and the generation of reactive oxygen species (ROS) under US irradiation. Simultaneously, the PtZnO exhibits both catalase-like and peroxidase-like activities, which effectively catalyze endogenous H2O2 into a large number of O2 and toxic hydroxyl radicals (•OH), thus achieving an efficient enhancement of SDT and catalytic therapy. Moreover, the PtZnO has significant glutathione consumption performance, further amplifying the oxidative stress. Ultimately, the PtZnO achieves a triple ROS amplification effect, with the yields of singlet oxygen (1O2) and •OH reaching 859.1 % and 614.4 %, respectively, inducing a highly effective sono-catalytic therapy with a remarkable tumor inhibition rate of 98.1 %. This study expands the application of ZnO semiconductor heterojunctions in the nanomedicine area, and the simple yet efficient design of the PtZnO provides a strategy for the development of sonosensitizers. STATEMENT OF SIGNIFICANCE: A platinum-zinc oxide (PtZnO) heterojunction sonosensitizer is constructed with dual-nanozyme activities and achieves a triple ROS amplification effect, leading to an efficient synergistic sono-catalytic therapy. The PtZnO owns an inherent narrow bandgap and abundant oxygen defects, thus exhibiting an efficient sonosensitizer performance. It also possesses both catalase-like and peroxidase-like activities, which effectively catalyze the endogenous H2O2 into a large quantity of O2 and toxic hydroxyl radicals, thereby enhancing the SDT and catalytic therapy. Furthermore, its prominent glutathione consumption performance further amplifies oxidative stress. The yields of singlet oxygen and hydroxyl radicals reach up to 859.1 % and 614.4 %, respectively, inducing a highly effective sono-catalytic therapy with an impressive tumor inhibition rate of 98.1 %.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenxin Li
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yian Liu
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiahui Liu
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Yuan
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Zhang
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heyun Shen
- Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
67
|
Zhu J, Wang C, Wei Q, Su Y, Qu X, Wang W, Song X, Dong X, Cai Y. PtMo-Au Metalloenzymes Regulated Tumor Microenvironment for Enhanced Sonodynamic/Chemodynamic/Starvation Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303365. [PMID: 37431203 DOI: 10.1002/smll.202303365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Indexed: 07/12/2023]
Abstract
The clinical application of sonodynamic therapy (SDT) is greatly limited by the low quantum yield of sonosensitizers and tumor microenvironment (TME). Herein, PtMo-Au metalloenzyme sonosensitizer is synthesized by modulating energy band structure of PtMo with Au nanoparticles. The surface deposition of Au simultaneously solves the carrier recombination and facilitates the separation of electrons (e- ) and holes (h+ ), effectively improving the reactive oxygen species (ROS) quantum yield under ultrasound (US). The catalase-like activity of PtMo-Au metalloenzymes alleviates hypoxia TME, thus enhancing the SDT-induced ROS generation. More importantly, tumor overexpressed glutathione (GSH) can serve as the hole scavenger, which is accompanied by a persistent depletion of the GSH, thus inactivating GPX4 for the accumulation of lipid peroxides. The distinctly facilitated SDT-induced ROS production is coupled with chemodynamic therapy (CDT)-induced hydroxyl radicals (•OH) to exacerbate ferroptosis. Furthermore, Au with glucose oxidase mimic activity can not only inhibit intracellular adenosine triphosphate (ATP) production and induce tumor cell starvation but also generate H2 O2 to facilitate CDT. In general, this PtMo-Au metalloenzyme sonosensitizer optimizes the defects of conventional sonosensitizers through surface deposition of Au to regulate TME, providing a novel perspective for US-based tumor multimodal therapy.
Collapse
Affiliation(s)
- Jiawei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chenxi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Qinglin Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yan Su
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
68
|
Liu J, Dong S, Gai S, Dong Y, Liu B, Zhao Z, Xie Y, Feng L, Yang P, Lin J. Design and Mechanism Insight of Monodispersed AuCuPt Alloy Nanozyme with Antitumor Activity. ACS NANO 2023; 17:20402-20423. [PMID: 37811650 DOI: 10.1021/acsnano.3c06833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The abrogation of the self-adaptive redox evolution of tumors is promising for improving therapeutic outcomes. In this study, we designed a trimetallic alloy nanozyme AuCuPt-PpIX (ACPP), which mimics up to five naturally occurring enzymes: glucose oxidase (GOD), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione peroxidase (GPx). Facilitated by these enzyme-mimicking traits, the constructed ACPP nanozymes can not only disrupt the established redox homeostasis in tumors through a series of enzymatic cascade reactions but also achieve cyclic regeneration of the relevant enzyme substrates. Density functional theory (DFT) calculations have theoretically explained the synergistic effect of multimetallic doping and the possible mechanism of enzymatic catalysis. The doped Cu and Pt sites are conducive to the adsorption, activation, and dissociation of reactant molecules, whereas the Au sites are conducive to desorption, which significantly improves catalytic efficiency via a synergistic effect. Additionally, ACPP nanozymes can improve the effect of protoporphyrin (PpIX)-enabled sonodynamic therapy (SDT) by alleviating hypoxia and initiating ferroptosis by inducing lipid peroxidation (LPO) and inhibiting GPX4 activity, thus achieving multimodal synergistic therapy. This study presents a typical paradigm to enable the use of multimetallic alloy nanozymes for the treatment of tumor cells with self-adaptive properties.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
69
|
Li W, Solenne TOSB, Wang H, Li B, Liu Y, Wang F, Yang T. Core-shell cisplatin/SiO 2 nanocapsules combined with PTC-209 overcome chemotherapy-Acquired and intrinsic resistance in hepatocellular carcinoma. Acta Biomater 2023; 170:273-287. [PMID: 37597681 DOI: 10.1016/j.actbio.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The primary cause of cisplatin resistance in liver cancer is reduced intracellular drug accumulation and altered DNA repair/apoptosis signaling. Existing strategies to reverse cisplatin resistance have limited efficacy, as they target individual factors. This study proposes a drug delivery system consisting of a cisplatin core, a silica shell with a tetra-sulfide bond, and a PEG-coated surface (Core/shell-PGCN). The system is designed to consume glutathione (GSH) and reduce cisplatin excretion from cells, thereby overcoming acquired cisplatin resistance. In addition, Core/shell-PGCN incorporates PTC-209 (Core/shell-PGCN@PTC-209), a Bmi1 inhibitor that suppresses liver cancer stem cells (CSC), to mitigate DNA repair/apoptosis signaling and reverse intrinsic cisplatin resistance. In vivo and in vitro results demonstrate that Core/shell-PGCN@PTC-209 can comprehensively regulate GSH and CSC, reverse intrinsic and acquired cisplatin resistance, and enhance the efficacy of cisplatin in treating liver cancer. This "inner cultivation, outer action" approach may offer a new strategy for reversing cisplatin resistance in liver cancer. STATEMENT OF SIGNIFICANCE: Cisplatin resistance is widely observed in liver cancer (HCC) chemotherapy, with two mechanisms identified: acquired and intrinsic. Most strategies aimed at overcoming cisplatin resistance focus on a single perspective. This study introduces a core-shell drug delivery system (DDS) combined with HCC stem cell inhibitors, which can effectively address cisplatin resistance in HCC by targeting both acquisition and internality. Specifically, the core-shell drug delivery system can impede cisplatin efflux by neutralizing the acquired resistance factor (GSH), thus overcoming acquired resistance. Additionally, HCC stem cell inhibitors can reverse intrinsic resistance by inhibiting HCC stem cells. Therefore, this study contributes to the application of DDS in combating drug resistance in HCC and enhances its potential for clinical implementation.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Han Wang
- Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
70
|
Xu M, Yu J, Zhang C, Xu C, Wei X, Pu K. Sonodynamic Cytokine Nanocomplexes with Specific Stimulation towards Effector T Cell for Combination Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308362. [PMID: 37587095 DOI: 10.1002/anie.202308362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Cytokine therapy mediates the interaction between immune cells and non-immune cells in the tumor microenvironment (TME), forming a promising approach in cancer therapy. However, the dose-dependent adverse effects and non-selective stimulation of cytokines limit their clinical use. We herein report a sonodynamic cytokine nano-immunocomplex (SPNAI ) that specifically activates effector T cells (Teffs) for antitumor immunotherapy. By conjugating anti-interleukin-2 (anti-IL-2) antibodies S4B6 on the semiconducting polymer nanoparticles to afford SPNA , this nanoantibody SPNA can bind with IL-2 to form SPNAI which can block the interaction between IL-2 and regulatory T cells (Tregs), selectively activating Teffs in TME. Moreover, SPNAI generates 1 O2 to trigger immunogenic cell death of cancer cells upon sono-irradiation, which promotes the maturation of dendritic cells and the proliferation of Teffs. This SPNAI -mediated combination sonodynamic immunotherapy thus elevates the ratio of Teffs/Tregs in TME, resulting in inhibition of tumor growth, suppression of lung metastasis and prevention of tumor relapse.
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
71
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
72
|
Cao X, Li M, Liu Q, Zhao J, Lu X, Wang J. Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303195. [PMID: 37323087 DOI: 10.1002/smll.202303195] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The rapid development of nanomedicine and nanobiotechnology has allowed the emergence of various therapeutic modalities with excellent therapeutic efficiency and biosafety, among which, the sonodynamic therapy (SDT), a combination of low-intensity ultrasound and sonosensitizers, is emerging as a promising noninvasive treatment modality for cancer treatment due to its deeper penetration, good patient compliance, and minimal damage to normal tissue. The sonosensitizers are indispensable components in the SDT process because their structure and physicochemical properties are decisive for therapeutic efficacy. Compared to the conventional and mostly studied organic sonosensitizers, inorganic sonosensitizers (noble metal-based, transition metal-based, carbon-based, and silicon-based sonosensitizers) display excellent stability, controllable morphology, and multifunctionality, which greatly expand their application in SDT. In this review, the possible mechanisms of SDT including the cavitation effect and reactive oxygen species generation are briefly discussed. Then, the recent advances in inorganic sonosensitizers are systematically summarized and their formulations and antitumor effects, particularly highlighting the strategies for optimizing the therapeutic efficiency, are outlined. The challenges and future perspectives for developing state-of-the-art sonosensitizers are also discussed. It is expected that this review will shed some light on future screening of decent inorganic sonosensitizers for SDT.
Collapse
Affiliation(s)
- Xianshuo Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minxing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiyu Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jingjing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xihong Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianwei Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
73
|
Wang Z, Wei M, Liu Q, Lu X, Zhou J, Wang J. Oxygen-defective zinc oxide nanoparticles as highly efficient and safe sonosensitizers for cancer therapy. Chem Commun (Camb) 2023; 59:10968-10971. [PMID: 37609958 DOI: 10.1039/d3cc02486e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Herein, an oxygen defect-modulated zinc oxide sonosensitizer is designed, which enhances the absorbance of ultrasound energy and suppresses the recombination of ultrasound-initiated electrons and holes to promote reactive oxygen species yield. It achieves a high tumor inhibition efficiency of 79.9%, which exhibits a potential application for sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Zifan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Mingjie Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Qiyu Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xihong Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jianhua Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jianwei Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
74
|
Liang Y, Zhang M, Zhang Y, Zhang M. Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation. Molecules 2023; 28:6484. [PMID: 37764260 PMCID: PMC10537038 DOI: 10.3390/molecules28186484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
With the rapid development of sonodynamic therapy (SDT), sonosensitizers have evolved from traditional treatments to comprehensive diagnostics and therapies. Sonosensitizers play a crucial role in the integration of ultrasound imaging (USI), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) diagnostics while also playing a therapeutic role. This review was based on recent articles on multifunctional sonosensitizers that were used in SDT for the treatment of cancer and have the potential for clinical USI, CT, and MRI applications. Next, some of the shortcomings of the clinical examination and the results of sonosensitizers in animal imaging were described. Finally, this paper attempted to inform the future development of sonosensitizers in the field of integrative diagnostics and therapeutics and to point out current problems and prospects for their application.
Collapse
Affiliation(s)
- Yunlong Liang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| |
Collapse
|
75
|
He Z, Du J, Miao Y, Li Y. Recent Developments of Inorganic Nanosensitizers for Sonodynamic Therapy. Adv Healthc Mater 2023; 12:e2300234. [PMID: 37070721 DOI: 10.1002/adhm.202300234] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/07/2023] [Indexed: 04/19/2023]
Abstract
As a noninvasive treatment, sonodynamic therapy (SDT) has been widely used in the treatment of tumors because of its ability to penetrate deep tissue with few side effects. As the key factor of SDT, it is meaningful to design and synthesize efficient sonosensitizers. Compared with organic sonosensitizers, inorganic sonosensitizers can be easily excited by ultrasound. In addition, inorganic sonosensitizers with stable properties, good dispersion, and long blood circulation time, have great development potential in SDT. This review summarizes possible mechanisms of SDT (sonoexcitation and ultrasonic cavitation) in detail. Based on these mechanisms, the design and synthesis of inorganic nanosonosensitizers can be divided into three categories: traditional inorganic semiconductor sonosensitizers, enhanced inorganic semiconductor sonosensitizers, and cavitation-enhanced sonosensitizers. Subsequently, the current efficient construction methods of sonosensitizers are summarized including accelerated semiconductor charge separation and enhanced production of reactive oxygen species through ultrasonic cavitation. Furthermore, the advantages and disadvantages of different inorganic sonosensitizers and detailed strategies are systematically discussed on how to enhance SDT. Hopefully, this review could provide new insights into the design and synthesis of efficient inorganic nano-sonosensitizers for SDT.
Collapse
Affiliation(s)
- Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
76
|
Jiang Z, Xiao W, Fu Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 2023; 361:547-567. [PMID: 37567504 DOI: 10.1016/j.jconrel.2023.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
77
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
78
|
Tian B, Tian R, Liu S, Wang Y, Gai S, Xie Y, Yang D, He F, Yang P, Lin J. Doping Engineering to Modulate Lattice and Electronic Structure for Enhanced Piezocatalytic Therapy and Ferroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304262. [PMID: 37437264 DOI: 10.1002/adma.202304262] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Piezocatalytic therapy, which generates reactive oxygen species (ROS) under mechanical force, has garnered extensive attention for its use in cancer therapy owing to its deep tissue penetration depth and less O2 -dependence. However, the piezocatalytic therapeutic efficiency is limited owing to the poor piezoresponse, low separation of electron-hole pairs, and complicated tumor microenvironment (TME). Herein, a biodegradable, porous Mn-doped ZnO (Mn-ZnO) nanocluster with enhanced piezoelectric effect is constructed via doping engineering. Mn-doping not only induces lattice distortion to increase polarization but also creates rich oxygen vacancies (OV ) for suppressing the recombination of electron-hole pairs, leading to high-efficiency generation of ROS under ultrasound irradiation. Moreover, Mn-doped ZnO shows TME-responsive multienzyme-mimicking activity and glutathione (GSH) depletion ability owing to the mixed valence of Mn (II/III), further aggravating oxidative stress. Density functional theory calculations show that Mn-doping can improve the piezocatalytic performance and enzyme activity of Mn-ZnO due to the presence of OV . Benefiting from the boosting of ROS generation and GSH depletion ability, Mn-ZnO can significantly accelerate the accumulation of lipid peroxide and inactivate glutathione peroxidase 4 (GPX4) to induce ferroptosis. The work may provide new guidance for exploring novel piezoelectric sonosensitizers for tumor therapy.
Collapse
Affiliation(s)
- Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou, 466001, P. R. China
| | - Ruixue Tian
- Inner Mongolia Key Laboratory of Advanced Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, P. R. China
| | - Shaohua Liu
- Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou, 466001, P. R. China
| | - Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
79
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
80
|
Zhang R, Xu S, Yuan M, Guo L, Xie L, Liao Y, Xu Y, Fu X. An ultrasmall PVP-Fe-Cu-Ni-S nano-agent for synergistic cancer therapy through triggering ferroptosis and autophagy. NANOSCALE 2023; 15:12598-12611. [PMID: 37462439 DOI: 10.1039/d3nr02708b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Photothermal therapy (PTT) is an emerging field where photothermal agents could convert visible or near-infrared (NIR) radiation into heat to kill tumor cells. However, the low photothermal conversion efficiency of photothermal agents and their limited antitumor activities hinder the development of these agents into monotherapies for cancer. Herein, we have fabricated an ultrasmall polyvinylpyrrolidone (PVP)-Fe-Cu-Ni-S (PVP-NP) nano-agent via a simple hot injection method with excellent photothermal conversion efficiency (∼96%). Photothermal therapy with this nano-agent effectively inhibits tumor growth without apparent toxic side-effects. Mechanistically, our results demonstrated that, after NIR irradiation, PVP-NPs can induce ROS/singlet oxygen generation, decrease the mitochondrial membrane potential, release extracellular Fe2+, and consume glutathione, triggering autophagy and ferroptosis of cancer cells. Moreover, PVP-NPs exhibit excellent contrast enhancement according to magnetic resonance imaging (MRI) analysis. In summary, PVP-NPs have a high photothermal conversion efficiency and can be applied for MRI-guided synergistic photothermal/photodynamic/chemodynamic cancer therapy, resolving the bottleneck of existing phototherapeutic agents.
Collapse
Affiliation(s)
- Rongjun Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Shuxiang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
- Binjiang Research Institute of Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lihao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Yang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
- Binjiang Research Institute of Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Xuemei Fu
- International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
81
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
82
|
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy. Int J Mol Sci 2023; 24:12001. [PMID: 37569377 PMCID: PMC10418994 DOI: 10.3390/ijms241512001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging non-invasive cancer treatment method in the field of nanomedicine, which has the advantages of deep penetration, good therapeutic efficacy, and minimal damage to normal tissues. Sonosensitizers play a crucial role in the process of SDT, as their structure and properties directly determine the treatment outcome. Inorganic sonosensitizers, with their high stability and longer circulation time in the human body, have great potential in SDT. In this review, the possible mechanisms of SDT including the ultrasonic cavitation, reactive oxygen species generation, and activation of immunity are briefly discussed. Then, the latest research progress on inorganic sonosensitizers is systematically summarized. Subsequently, strategies for optimizing treatment efficacy are introduced, including combination therapy and image-guided therapy. The challenges and future prospects of sonodynamic therapy are discussed. It is hoped that this review will provide some guidance for the screening of inorganic sonosensitizers.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ping Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
83
|
Zhu H, Zhou JL, Ma C, Jiang D, Cao Y, Zhu JJ. Self-Enhanced Electrochemiluminescence Imaging System Based on the Accelerated Generation of ROS under Ultrasound. Anal Chem 2023. [PMID: 37463345 DOI: 10.1021/acs.analchem.3c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemiluminescence (ECL) imaging, as an optical technology, has been developed at full tilt in the field of life science and nanomaterials. However, the relatively low ECL intensity or the high co-reactant concentration needed in the electrochemical reaction blocks its practical application. Here, we developed an ECL imaging system based on the rGO-TiO2-x composite material, where the co-reactant, reactive oxygen species (ROS), is generated in situ under the synergetic effect of of ultrasound (US) and electric irradiation. The rGO-TiO2-x composites facilitate the separation of electron (e-) and hole (h+) pairs and inhibit recombination triggered by external US irradiation due to the high electroconductivity of rGO and oxygen-deficient structures of TiO2, thus significantly boosting ROS generation. Furthermore, the increased defects on rGO accelerate the electron transfer rate, improving the electrocatalytic performance of the composite and forming more ROS. This high ultrasonic-electric synergistic efficacy is demonstrated through the enhancement of photon emission. Compared with the luminescence intensity triggered by US irradiation and electric field, an enhancement of ∼20-fold and 10-fold of the US combined with electric field-triggered emission is observed from this composite. Under the optimized conditions, using dopamine (DA) as a model target, the sensitivity of the US combined ECL strategy for detection of DA is two orders of magnitude higher than that of the ECL method. The successful detection of DA at low concentrations makes us believe that this strategy provides the possibility of applying ECL imaging for cellular single-molecule analysis and cancer therapy.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
84
|
Yao S, Zhao Y, Wang Z, Wang S, Zheng M, Hu Q, Li L. Covalent Organic Framework Nanocages with Enhanced Carrier Utilization and Cavitation Effect for Cancer Sonodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452744 DOI: 10.1021/acsami.3c04911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) is an emerging method for treating cancer due to its non-invasive nature and high-depth tissue penetration ability. However, current sonosensitizers commonly have unsatisfactory quantum yields of free radicals. In this work, we have developed unique organic semiconductor π-conjugated covalent organic framework nanocages (COFNs) as highly efficient sonosensitizers to boost free radical (1O2 and •OH) production and cancer therapy. With the hollow and porous structure and band transport behavior, COFNs displayed remarkably improved SDT performance through enhanced electron utilization and cavitation effect, with a 1.8-fold increase in US pressure and a 64.8% increase in 1O2 production relative to the core-shell-structured COF under US irradiation. The in vitro and in vivo experimental results verified the elevated SDT performance, showing a high tumor suppression of 91.4% against refractory breast cancer in mice. This work provides a promising strategy to develop high-performance sonosensitizers for cancer therapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Minjia Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
85
|
Jia W, Wang H, Wu Q, Sun L, Si Q, Zhao Q, Wu Y, Ren N, Guo W. Insight into Chinese medicine residue biochar combined with ultrasound for persulfate activation in atrazine degradation: Acanthopanax senticosus precursors, synergistic effects and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163054. [PMID: 36963691 DOI: 10.1016/j.scitotenv.2023.163054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.
Collapse
Affiliation(s)
- Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
86
|
Yang Z, Yang C, Yang D, Zhang Y, Yang Q, Qu F, Guo W. l-Arginine-Modified CoWO 4 /FeWO 4 S-Scheme Heterojunction Enhances Ferroptosis against Solid Tumor. Adv Healthc Mater 2023; 12:e2203092. [PMID: 36907173 DOI: 10.1002/adhm.202203092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Ferroptosis has recently attracted much attention as an anti-tumor therapy. Evidence suggests that ferroptosis can induce oxidative stress and accumulation of lethal lipid peroxides in cancer cells, leading to cell damage. However, unsuitable pH, H2 O2 levels, and high glutathione (GSH) expression in the tumor microenvironment hinder the development of ferroptosis-mediated therapy. In this study, an l-arginine (l-arg)-modified CoWO4 /FeWO4 (CFW) S-scheme heterojunction is strategically designed and constructed for ultrasound (US)-triggered sonodynamic- and gas therapy-induced ferroptosis. CFW not only has excellent Fenton-catalytic activity, outstanding GSH consumption capacity, and excellent ability to overcome tumor hypoxia, but its S-scheme heterostructure can also avoid the rapid combination of electron (e) and hole (h+ ) pairs, thereby enhancing the sonodynamic effects. As a precursor of nitric oxide (NO), l-arg is modified on the surface of CFW (CFW@l-arg) to achieve controlled NO release under US irradiation, thereby enhancing ferroptosis. In addition, poly(allylamine hydrochloride) is further modified on the surface of CFW@l-arg to stabilize l-arg and achieve controllable NO release. Both in vitro and in vivo results demonstrate that such a multifunctional therapeutic nanoplatform can achieve high therapeutic efficacy through sonodynamic and gas therapy-enhanced ferroptosis. This designed oncotherapy nanoplatform provides new inspiration for ferroptosis-mediated therapy.
Collapse
Affiliation(s)
- Zhuoran Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Dan Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Ye Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
87
|
Wu Q, Ma Q, Ma J, Chen J, Zhuang B, Yang S, Liu J, Wen S. Cascade Amplification of Pyroptosis and Apoptosis for Cancer Therapy through a Black Phosphorous-Doped Thermosensitive Hydrogel. Pharmaceutics 2023; 15:1830. [PMID: 37514017 PMCID: PMC10383820 DOI: 10.3390/pharmaceutics15071830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cell pyroptosis has a reciprocal relationship with various cancer treatment modalities such as chemotherapy. However, the tumor microenvironment, characterized by hypoxia, substantially restricts the development and application of tumor therapies that integrate cell pyroptosis. Therefore, the cascade amplification of oxidative stress by interfering with redox homeostasis in tumors may be a promising approach. In this study, black phosphorus (BP) nanosheets and a glutathione peroxidase 4 inhibitor (RSL3) were coloaded into a thermosensitive PDLLA-PEG-PDLLA (PLEL) hydrogel (RSL3/BP@PLEL). Owing to the photothermal property of BP nanosheets, the RSL3/BP@PLEL hydrogel may trigger the release of loaded drugs in a more controllable and on-demand manner. Investigation of the antitumor effect in a mouse liver tumor model demonstrated that local injection of the hydrogel formulation in combination with near infrared laser irradiation could efficiently suppress tumor growth by interfering with the redox balance in tumors. Mechanistic study indicated that the combined treatment of photothermal therapy and glutathione depletion based on this hydrogel efficiently induced cell pyroptosis through both caspase-1/GSDMD and caspase-3/GSDME pathways, thereby triggering the repolarization of tumor-associated macrophages from M2 to M1. Overall, we developed a biocompatible and biodegradable hydrogel formulation for application in combination cancer treatment, providing a new platform for enhancing the efficacy of cancer therapy by amplifying cell pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Qing Wu
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Qinghui Ma
- Department of Oncology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Jun Ma
- Department of Gastroenterology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Junpeng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Baoding Zhuang
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Shanglin Yang
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Jinji Liu
- Department of Oncology, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Shunqian Wen
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| |
Collapse
|
88
|
Li H, Yang X, Wang Z, She W, Liu Y, Huang L, Jiang P. A Near-Infrared-II Fluorescent Nanocatalyst for Enhanced CAR T Cell Therapy against Solid Tumor by Immune Reprogramming. ACS NANO 2023. [PMID: 37319120 DOI: 10.1021/acsnano.3c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds great promise in the treatment of hematological malignancies but performs poorly in solid tumors due to the tumor immunosuppressive microenvironment. Herein, a multifunctional nanocatalyst (APHA@CM) was prepared by encapsulating horseradish peroxidase (HRP)-loaded Au/polydopamine nanoparticles (Au/PDA NPs) and Ag2S quantum dots with CAR T cell membranes to improve the CAR T cell therapy in solid tumors. The APHA@CM has excellent multimodal imaging capability to precisely guide the scope and time window for nanocatalyst-induced tumor microenvironment regulation and CAR T cell therapy. The oxidase-like activity of Au NPs inhibited the glycolytic metabolism of tumor cells, reducing lactate efflux, reprogramming tumor immunosuppression, and ultimately increasing CAR T cell activation within the tumors. Additionally, the hypoxia environment of tumors could be relieved by HRP to enhance the Au/PDA NPs-induced synergistic sonodynamic/photothermal therapy (SDT/PTT), thereby promoting the immunogenic cell death of NALM 6 cells and enhancing CAR T cell-mediated immune microenvironment reprogramming. When this strategy was utilized to treat NALM 6 solid tumors, it not only completely eliminated tumors but also formed a long-term immune memory effect to inhibit tumor metastasis and recurrence. This work offers a strategy for CAR T cell therapy in solid tumor.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xiuxiu Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenyan She
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
89
|
Ding Y, Zhao Y, Yao S, Wang S, Wan X, Hu Q, Li L. Enhanced Sonodynamic Cancer Therapy through Iron-Doping and Oxygen-Vacancy Engineering of Piezoelectric Bismuth Tungstate Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300327. [PMID: 36919311 DOI: 10.1002/smll.202300327] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT) is regarded as a new-rising strategy for cancer treatment with low invasiveness and high tissue penetration, but the scarcity of high-efficiency sonosensitizers has seriously hindered its application. Herein, the iron-doped and oxygen-deficient bismuth tungstate nanosheets (BWO-Fe NSs) with piezotronic effect are synthesized for enhanced SDT. Due to the existence of oxygen defects introduced through Fe doping, the bandgap of BWO-Fe is significantly narrowed so that BWO-Fe can be more easily activated by exogenous ultrasound (US). The oxygen defects acting as the electron traps inhibit the recombination of US-induced electrons and holes. More importantly, the dynamically renewed piezoelectric potential facilitates the migration of electrons and holes to opposite side and causes energy band bending, which further promotes the production of reactive oxygen species. Furthermore, Fe doping endows BWO-Fe with Fenton reactivity, which converts hydrogen peroxide (H2 O2 ) in tumor microenvironment into hydroxyl radicals (•OH), thereby amplifying the cellular oxidative damage and enhancing SDT. Both in vitro and in vivo experiments illustrate their high cytotoxicity and tumor suppression rate against refractory breast cancer in mice. This work may provide an alternative strategy to develop oxygen-deficient piezoelectric sonosensitizers for enhanced SDT via doping metal ions.
Collapse
Affiliation(s)
- Yiming Ding
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
90
|
Bonosi L, Marino S, Benigno UE, Musso S, Buscemi F, Giardina K, Gerardi R, Brunasso L, Costanzo R, Iacopino DG, Maugeri R. Sonodynamic therapy and magnetic resonance-guided focused ultrasound: new therapeutic strategy in glioblastoma. J Neurooncol 2023; 163:219-238. [PMID: 37179515 DOI: 10.1007/s11060-023-04333-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma (GB) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis and limited treatment options. In recent years, sonodynamic therapy (SDT) and magnetic resonance focused ultrasound (MRgFUS) have emerged as promising approaches for the treatment of GB. SDT uses ultrasound waves in combination with a sonosensitizer to selectively damage cancer cells, while MRgFUS delivers high-intensity ultrasound waves to precisely target tumor tissue and disrupt the blood-brain barrier to enhance drug delivery. In this review, we explore the potential of SDT as a novel therapeutic strategy for GB. We discuss the principles of SDT, its mechanisms of action, and the preclinical and clinical studies that have investigated its use in Gliomas. We also highlight the challenges, the limitations, and the future perspectives of SDT. Overall, SDT and MRgFUS hold promise as novel and potentially complementary treatment modalities for GB. Further research is needed to optimize their parameters and determine their safety and efficacy in humans, but their potential for selective and targeted tumor destruction makes them an exciting area of investigation in the field of brain cancer therapy.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy.
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Umberto Emanuele Benigno
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Sofia Musso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Felice Buscemi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Kevin Giardina
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Rosamaria Gerardi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
91
|
Loke YL, Beishenaliev A, Wang PW, Lin CY, Chang CY, Foo YY, Faruqu FN, Leo BF, Misran M, Chung LY, Shieh DB, Kiew LV, Chang CC, Teo YY. ROS-generating alginate-coated gold nanorods as biocompatible nanosonosensitisers for effective sonodynamic therapy of cancer. ULTRASONICS SONOCHEMISTRY 2023; 96:106437. [PMID: 37187119 DOI: 10.1016/j.ultsonch.2023.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.
Collapse
Affiliation(s)
- Yean Leng Loke
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pei-Wen Wang
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chung-Yin Lin
- Institute for Radiological Research, Chang Gung University, 33303 Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 33303 Taoyuan, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan
| | - Yiing Yee Foo
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dar-Bin Shieh
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, 70403 Tainan, Taiwan
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan.
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Department of Electrophysics, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan; Institute of Physics, Academia Sinica, Nankang, 11529 Taipei, Taiwan; Brain Research Center, National Tsing Hua University, 300044 Hsinchu, Taiwan, ROC.
| | - Yin Yin Teo
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
92
|
Yang SR, Wang R, Yan CJ, Lin YY, Yeh YJ, Yeh YY, Yeh YC. Ultrasonic interfacial crosslinking of TiO 2-based nanocomposite hydrogels through thiol-norbornene reactions for sonodynamic antibacterial treatment. Biomater Sci 2023. [PMID: 37128891 DOI: 10.1039/d2bm01950g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanocomposite (NC) hydrogels used for sonodynamic therapy (SDT) face challenges such as lacking interfacial interactions between the polymers and nanomaterials as well as presenting uneven dispersion of nanomaterials in the hydrogel network, reducing their mechanical properties and treatment efficiency. Here, we demonstrate a promising approach of co-engineering nanomaterials and interfacial crosslinking to expand the materials construction and biomedical applications of NC hydrogels in SDT. In this work, mesoporous silica-coated titanium dioxide nanoparticles with thiolated surface functionalization (TiO2@MS-SH) are utilized as crosslinkers to react with norbornene-functionalized dextran (Nor-Dex) through ultrasound-triggered thiol-norbornene reactions, forming TiO2@MS-SH/Nor-Dex NC hydrogels. The TiO2@MS-SH nanoparticles act not only as multivalent crosslinkers to improve the mechanical properties of hydrogels under ultrasound irradiation but also as reactive oxygen species (ROS) generators to allow the use of TiO2@MS-SH/Nor-Dex NC hydrogels in SDT applications. Particularly, the TiO2@MS-SH/Nor-Dex NC hydrogels present tailorable microstructures, properties, and sonodynamic killing of bacteria through the modulation of the ultrasound frequency. Taken together, a versatile TiO2-based NC hydrogel platform prepared under ultrasonic interfacial crosslinking reactions is developed for advancing the applications in SDT.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, National Taiwan University, Taipei, Taiwan
- GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Yun Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
93
|
Meng N, Xu P, Wen C, Liu H, Gao C, Shen XC, Liang H. Near-infrared-II-activatable sulfur-deficient plasmonic Bi 2S 3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci 2023; 644:437-453. [PMID: 37126893 DOI: 10.1016/j.jcis.2023.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bismuth sulfide is widely used as an n-type semiconductor material in photocatalytic reactions. However, bismuth sulfide has poor absorption in the near-infrared region and low charge separation efficiency, limiting its application in phototherapy and sonodynamic therapy (SDT). In this study, we successfully synthesized an "all-in-one" phototheranostic nanoplatform, namely Bi2S3-x-Au@HA, based on a single second near-infrared (NIR-II) light-responsive Schottky-type Bi2S3-x-Au heterostructure for photoacoustic (PA) imaging-guided SDT-enhanced photodynamic therapy (PDT)/photothermal therapy (PTT). Bi2S3-x-Au@HA exhibits excellent NIR-II plasmonic and photothermal properties, rendering it with NIR-II PA imaging capabilities for accurate diagnosis. Additionally, the high-density sulfur vacancies constructed on the Bi2S3 surface cause it to possess a reduced band gap (1.21 eV) that can act as an electron trap. Using the density functional theory, we confirmed that the light and ultrasound-induced electrons are more likely to aggregate on the Au nanoparticle surface through interfacial self-assembly, which promotes electron-hole separation and enhances photocatalytic activity with increased reactive oxygen species (ROS) generation. With a further modification of hyaluronic acid (HA), Bi2S3-x-Au@HA can selectively target cancer cells through HA and CD44 protein interactions. Both in vitro and in vivo experiments demonstrated that Bi2S3-x-Au@HA effectively suppressed tumor growth through SDT-enhanced PTT/PDT under a single NIR-II laser and ultrasound irradiation with negligible toxicity. Our findings provide a framework for fabricating Schottky-type heterostructures as single NIR-II light-responsive nanotheranostic agents for PA imaging-guided cancer phototherapy.
Collapse
Affiliation(s)
- Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
94
|
Wen M, Zhao Y, Qiu P, Ren Q, Tao C, Chen Z, Yu N. Efficient sonodynamic ablation of deep-seated tumors via cancer-cell-membrane camouflaged biocompatible nanosonosensitizers. J Colloid Interface Sci 2023; 644:388-396. [PMID: 37120887 DOI: 10.1016/j.jcis.2023.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Ultrasound (US)-triggered therapies are promising in cancer treatments, and their effectiveness can be enhanced through the proper camouflage of sonosensitizers. Herein, we have constructed cancer cell membrane (CCM)-camouflaged sonosensitizers for homotypic tumor-targeted sonodynamic therapy (SDT). The camouflaged sonosensitizers have been prepared by encapsulating hemoporfin molecules in poly(lactic acid) polymers (H@PLA) and extruding with CCM from Colon Tumor 26 (CT26) cells, forming the H@PLA@CCM. Under excitation with US, the hemoporfin encapsulated in H@PLA@CCM can convert O2 into cytotoxic 1O2, which exerts an efficient sonodynamic effect. The H@PLA@CCM nanoparticles show enhanced cellular internalization to CT26 cells compared to H@PLA, and they also can be more efficiently engulfed by CT26 cells than by mouse breast cancer cells, due to the homologous targeting ability of CT26 CCM. After the intravenous injection, the blood circulation half-life of H@PLA@CCM is determined to be 3.23 h which is 4.3-time that of H@PLA. With high biosafety, homogeneous targeting ability, and sonodynamic effect, the combination of H@PLA@CCM and US irradiation has induced significant apoptosis and necrosis of tumor cells through the efficient SDT, achieving the strongest inhibition rate of tumors among other groups. This study provides insights into designing efficient and targeted cancer therapies using CCM-camouflaged sonosensitizers.
Collapse
Affiliation(s)
- Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaoyu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
95
|
Yang M, Ren W, Cui H, Qin Q, Wang Q, Zhu W, Wu X, Pan C, Qi X, Wu A. Ginsenoside Rk1-Loaded Manganese-Doped Hollow Titania for Enhancing Tumor Sonodynamic Therapy via Upregulation of Intracellular Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20800-20810. [PMID: 37078779 DOI: 10.1021/acsami.3c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amplifying the intracellular reactive oxygen species (ROS) level remains an urgent challenge for efficient sonodynamic therapy (SDT) of tumors. Herein, by loading ginsenoside Rk1 with manganese-doped hollow titania (MHT), a Rk1@MHT sonosensitizer was conceived to strengthen the outcome of tumor SDT. The results verify that manganese-doping remarkably elevates the UV-visible absorption and decreases the bandgap energy of titania from 3.2 to 3.0 eV, which improves ROS production under ultrasonic irradiation. Immunofluorescence and Western blot analysis demonstrate that ginsenoside Rk1 can block the critical protein of the glutathione synthesis pathway, glutaminase, thus enhancing intracellular ROS by eliminating the endogenous glutathione-depleted pathway of ROS. Manganese-doping confers the nanoprobe T1-weighted MRI function (r2/r1 = 1.41). Moreover, the in vivo tests confirm that Rk1@MHT-based SDT eradicates liver cancer in tumor-bearing mice via dual upregulation of intracellular ROS production. In summary, our study provides a new strategy for designing high-performance sonosensitizer to achieve noninvasive cancer treatment.
Collapse
Affiliation(s)
- Ming Yang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Haijing Cui
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Qiongyu Qin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Qiuye Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Weihao Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Xiaoxia Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315010, P. R. China
| | - Xiaopeng Qi
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
96
|
Zhao B, Li F, Wang J, Li Y, Wei Z, Li W, Ma Q, Wu X. W 18O 49/MnWO 4 heterojunction for highly efficient photocatalytic reduction of CO 2 under full spectrum light. J Colloid Interface Sci 2023; 643:393-402. [PMID: 37084619 DOI: 10.1016/j.jcis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Solar-energy-driven CO2 reduction for chemical reagents production, such as CH3OH, CH4 and CO, has tremendous potential for carbon neutrality in the energy industries. However, the low reduction efficiency limits its applicability. Herein, W18O49/MnWO4 (WMn) heterojunctions were prepared via one-step in-situ solvothermal process. Through this method, W18O49 tightly combined with the surface of MnWO4 nanofibers to form nanoflower heterojunction. It was found that under full spectrum light irradiation for 4 h, the yields of photoreduction of CO2 to CO, CH4 and CH3OH by 3-1 WMn heterojunction were 61.74, 71.30 and 18.98 μmol/g, respectively, which were 2.4, 1.8 and 1.1 times that of pristine W18O49, and ca.20 times that of pristine MnWO4 towards CO production. Furthermore, even in the air atmosphere, the WMn heterojunction still performed excellent photocatalytic performance. Systematic investigations demonstrated that the catalytic performance of WMn heterojunction was improved by superior light utilization and more efficient photo-generated carrier separation and migration as compared with W18O49 and MnWO4. Meanwhile, the intermediate products of the photocatalytic CO2 reduction process were also studied in detail by in-situ FTIR. Therefore, this study provides a new way for designing high efficiency of heterojunction for CO2 reduction.
Collapse
Affiliation(s)
- Baolin Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fuping Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wanqing Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiang Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
97
|
Ma J, Guo D, Ji X, Zhou Y, Liu C, Li Q, Zhang J, Fan C, Song H. Composite Hydrogel for Spatiotemporal Lipid Intervention of Tumor Milieu. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211579. [PMID: 36637436 DOI: 10.1002/adma.202211579] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Induction of immunogenic cell death (ICD) plays crucial roles in cancer immunotherapy, whereas its efficacy is severely compromised by redundant antioxidant defenses in cancer cells and aberrant lipid metabolism in immunosuppressive cell populations. In this work, it is found that hollow mesoporous CuS nanoparticles (NPs) possess an intrinsic capacity of inhibiting glutathione peroxidase 4 (GPX4). When loaded with an inhibitor of the ferroptosis suppressor protein 1 (FSP1), these NPs block two parallel redox systems and cooperate with near-infrared irradiation to reinforce ICD. A hydrogel co-delivering cancer-cell-targeting CuS NPs and immunosuppressive-cell-targeting sulfo-N-succinimidyl oleate (SSO) for spatiotemporal lipid intervention i further fabricated. While the CuS NPs augment ICD via synergistic lipid peroxidation, SSO reinstates immune perception via lipid metabolic reprogramming, thereby coordinately triggering robust innate and adaptive immunity to restrain tumor growth, relapse, and metastasis. This study provides an immunometabolic therapy via orchestrated lipid modulation in the tumor milieu.
Collapse
Affiliation(s)
- Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
98
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
99
|
Hu T, Shen W, Meng F, Yang S, Yu S, Li H, Zhang Q, Gu L, Tan C, Liang R. Boosting the Sonodynamic Cancer Therapy Performance of 2D Layered Double Hydroxide Nanosheet-Based Sonosensitizers Via Crystalline-to-Amorphous Phase Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209692. [PMID: 36780890 DOI: 10.1002/adma.202209692] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) has been a promising therapeutic modality for cancer because of its superior advantages compared with other therapeutic strategies. However, the current sonosensitizers used for SDT normally exhibit low activity for ultrasound (US)-induced reactive oxygen species (ROS) generation. Herein, the crystalline-to-amorphous phase transformation is reported as a simple but powerful strategy to engineer ultrathin 2D CoW-LDH and NiW-LDH nanosheets as highly efficient sonosensitizers for SDT. The phase transformation of CoW-LDH and NiW-LDH nanosheets from polycrystalline to amorphous ones is achieved through a simple acid etching treatment. Importantly, compared with the polycrystalline one, the amorphous CoW-LDH (a-CoW-LDH) nanosheets possess higher ROS generation activity under US irradiation, which is ≈17 times of the commercial TiO2 sonosensitizer. The results suggest that the enhanced performance of ultrathin a-CoW-LDH nanosheets for US-induced ROS generation may be attributed to the phase transformation-induced defect generation and electronic structure changes. After polyethylene glycol modification, the a-CoW-LDH nanosheets can serve as a high-efficiency sonosensitizer for SDT to achieve cell death in vitro and tumor eradication in vivo under US irradiation.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weicheng Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
100
|
Sun L, Cao Y, Li W, Wang L, Ding P, Lu Z, Ma F, Wang Z, Pei R. Perovskite-Type Manganese Vanadate Sonosensitizers with Biodegradability for Enhanced Sonodynamic Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300101. [PMID: 36970774 DOI: 10.1002/smll.202300101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) has attracted intensive attention, but is still hindered by low sonosensitization and non-biodegradability of the traditional sonosensitizers. Herein, perovskite-type manganese vanadate (MnVO3 ) sonosensitizers integrating high reactive oxide species (ROS) production efficiency and appropriate bio-degradability are developed for enhanced SDT. Taking advantage of the intrinsic properties of perovskites such as narrow bandgap and substantial oxygen vacancies, MnVO3 shows a facile ultrasound (US)-triggered electrons-holes separation and restrained recombination, thus enhancing the ROS quantum yield in SDT. Furthermore, MnVO3 exhibits a considerable chemodynamic therapy (CDT) effect under the acidic condition probably owing to the presence of manganese and vanadium ions. Due to the presence of high-valent vanadium, MnVO3 can also eliminate glutathione (GSH) within the tumor microenvironment, which synergistically amplifies the efficacy of SDT and CDT. Importantly, the perovskite structure bestows MnVO3 with superior biodegradability, which alleviates the long-term presence of residues in metabolic organs after therapeutic actions. Based on these characteristics, US-assisted MnVO3 achieves an excellent antitumor outcome along with low systemic toxicity. Overall, perovskite-type MnVO3 may be promising sonosensitizers for highly efficient and safe treatment of cancer. The work attempts to explore the potential utility of perovskites in the design of degradable sonosensitizers.
Collapse
Affiliation(s)
- Lina Sun
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|