51
|
Aldamasy M, Iqbal Z, Li G, Pascual J, Alharthi F, Abate A, Li M. Challenges in tin perovskite solar cells. Phys Chem Chem Phys 2021; 23:23413-23427. [PMID: 34533139 DOI: 10.1039/d1cp02596a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perovskite solar cells are the rising star of third-generation photovoltaic technology. With a power conversion efficiency of 25.5%, the record efficiency is close to the theoretical maximum efficiency of a single-junction solar cell. However, lead toxicity threatens commercialization efforts and market accessibility. In this context, Sn-based perovskites are a safe alternative. Nevertheless, the efficiency of Sn-based devices falls far behind the efficiency of Pb-based counterparts. This concise review sheds light on the challenges that the field faces toward making Sn-based perovskites the perovskite photovoltaic benchmark. We identified four key challenges: materials and solvents, film formation, Sn(II) oxidation, and energy band alignment. We illustrate every single challenge and highlight the most successful attempts to overcome them. Finally, we provide our opinion on the most promising trends of this field in the future.
Collapse
Affiliation(s)
- Mahmoud Aldamasy
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany. .,Egyptian Petroleum Research Institute, Nasr City, P.O. 11727, Cairo, Egypt
| | - Zafar Iqbal
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Guixiang Li
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Jorge Pascual
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Fahad Alharthi
- Chemistry Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Antonio Abate
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany. .,Chemistry Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meng Li
- Department of Novel Materials and Interfaces for Photovoltaic Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany. .,Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
52
|
Jokar E, Chuang HS, Kuan CH, Wu HP, Hou CH, Shyue JJ, Wei-Guang Diau E. Slow Passivation and Inverted Hysteresis for Hybrid Tin Perovskite Solar Cells Attaining 13.5% via Sequential Deposition. J Phys Chem Lett 2021; 12:10106-10111. [PMID: 34633820 DOI: 10.1021/acs.jpclett.1c03107] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we report a sequential deposition procedure to passivate the surface of a hybrid mixed cationic tin perovskite (E1G20) with phenylhydrazinium thiocyanate (PHSCN) dissolved in trifluoroethanol solvent. The photoluminescence lifetime of the PHSCN film was enhanced by a factor of 6, while the charge-extraction rate from perovskite to C60 layer was enhanced by a factor of 2.5, in comparison to those of the E1G20 film. A slow surface passivation was observed; the performance of the PHSCN device improved upon increasing the storage period to attain an efficiency of 13.5% for a current-voltage scan in the forward bias direction. An inverted effect of hysteresis was observed in that the efficiency of the forward scan was greater than that of the reverse scan. An ion-migration model as a result of the effect of the phenylhydrazinium surface passivation is proposed to account for the observed phenomena. The device was stable upon shelf storage in a glovebox for 3000 h.
Collapse
Affiliation(s)
- Efat Jokar
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - He-Shiang Chuang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Chun-Hsiao Kuan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hui-Ping Wu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
53
|
Wu G, Liang R, Zhang Z, Ge M, Xing G, Sun G. 2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103514. [PMID: 34590421 DOI: 10.1002/smll.202103514] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Indexed: 05/25/2023]
Abstract
2D metal-halide perovskites have attracted intense research interest due to superior long-term stability under ambient environments. Compared to their 3D analog, the alternate arrangement of organic and inorganic layers leads to forming a multilayer quantum well (MQW), which endows 2D perovskites with anisotropic optoelectronic properties. In addition, the spacer layer functions as a hydrophobic barrier to effectively prevent 2D perovskite films from ion migration and moisture penetrating, thus realizing outstanding stability. Recently, 2D perovskites have been widely developed with abundant species. The stunning photovoltaic performance with the coexistence of long-term stability and high-power conversion efficiency (PCE) has been realized in 2D perovskite solar cells (PSCs), which paves an avenue for commercialization of PSCs. This review begins with an introduction of crystal structure and crystallization kinetics to illustrate the unique layer characters in 2D perovskites. Then, electron structure, excitons, dielectric confinement, and intrinsic stability properties are discussed in detail. Next, the photovoltaic performance based on recent Ruddlesden-Popper (RP), Dion-Jacobson (DJ), and alternating cations in the interlayer (ACI) phase 2D-PSCs is comprehensively summarized. Finally, the confronting challenges and strategies toward structural design and optoelectronic studies of 2D perovskites are proposed to offer insight into the advanced underlying properties of this family of materials.
Collapse
Affiliation(s)
- Guangbao Wu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Rui Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Mingzheng Ge
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
54
|
Wang KL, Zhou YH, Lou YH, Wang ZK. Perovskite indoor photovoltaics: opportunity and challenges. Chem Sci 2021; 12:11936-11954. [PMID: 34667561 PMCID: PMC8457370 DOI: 10.1039/d1sc03251h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
With the rapid development of the Internet of Things (IoTs), photovoltaics (PVs) has a vast market supply gap of billion dollars. Moreover, it also puts forward new requirements for the development of indoor photovoltaic devices (IPVs). In recent years, PVs represented by organic photovoltaic cells (OPVs), silicon solar cells, dye-sensitized solar cells (DSSCs), etc. considered for use in IoTs mechanisms have also been extensively investigated. However, there are few reports on the indoor applications of perovskite devices, even though it has the advantages of better performance. In fact, perovskite has the advantages of better bandgap adjustability, lower cost, and easier preparation of large-area on flexible substrates, compared with other types of IPVs. This review starts from the development status of IoTs and investigates the cost, technology, and future trends of IPVs. We believe that perovskite photovoltaics is more suitable for indoor applications and review some strategies for fabricating high-performance perovskite indoor photovoltaic devices (IPVs). Finally, we also put forward a perspective for the long-term development of perovskite IPVs.
Collapse
Affiliation(s)
- Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Yu-Hang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University Suzhou 215006 China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
55
|
Repair Strategies for Perovskite Solar Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Singh S, Kabra D. Comparative Study of Recombination Dynamics in Optimized Composition of Sn- Versus Pb-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42297-42306. [PMID: 34435763 DOI: 10.1021/acsami.1c14152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The energy band gaps of Pb halide perovskites are higher than the optimal band gap required for single-junction solar cells, governed by the Shockley-Queisser radiative limit. The pure Sn and Pb-Sn mixed-based perovskites have drawn significant attention due to their ability to lead to lower band gaps and open a new door for all perovskite tandem applications. There has been continuous progress toward the rapid improvement in the power conversion efficiency of Sn and Pb-Sn mixed-based perovskite solar cells (PSCs). Along with efforts for efficiency, it is worth analyzing the in-depth recombination dynamics for further development of Sn-based PSCs. The lower bimolecular recombination rate constant (k) is often attributed to the high performance of PSCs. Herein, we study the role of "B" cations in charge carrier recombination dynamics (CCRD) of ABX3 (A = MA+, FA+, and Cs+; B = Pb2+, Sn2+, and X = I-)-based PSCs. We fabricated p-i-n configuration-based FA0.95Cs0.05PbI3 (pure Pb), MA0.20FA0.75Cs0.05SnI3 (pure Sn), and (MAPbI3)0.4(FASnI3)0.6 (Pb-Sn mixed) PSCs and compared the CCRD of all the three PSCs. We optimized the Sn-based perovskite thin film (pure Sn) in terms of moisture and thermal stability in order to minimize the error due to perovskite degradation. We note that despite having lower open-circuit voltage (VOC), a pure Sn-based PSC shows lower k than that of Pb-Sn mixed and pure Pb-based PSCs, which is a contradictory result. This slow relaxation lifetime of the charge carrier in Sn-based PSCs can be correlated with recombination through the defect states without introducing the quasi-Fermi-level splitting. Furthermore, our results suggest that the rate law of charge carrier decay has nonlinear dependence of k on n in Sn-based PSCs, whereas it is linear in the other two cases.
Collapse
Affiliation(s)
- Shivam Singh
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dinesh Kabra
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
57
|
Yu BB, Chen Z, Zhu Y, Wang Y, Han B, Chen G, Zhang X, Du Z, He Z. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102055. [PMID: 34296476 DOI: 10.1002/adma.202102055] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Indexed: 05/11/2023]
Abstract
As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures.
Collapse
Affiliation(s)
- Bin-Bin Yu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yudong Zhu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyu Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bing Han
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guocong Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xusheng Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zheng Du
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhubing He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
58
|
Li F, Hou X, Wang Z, Cui X, Xie G, Yan F, Zhao XZ, Tai Q. FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40656-40663. [PMID: 34406735 DOI: 10.1021/acsami.1c11751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nontoxic tin-based perovskite solar cells (Sn-PSCs) as a promising alternative to toxic Pb-PSCs have drawn great attention in recent years for their environmental friendliness and unique optoelectronic properties. However, both the efficiency and long-term stability of Sn-PSCs are considerably inferior to those of Pb-based ones. One of the main reasons is the difficulty in obtaining high-quality Sn-perovskite films due to the rapid crystallization of Sn-perovskites, which also results in poor device reproducibility. Here, we report a novel cation exchange strategy to prepare high-quality formamidinium tin triiodide (FASnI3) perovskite films with a better controlled crystallization process and improved reproducibility, which allows easy access to smooth and pinhole-free perovskite films with oriented crystal growth, enlarged grain size, and reduced trap-state density. The corresponding Sn-PSCs show excellent photovoltaic performance with a champion efficiency of 9.11%, comparable to the best results reported for FASnI3-PSCs, and the devices also demonstrate outstanding long-term stability without encapsulation. Our results offer a practical strategy for fabricating Sn-PSCs with superb performance and stability.
Collapse
Affiliation(s)
- Fangjie Li
- The Insititute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Xiaoyi Hou
- The Insititute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhen Wang
- The Insititute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaxia Cui
- The Insititute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Qidong Tai
- The Insititute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
59
|
Li T, Luo S, Wang X, Zhang L. Alternative Lone-Pair ns 2 -Cation-Based Semiconductors beyond Lead Halide Perovskites for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008574. [PMID: 34060151 DOI: 10.1002/adma.202008574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Lead halide perovskites have emerged in the last decade as advantageous high-performance optoelectronic semiconductors, and have undergone rapid development for diverse applications such as solar cells, light-emitting diodes , and photodetectors. While material instability and lead toxicity are still major concerns hindering their commercialization, they offer promising prospects and design principles for developing promising optoelectronic materials. The distinguished optoelectronic properties of lead halide perovskites stem from the Pb2+ cation with a lone-pair 6s2 electronic configuration embedded in a mixed covalent-ionic bonding lattice. Herein, we summarize alternative Pb-free semiconductors containing lone-pair ns2 cations, intending to offer insights for developing potential optoelectronic materials other than lead halide perovskites. We start with the physical underpinning of how the ns2 cations within the material lattice allow for superior optoelectronic properties. We then review the emerging Pb-free semiconductors containing ns2 cations in terms of structural dimensionality, which is crucial for optoelectronic performance. For each category of materials, the research progresses on crystal structures, electronic/optical properties, device applications, and recent efforts for performance enhancements are overviewed. Finally, the issues hindering the further developments of studied materials are surveyed along with possible strategies to overcome them, which also provides an outlook on the future research in this field.
Collapse
Affiliation(s)
- Tianshu Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shulin Luo
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xinjiang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
60
|
Xu R, Dong H, Li P, Cao X, Li H, Li J, Wu Z. Formamidine Acetate Induces Regulation of Crystallization and Stabilization in Sn-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33218-33225. [PMID: 34228914 DOI: 10.1021/acsami.1c05097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sn-based perovskite solar cells (PSCs) have received extensive attention for photovoltaic applications. Nevertheless, the low crystallization quality of the film due to rapid crystallization results in high trap density of states, which is one of the main reasons for poor performance of Sn-based PSC devices. In this work, we developed a strategy for the formation of FASnI3 perovskites by introducing the addition of formamidine acetate (FAAc). Benefiting from the iodide-coordinated cation (FA+) and crystallization-regulated anion (AC-), FAAc could achieve the high-quality films with suppressed defects. The champion power conversion efficiency (PCE) of FAAc-modified PSC devices reached 9.96%, reserving 82% of their initial PCE of the light aging test over 1500 h. We hope that our finding could provide implications on the high-performance and stable Sn-based PSCs.
Collapse
Affiliation(s)
- Ruoyao Xu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Peizhou Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xiangrong Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Haomiao Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
61
|
Qiu J, Lin Y, Ran X, Wei Q, Gao X, Xia Y, Müller-Buschbaum P, Chen Y. Efficient and stable Ruddlesden-Popper layered tin-based perovskite solar cells enabled by ionic liquid-bulky spacers. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1075-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
62
|
Wang T, Zheng F, Tang G, Cao J, You P, Zhao J, Yan F. 2D WSe 2 Flakes for Synergistic Modulation of Grain Growth and Charge Transfer in Tin-Based Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004315. [PMID: 34105283 PMCID: PMC8188186 DOI: 10.1002/advs.202004315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Indexed: 05/27/2023]
Abstract
Tin (Sn)-based perovskites with favorable optoelectronic properties and ideal bandgaps have emerged as promising alternatives to toxic lead (Pb)-based perovskites for photovoltaic applications. However, it is challenging to obtain high-quality Sn-based perovskite films by solution process. Here, liquid-exfoliated 2D transition-metal dichalcogenides (i.e., MoS2 , WS2 , and WSe2 ) with smooth and defect-free surfaces are applied as growth templates for spin-coated FASnI3 perovskite films, leading to van der Waals epitaxial growth of perovskite grains with a growth orientation along (100). The authors find that WSe2 has better energy alignment with FASnI3 than MoS2 and WS2 and results in a cascade band structure in resultant perovskite solar cells (PSCs), which can facilitate hole extraction and suppress interfacial charge recombination in the devices. The WSe2 -modified PSCs show a power conversion efficiency up to 10.47%, which is among the highest efficiency of FASnI3 -based PSCs. The appealing solution phase epitaxial growth of FASnI3 perovskite on 2D WSe2 flakes is expected to find broad applications in optoelectronic devices.
Collapse
Affiliation(s)
- Tianyue Wang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Fangyuan Zheng
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Guanqi Tang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Jiupeng Cao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Peng You
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloon999077Hong Kong
| |
Collapse
|
63
|
Rao L, Meng X, Xiao S, Xing Z, Fu Q, Wang H, Gong C, Hu T, Hu X, Guo R, Chen Y. Wearable Tin-Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angew Chem Int Ed Engl 2021; 60:14693-14700. [PMID: 33835645 DOI: 10.1002/anie.202104201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Tin-based perovskite solar cells (PSCs) demonstrate a potential application in wearable electronics due to its hypotoxicity. However, poor crystal quality is still the bottleneck for achieving high-performance flexible devices. In this work, graphite phase-C3 N4 (g-C3 N4 ) is applied into tin-based perovskite as a crystalline template, which delays crystallization via a size-effect and passivates defects simultaneously. The double hydrogen bond between g-C3 N4 and formamidine cation can optimize lattice matching and passivation. Moreover, the two-dimensional network structure of g-C3 N4 can fit on the crystals, resulting an enhanced hydrophobicity and oxidation resistance. Therefore, the flexible tin-based PSCs with g-C3 N4 realize a stabilized power conversion efficiency (PCE) of 8.56 % with negligible hysteresis. In addition, the PSCs can maintain 91 % of the initial PCE after 1000 h under N2 environment and keep 92 % of their original PCE after 600 cycles at a curvature radius of 3 mm.
Collapse
Affiliation(s)
- Li Rao
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiangchuan Meng
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Shuqin Xiao
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi Xing
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qingxia Fu
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Hongyu Wang
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chenxiang Gong
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Rui Guo
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Advanced Scientific Research (iASR)/, Key Laboratory of Functional Organic Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
64
|
Rao L, Meng X, Xiao S, Xing Z, Fu Q, Wang H, Gong C, Hu T, Hu X, Guo R, Chen Y. Wearable Tin‐Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Li Rao
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiangchuan Meng
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Shuqin Xiao
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhi Xing
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Qingxia Fu
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Hongyu Wang
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Chenxiang Gong
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Ting Hu
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiaotian Hu
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Rui Guo
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Advanced Scientific Research (iASR)/ Key Laboratory of Functional Organic Small Molecules for Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
65
|
Lanzetta L, Webb T, Zibouche N, Liang X, Ding D, Min G, Westbrook RJE, Gaggio B, Macdonald TJ, Islam MS, Haque SA. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat Commun 2021; 12:2853. [PMID: 33990560 PMCID: PMC8121806 DOI: 10.1038/s41467-021-22864-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Tin perovskites have emerged as promising alternatives to toxic lead perovskites in next-generation photovoltaics, but their poor environmental stability remains an obstacle towards more competitive performances. Therefore, a full understanding of their decomposition processes is needed to address these stability issues. Herein, we elucidate the degradation mechanism of 2D/3D tin perovskite films based on (PEA)0.2(FA)0.8SnI3 (where PEA is phenylethylammonium and FA is formamidinium). We show that SnI4, a product of the oxygen-induced degradation of tin perovskite, quickly evolves into iodine via the combined action of moisture and oxygen. We identify iodine as a highly aggressive species that can further oxidise the perovskite to more SnI4, establishing a cyclic degradation mechanism. Perovskite stability is then observed to strongly depend on the hole transport layer chosen as the substrate, which is exploited to tackle film degradation. These key insights will enable the future design and optimisation of stable tin-based perovskite optoelectronics.
Collapse
Affiliation(s)
- Luis Lanzetta
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas Webb
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | | - Xinxing Liang
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Dong Ding
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Ganghong Min
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Robert J E Westbrook
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Benedetta Gaggio
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas J Macdonald
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | | - Saif A Haque
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
66
|
Ceratti DR, Cohen AV, Tenne R, Rakita Y, Snarski L, Jasti NP, Cremonesi L, Cohen R, Weitman M, Rosenhek-Goldian I, Kaplan-Ashiri I, Bendikov T, Kalchenko V, Elbaum M, Potenza MAC, Kronik L, Hodes G, Cahen D. The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing. MATERIALS HORIZONS 2021; 8:1570-1586. [PMID: 34846465 DOI: 10.1039/d1mh00006c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr3 single crystals (A = CH3NH3+, methylammonium (MA); HC(NH2)2+, formamidinium (FA); and cesium, Cs+). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs+ protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb2+. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br3- defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
Collapse
Affiliation(s)
- D R Ceratti
- Weizmann Institute of Science, Department of Materials and Interfaces, 7610001, Rehovot, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lin Z, Su Y, Dai R, Liu G, Yang J, Sheng W, Zhong Y, Tan L, Chen Y. Ionic Liquid-Induced Ostwald Ripening Effect for Efficient and Stable Tin-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15420-15428. [PMID: 33759500 DOI: 10.1021/acsami.1c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tin-based perovskite solar cells (PVSCs) are regarded as the most promising alternative among lead-free PVSCs. However, the rapid crystallization for tin-based perovskite tends to cause inferior film morphology and abundant defect states, which make poor photovoltaic performance. Here, 1-butyl-3-methylimidazolium bromide (BMIBr) ionic liquids (ILs) with strong polarity and a low melting point are first employed to produce the Ostwald ripening effect and obtain high-quality tin-based perovskite films with a large grain size. Meanwhile, the non-radiative recombination ascribed from defect states can also be effectively reduced for BMIBr-treated perovskite films. Consequently, a photoelectric conversion efficiency (PCE) of 10.09% for inverted tin-based PVSCs is attained by the Ostwald ripening effect. Moreover, the unencapsulated devices with BMIBr retain near 85% of the original PCE in a N2 glovebox beyond 1200 h and about 40% of the original PCE after exposure to air for 48 h.
Collapse
Affiliation(s)
- Zhuojia Lin
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yang Su
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Runying Dai
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Gengling Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jia Yang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wangping Sheng
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yang Zhong
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Licheng Tan
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yiwang Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
68
|
Wang M, Wang W, Ma B, Shen W, Liu L, Cao K, Chen S, Huang W. Lead-Free Perovskite Materials for Solar Cells. NANO-MICRO LETTERS 2021; 13:62. [PMID: 34138241 PMCID: PMC8187519 DOI: 10.1007/s40820-020-00578-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites. Some novel non- or low-toxic perovskite materials have been explored for development of environmentally friendly lead-free perovskite solar cells (PSCs). This review studies the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation, summarizes the theoretical basis of lead-free perovskites, and screens out some promising lead-free candidates with suitable bandgap, optical, and electrical properties. Then, it reports notable achievements for the experimental studies of lead-free perovskites to date, including the crystal structure and material bandgap for all of lead-free materials and photovoltaic performance and stability for corresponding devices. The review finally discusses challenges facing the successful development and commercialization of lead-free PSCs and predicts the prospect of lead-free PSCs in the future.
Collapse
Affiliation(s)
- Minghao Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Wei Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Ben Ma
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Wei Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Lihui Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Kun Cao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, People's Republic of China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
69
|
Zhu M, Cao G, Zhou Z. Recent progress toward highly efficient tin‐based perovskite (ASnX3) solar cells. NANO SELECT 2021. [DOI: 10.1002/nano.202000249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mingzhe Zhu
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Guorui Cao
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P. R. China
| |
Collapse
|
70
|
Choi YC, Jung KW. Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications. NANOMATERIALS 2020; 10:nano10112284. [PMID: 33218079 PMCID: PMC7698906 DOI: 10.3390/nano10112284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Despite their comparable performance to commercial solar systems, lead-based perovskite (Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial applications. To address these issues, two types of Pb-free materials have been proposed as alternatives to Pb-perovskite: perovskite-based and non-perovskite-based materials. In this review, we summarize the recent progress on solar cells based on antimony/bismuth (Sb/Bi) chalcohalides, representing Sb/Bi non-perovskite semiconductors containing chalcogenides and halides. Two types of ternary and quaternary chalcohalides are described, with their classification predicated on the fabrication method. We also highlight their utility as interfacial layers for improving other solar cells. This review provides clues for improving the performances of devices and design of multifunctional solar systems.
Collapse
|