51
|
Li L, Cao S, Wu Z, Guo R, Xie L, Wang L, Tang Y, Li Q, Luo X, Ma L, Cheng C, Qiu L. Modulating Electron Transfer in Vanadium-Based Artificial Enzymes for Enhanced ROS-Catalysis and Disinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108646. [PMID: 35181946 DOI: 10.1002/adma.202108646] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Indexed: 02/05/2023]
Abstract
Nanomaterials-based artificial enzymes (AEs) have flourished for more than a decade. However, it is still challenging to further enhance their biocatalytic performances due to the limited strategies to tune the electronic structures of active centers. Here, a new path is reported for the de novo design of the d electrons of active centers by modulating the electron transfer in vanadium-based AEs (VOx -AE) via a unique Zn-O-V bridge for efficient reactive oxygen species (ROS)-catalysis. Benefiting from the electron transfer from Zn to V, the V site in VOx -AE exhibits a lower valence state than that in V2 O5 , which results in charge-filled V-dyz orbital near the Fermi level to interfere with the formation of sigma bonds between the V- d z 2 and O-pz orbitals in H2 O2 . The VOx -AE exhibits a twofold Vmax and threefold turnover number than V2 O5 when catalyzing H2 O2 . Meanwhile, the VOx -AE shows enhanced catalytic eradication of drug-resistant bacteria and achieves comparable wound-treatment indexes to vancomycin. This modulating charge-filling of d electrons provides a new direction for the de novo design of nanomaterials-based AEs and deepens the understanding of ROS-catalysis.
Collapse
Affiliation(s)
- Ling Li
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
- Department of Ultrasound Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Sujiao Cao
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Zihe Wu
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Ruiqian Guo
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Lan Xie
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Liyun Wang
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Yuanjiao Tang
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Qi Li
- The First Affiliated Hospital of Hainan Medical University Hainan 570102 China
| | - Xianglin Luo
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Lang Ma
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Li Qiu
- Department of Ultrasound College of Polymer Science and Engineering National Clinical Research Center for Geriatrics Med‐X Center for Materials West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
52
|
Cao S, Zhao Z, Zheng Y, Wu Z, Ma T, Zhu B, Yang C, Xiang X, Ma L, Han X, Wang Y, Guo Q, Qiu L, Cheng C. A Library of ROS-Catalytic Metalloenzyme Mimics with Atomic Metal Centers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200255. [PMID: 35132711 DOI: 10.1002/adma.202200255] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Indexed: 02/05/2023]
Abstract
MetalN-coordinated centers supported by carbonaceous substrates have emerged as promising artificial metalloenzymes (AMEs) to mimic the biocatalytic effects of their natural counterparts. However, the synthesis of well-defined AMEs that contain different atomic metalN centers but present similar physicochemical and coordination structures remains a substantial challenge. Here, 20 different types of AMEs with similar geometries and well-defined atomic metalN-coordinated centers are synthesized to compare and disclose the catalytic activities, substrate selectivities, kinetics, and reactive oxygen species (ROS) products. Their oxidase (OXD)-, peroxidase (POD)-, and halogen peroxidase (HPO)-mimetic catalytic behaviors are systematically explored. The Fe-AME shows the highest OXD- and HPO-mimetic activities compared to the other AMEs due to its high vmax (0.927 × 10-6 m s-1 ) and low Km (1.070 × 10-3 m), while the Cu-AME displays the best POD-like performance. Furthermore, theoretical calculation reveals that the ROS-catalytic paths and activities are highly related to the electronic structures of the metal centers. Benefiting from its facile adsorption of H2 O2 molecule and lower energy barrier to generating •O2 - , the Fe-AME displays higher ROS-catalytic performances than the Mn-AME. The engineered AMEs show not only remarkably high ROS-catalytic performances but also provide new guidance toward developing metalN-coordinated biocatalysts for broad application fields.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Zhenyang Zhao
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Yijuan Zheng
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Zihe Wu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Tian Ma
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Bihui Zhu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Chengdong Yang
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Xi Xiang
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Lang Ma
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610065 China
| | - Yi Wang
- Center for Microscopy and Analysis Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
- Max Planck Institute for Solid State Research Heisenbergstraße 1 Stuttgart 70569 Germany
| | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
- Department of Orthopaedics The Affiliated Hospital of Guizhou Medical University Yunyan District Guiyang City Guizhou Province 550004 China
| | - Li Qiu
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound West China Hospital College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
53
|
Zhou X, Zhang S, Liu Y, Meng J, Wang M, Sun Y, Xia L, He Z, Hu W, Ren L, Chen Z, Zhang X. Antibacterial Cascade Catalytic Glutathione-Depleting MOF Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11104-11115. [PMID: 35199514 DOI: 10.1021/acsami.1c24231] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanozymes with peroxidase-like activity have great application potential in combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, the near-neutral pH and high glutathione (GSH) levels in the bacterial infection microenvironment severely limit their applications in antibacterial therapy. In this work, a metal-organic framework (MOF)-based cascade catalytic glutathione-depleting system named MnFe2O4@MIL/Au&GOx (MMAG) was constructed. The MMAG cascade-catalyzed glucose to provide H+ and produces a large amount of toxic reactive oxygen species. In addition, MMAG consumed GSH, which can result in bacterial death more easily. Systematic antibacterial experiments illustrated that MMAG has superior antibacterial effects on both Gram-positive bacteria and Gram-negative bacteria.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuai Zhang
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yan Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Muxue Wang
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Linbo Xia
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhaozhi He
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenxin Hu
- Harvard College, Harvard University, 209 Dunster Mail Center, 945 Memorial Drive, Cambridge, Massachusetts 02138, United States
| | - Lei Ren
- Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
54
|
Cheng Q, Xu M, Sun C, Yang K, Yang Z, Li J, Zheng J, Zheng Y, Wang R. Enhanced antibacterial function of a supramolecular artificial receptor-modified macrophage (SAR-Macrophage). MATERIALS HORIZONS 2022; 9:934-941. [PMID: 35037009 DOI: 10.1039/d1mh01813b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection has become a global concern owing to the significant morbidity and mortality. Although the phagocytosis of bacteria by immune cells acts as the front line to protect human body from invading pathogens, the relatively slow encounter and insufficient capture of bacteria by immune cells often lead to an inefficient clearance of pathogens. Herein, a supramolecular artificial receptor-modified macrophage (SAR-Macrophage) was developed to enhance the recognition and latch of bacteria in the systemic circulation, mediated via strong and multipoint host-guest interactions between the artificial receptors (cucurbit[7]uril) on the macrophage and the guest ligands (adamantane) selectively anchored on Escherichia coli (E. coli). As a result, the SAR-Macrophage could significantly accelerate the recognition of E. coli, catch and internalize more pathogens, which subsequently induced the M1 polarization of macrophages to generate ROS and effectively kill the intracellular bacteria. Therefore, the SAR-Macrophage represents a simple, yet powerful anti-bacterial approach.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Jun Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
55
|
Zhang Y, An Q, Zhang S, Ma Z, Hu X, Feng M, Zhang Y, Zhao Y. A healing promoting wound dressing with tailor-made antibacterial potency employing piezocatalytic processes in multi-functional nanocomposites. NANOSCALE 2022; 14:2649-2659. [PMID: 35134104 DOI: 10.1039/d1nr07386a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing a novel antibiotics-free antibacterial strategy is essential for minimizing bacterial resistance. Materials that not only kill bacteria but also promote tissue healing are especially challenging to achieve. Inspired by chemical conversion processes in living organisms, we develop a piezoelectrically active antibacterial device that converts ambient O2 and H2O to ROS by piezocatalytic processes. The device is achieved by mounting nanoscopic polypyrrole/carbon nanotube catalyst multilayers onto piezoelectric-dielectric films. Under stimuli by a hand-held massage device, the sterilizing rates for S. aureus and E. coli reach 84.11% and 94.85% after 10 minutes of operation, respectively. The antibacterial substrate at the same time preserves and releases drugs and presents negligible cytotoxicity. Animal experiments demonstrate that daily treatment for 10 minutes using the device effectively accelerates the healing of infected wounds on the backs of mice, promoting hair follicle generation and collagen deposition. We believe that this report provides a novel design approach for antibacterial strategies in medical treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Zequn Ma
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| | - Xiantong Hu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Mengchun Feng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
56
|
Rodrigues DP, Moreirinha C, Neves AIS, Freitas SC, Sequeira S, Russo S, Craciun MF, Almeida A, Alves H. Conversion of antibacterial activity of graphene‐coated textiles through surface polarity. NANO SELECT 2022. [DOI: 10.1002/nano.202100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniela P. Rodrigues
- CICECO – Aveiro Institute of Materials Physics Department University of Aveiro Aveiro 3810‐193 Portugal
- CESAM – Centre for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Catarina Moreirinha
- CESAM – Centre for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Ana I. S. Neves
- Centre for Graphene Science College of Engineering Mathematics and Physical Sciences University of Exeter Exeter EX4 4QF UK
| | - Sidónio C. Freitas
- CICECO – Aveiro Institute of Materials Physics Department University of Aveiro Aveiro 3810‐193 Portugal
| | - Sara Sequeira
- CICECO – Aveiro Institute of Materials Physics Department University of Aveiro Aveiro 3810‐193 Portugal
| | - Saverio Russo
- Centre for Graphene Science College of Engineering Mathematics and Physical Sciences University of Exeter Exeter EX4 4QF UK
| | - Monica F. Craciun
- Centre for Graphene Science College of Engineering Mathematics and Physical Sciences University of Exeter Exeter EX4 4QF UK
| | - Adelaide Almeida
- CESAM – Centre for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Helena Alves
- CICECO – Aveiro Institute of Materials Physics Department University of Aveiro Aveiro 3810‐193 Portugal
- Physics Department IST University of Lisbon Lisbon 1049‐001 Portugal
| |
Collapse
|
57
|
Fan X, Wu X, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. A Nanohook‐Equipped Bionanocatalyst for Localized Near‐Infrared‐Enhanced Catalytic Bacterial Disinfection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Fan
- Institute for Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
| | - Xizheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
| | - Fan Yang
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Lei Wang
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
- Center for Musculoskeletal Surgery Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Kai Ludwig
- Research Center for Electron Microscopy and Core Facility BioSupraMol Institute for Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 36a 14195 Berlin Germany
| | - Lang Ma
- Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Andrej Trampuz
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
- Center for Musculoskeletal Surgery Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
| | - Rainer Haag
- Institute for Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
58
|
Zhang Y, Cheng Y, Yu Y, Li J, Hu Y, Gao Y, Huang S, Wang W, Zhang X. A Virus-like-inspired Nanoparticles Facilitates Bacterial Internalization for Enhanced Eradication of Drug-resistant Pathogen. NEW J CHEM 2022. [DOI: 10.1039/d2nj01868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence and rapid spread of bacterial resistance pose an extremely serious threat to treat infections. Inspired that the spiny surface structure of virus plays an important role in mediating...
Collapse
|
59
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
60
|
Sun C, Wang W, Sun X, Chu W, Yang J, Dai J, Ju Y. An intrinsically thermogenic nanozyme for synergistic antibacterial therapy. Biomater Sci 2021; 9:8323-8334. [PMID: 34783326 DOI: 10.1039/d1bm01390d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections with a high mortality rate have become serious health issues for human beings. As natural enzymes play an important role in the survival and proliferation of bacteria, effective inhibition of bacterial natural enzyme activities is important for antimicrobial therapy. Herein, a novel enzymatic antibacterial strategy, of enhancing nanozyme activity but reducing bacterial natural enzyme activity, is developed based on yolk-shell Fe2C@Fe3O4-PEG thermogenic nanozymes with highly magnetothermal properties and thermal-enhanced peroxidase-like activities. When applying an alternating magnetic field, the special yolk-shell Fe2C@Fe3O4-PEG nanozymes show a better magnetothermal effect than Fe2C (yolk) and Fe3O4 (shell) due to the increased value of their magnetic energy product, and the peroxidase-like activity of the nanozymes is further improved. Meanwhile, remarkably restrained by the enhanced magnetothermal effect from the nanozymes, typical natural enzyme activities of bacteria are detected with an inhibition rate of nearly 80%. Both in vitro and in vivo experiments exhibit superior synergistic antibacterial efficacy. The antimicrobial mechanisms are explained as the reduction of natural enzyme activities and the disruption of cell walls and membranes induced by the self-magnetothermal effect of nanozymes along with the production of abundant ˙OH radicals derived from the thermal-enhanced peroxidase-like activity of nanozymes. Overall, this work focuses on an intrinsically thermogenic nanozyme, which provides a potential platform for future synergistic antibacterial application.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenqian Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolian Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Weihua Chu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
61
|
Fan X, Wu X, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. A Nanohook-Equipped Bionanocatalyst for Localized Near-Infrared-Enhanced Catalytic Bacterial Disinfection. Angew Chem Int Ed Engl 2021; 61:e202113833. [PMID: 34825759 PMCID: PMC9303663 DOI: 10.1002/anie.202113833] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/27/2022]
Abstract
Novel bionanocatalysts have opened a new era in fighting multidrug‐resistant (MDR) bacteria. They can kill bacteria by elevating the level of reactive oxygen species (ROS) in the presence of chemicals like H2O2. However, ROSs’ ultrashort diffusion distance limit their bactericidal activity. We present a nanohook‐equipped bionanocatalyst (Ni@Co‐NC) with bacterial binding ability that shows robust ROS‐generating capacity under physiological H2O2 levels. The Ni@Co‐NC's pH‐dependent performance confines its effects to the biofilm microenvironment, leaving healthy tissue unaffected. Furthermore, it can generate heat upon NIR laser irradiation, enhancing its catalytic performance while achieving heat ablation against bacteria. With the Ni@Co‐NC's synergistic effects, bacterial populations fall by >99.99 %. More surprisingly, the mature biofilm shows no recurrence after treatment with the Ni@Co‐NC, demonstrating its tremendous potential for treating MDR bacterial related infections.
Collapse
Affiliation(s)
- Xin Fan
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Biology, Chemistry, Pharmacy, GERMANY
| | - Xizheng Wu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Fan Yang
- Freie Universitat Berlin, Physics, GERMANY
| | - Lei Wang
- Charite Universitatsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Center for Musculoskeletal Surgery, GERMANY
| | - Kai Ludwig
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Biology, Chemistry, Pharmacy, GERMANY
| | - Lang Ma
- Sichuan University, Department of Ultrasound, CHINA
| | - Andrej Trampuz
- Charite Universitatsmedizin Berlin, Center for Musculoskeletal Surgery, GERMANY
| | - Chong Cheng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Rainer Haag
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Takustr. 3, Institute of Chemistry and Biochemistry, 14195, Berlin, GERMANY
| |
Collapse
|
62
|
Wu Y, Jiang W, Huo S, Li S, Xu Y, Ding S, Zhou J, Liu H, Lv W, Wang Y. Nano-metal-organic-frameworks for treating H 2O 2-Secreting bacteria alleviate pulmonary injury and prevent systemic sepsis. Biomaterials 2021; 279:121237. [PMID: 34749071 DOI: 10.1016/j.biomaterials.2021.121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
As a vital bacteria-secreted toxin, hydrogen peroxide (H2O2) can destroy infected tissues and increase vascular permeability, leading to life-threatening systemic bacteremia or sepsis. No strategy that can alleviate H2O2-induced injury and prevent systemic sepsis has been reported. Herein, as a proof of concept, we demonstrate the use of H2O2-reactive metal-organic framework nanosystems (MOFs) for treating H2O2-secreting bacteria. In mice infected with Streptococcus pneumoniae (S. pneumoniae) isolated from patients, MOFs efficiently accumulate in the lungs after systemic administration due to infection-induced alveolar-capillary barrier dysfunction. Moreover, MOFs sequester pneumococcal H2O2, reduce endothelial DNA damage, and prevent systemic dissemination of bacteria. In addition, this nanosystem exhibits excellent chemodynamic bactericidal effects against drug-resistant bacteria. Through synergistic therapy with the antibiotic ampicillin, MOFs eliminate over 98% of invading S. pneumoniae, resulting in a survival rate of greater than 90% in mice infected with a lethal dose of S. pneumoniae. This work opens up new paths for the clinical treatment of toxin-secreting bacteria.
Collapse
Affiliation(s)
- Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Shuya Li
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Youcui Xu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jing Zhou
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hang Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Weifu Lv
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China.
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China; Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
63
|
Chibh S, Katoch V, Singh M, Prakash B, Panda JJ. Miniatured Fluidics-Mediated Modular Self-Assembly of Anticancer Drug-Amino Acid Composite Microbowls for Combined Chemo-Photodynamic Therapy in Glioma. ACS Biomater Sci Eng 2021; 7:5654-5665. [PMID: 34724373 DOI: 10.1021/acsbiomaterials.1c01023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A particulate carrier with the ability to load a combination of therapeutic molecules acting via diverse modes to initiate cancer cell ablation would help heighten anticancer therapeutic outcomes and mitigate harmful side effects due to high doses of mono drug therapy. Moving a step closer, herein, we have developed doxorubicin-curcumin-amino acid-based composite microbowls (CMBs) following miniaturized fluid flow-based self-assembly. The CMBs were further exploited as dual chemo-photodynamic therapeutic agents in C6 glioma cells cultured in both two-dimensional (2D) monolayer and as three-dimensional (3D) spheroids. These CMBs showed synergistic and visible (blue)-light-sensitive cell-killing effects in both C6 cells and 3D spheroids. Furthermore, these bowl-shaped structures also demonstrated good stability and excellent in vitro cytocompatibility in C6 glioma cells. Our results indicated that CMBs with asymmetric cavities could potentially be used as a combinatorial drug carrier enabling simultaneous chemo- and phototherapy for effective cancer treatment. The use of blue light, from the visible part of the electromagnetic system, to generate the phototherapeutic effect further advocates for the ease and widespread applicability of the systems.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| |
Collapse
|
64
|
Yang Z, Fu X, Ma D, Wang Y, Peng L, Shi J, Sun J, Gan X, Deng Y, Yang W. Growth Factor-Decorated Ti 3 C 2 MXene/MoS 2 2D Bio-Heterojunctions with Quad-Channel Photonic Disinfection for Effective Regeneration of Bacteria-Invaded Cutaneous Tissue. SMALL 2021; 17:e2103993. [PMID: 34713567 DOI: 10.1002/smll.202103993] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Phototherapy has recently emerged as a competent alternative for combating bacterial infection without antibiotic-resistance risk. However, owing to the bacterial endogenous antioxidative glutathione (GSH), the exogenous reactive oxygen species (ROS) generated by phototherapy can hardly behave desired antibacterial effect. To address the daunting issue, a quad-channel synergistic antibacterial nano-platform of Ti3 C2 MXene/MoS2 (MM) 2D bio-heterojunctions (2D bio-HJs) are devised and fabricated, which possess photothermal, photodynamic, peroxidase-like (POD-like), and glutathione oxidase-like properties. Under near-infrared (NIR) laser exposure, the 2D bio-HJs both yield localized heating and raise extracellular ROS level, leading to bacterial inactivation. Synchronously, Mo4+ ions can easily invade into ruptured bacterial membrane, arouse intracellular ROS, and deplete intracellular GSH. Squeezed between the "ROS hurricane" from both internal and external sides, the bacteria are hugely slaughtered. After being further loaded with fibroblast growth factor-21 (FGF21), the 2D bio-HJs exhibit benign cytocompatibility and boost cell migration in vitro. Notably, the in vivo evaluations employing a mouse-infected wound model demonstrate the excellent photonic disinfection towards bacterial infection and accelerated wound healing. Overall, this work provides a powerful nano-platform for the effective regeneration of bacteria-invaded cutaneous tissue using 2D bio-HJs.
Collapse
Affiliation(s)
- Zhaopu Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinliang Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liming Peng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacheng Shi
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
65
|
Niu J, Wang L, Cui T, Wang Z, Zhao C, Ren J, Qu X. Antibody Mimics as Bio-orthogonal Catalysts for Highly Selective Bacterial Recognition and Antimicrobial Therapy. ACS NANO 2021; 15:15841-15849. [PMID: 34596391 DOI: 10.1021/acsnano.1c03387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infectious diseases seriously threaten public health and life. The specific interaction between an antibody and its multivalent antigen is an attractive way to defeat infectious disease. However, due to the high expense and strict storage and applied conditions for antibodies, it is highly desirable but remains an urgent challenge for disease diagnosis and treatment to construct artificial antibodies with strong stability and binding ability and excellent selectivity. Herein, we designed and synthesized antibody-like bio-orthogonal catalysts with the ability to recognize specific bacteria and accomplish in situ drug synthesis in captured bacteria by using improved bacterial imprinting technology. On one hand, the artificial antibody possesses a matching morphology for binding pathogens, and on the other hand, it acts as a bio-orthogonal catalyst for in situ synthesis of antibacterial drugs in live bacteria. Both in vitro and in vivo experiments have demonstrated that our designed antibody can distinguish and selectively bind to specific pathogens and eliminate them on site with the activated drugs. Therefore, our work provides a strategy for designing artificial antibodies with bio-orthogonal catalytic activity and may broaden the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangpeng Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
66
|
Long Y, Li L, Xu T, Wu X, Gao Y, Huang J, He C, Ma T, Ma L, Cheng C, Zhao C. Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. Nat Commun 2021; 12:6143. [PMID: 34686676 PMCID: PMC8536674 DOI: 10.1038/s41467-021-26456-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Pathogenic drug-resistant bacteria represent a threat to human health, for instance, the methicillin-resistant Staphylococcus aureus (MRSA). There is an ever-growing need to develop non-antibiotic strategies to fight bacteria without triggering drug resistance. Here, we design a hedgehog artificial macrophage with atomic-catalytic centers to combat MRSA by mimicking the “capture and killing” process of macrophages. The experimental studies and theoretical calculations reveal that the synthesized materials can efficiently capture and kill MRSA by the hedgehog topography and substantial generation of •O2− and HClO with its Fe2N6O catalytic centers. The synthesized artificial macrophage exhibits a low minimal inhibition concentration (8 μg/mL Fe-Art M with H2O2 (100 μM)) to combat MRSA and rapidly promote the healing of bacteria-infected wounds on rabbit skin. We suggest that the application of this hedgehog artificial macrophage with “capture and killing” capability and high ROS-catalytic activity will open up a promising pathway to develop antibacterial materials for bionic and non-antibiotic disinfection strategies. The increase in drug-resistant bacteria is a world-wide health issue that demands the development of alternatives to standard antibiotic treatments. In this study, the authors synthesise a hedgehog artificial macrophage with heme-mimetic catalytic centres, and peroxidase- and haloperoxidase-mimicking activities, for the treatment of methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Ling Li
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yun Gao
- College of Biomass Science and Engineering, Textile Institute, Sichuan University, 610065, Chengdu, China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China. .,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, China. .,College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
67
|
Li L, Cao L, Xiang X, Wu X, Ma L, Chen F, Cao S, Cheng C, Deng D, Qiu L. ROS‐Catalytic Transition‐Metal‐Based Enzymatic Nanoagents for Tumor and Bacterial Eradication. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202107530] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Li
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- Department of Ultrasound Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Lijian Cao
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xi Xiang
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Xizheng Wu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Lang Ma
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Fan Chen
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Sujiao Cao
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Dawei Deng
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 P. R. China
| | - Li Qiu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
68
|
Wang T, Bi X, Wang L, Liu M, Yu WW, Zhu Z, Sui N. Biomimetic design of graphdiyne supported hemin for enhanced peroxidase-like activity. J Colloid Interface Sci 2021; 607:470-478. [PMID: 34509729 DOI: 10.1016/j.jcis.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Effective electronic interactions between molecular catalysts and supports are critical for heterogeneous enzyme mimics, yet they are frequently neglected in most catalyst designs. Taking the enzyme mimics of hemin immobilized on graphdiyne (Hemin-GDY) as an example, we explicate for the first time the underlying role of GDY as a co-catalyst. Based on the robust conjugation between GDY and hemin, the delocalized π-electrons in GDY act as a ligand for Fe ions so that the orbital interactions including electron transport from GDY → Fe can induce the formation of an electron-rich Fe center and an electron-deficient π-electron conjugated system. This mechanism was validated by electron paramagnetic resonance (EPR), Raman spectroscopy, and DFT calculations. Moreover, both EPR spetra and Lineweaver-Burk plots revealed that Hemin-GDY could efficiently catalyze the decomposition of hydrogen peroxide (H2O2) to produce hydroxyl radical (•OH) and superoxide anion (O2•-) by a ping-pong type catalytic mechanism, and particularly, the catalytic activity was increased by 2.3-fold comparing to that of hemin immobilized on graphene (Hemin-GR). In addition, Hemin-GDY with the exceptional activity and stability was demonstrated for efficient catalytic degradation of organic pollutants under acidic conditions. Collectively, this work provides a theoretical basis for the design of GDY supported catalysts and renders great promises of the GDY based enzyme mimics.
Collapse
Affiliation(s)
- Tao Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xuelong Bi
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Manhong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - William W Yu
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71115, USA
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
69
|
Du F, Liu L, Li L, Huang J, Wang L, Tang Y, Ke B, Song L, Cheng C, Ma L, Qiu L. Conjugated Coordination Porphyrin-based Nanozymes for Photo-/Sono-Augmented Biocatalytic and Homologous Tumor Treatments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41485-41497. [PMID: 34455796 DOI: 10.1021/acsami.1c14024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Porphyrin-based nanozymes (Porzymes) have shown promising application potential to fight against tumors using catalytically generated reactive oxygen species from the excessively produced H2O2 in the tumor microenvironment. However, the low coordination porphyrin (CP) loading ratio, difficult controllable nanostructure, low bioavailability, and low biocatalytic activities of current established Porzymes have severely limited their antitumor applications. Here, a novel malignant melanoma cell membrane-coated Pd-based CP nanoplatform (Trojan Porzymes) has been synthesized for biocatalytic and homologous tumor therapies. The Trojan Porzymes exhibit a high CP loading ratio, uniform nanoscale size, single-atom nanostructure, homologous targeted ability, and high-efficiency photo/sono-augmented biocatalytic activities. The enzyme-like biocatalytic experiments display that the Trojan Porzymes can generate abundant •OH via chemodynamic path and 1O2 via visible light or ultrasound excitation. Then we demonstrate that the Trojan Porzymes show homologous targeting ability to tumor cells and can achieve efficient accumulation and long-term retention in cancer tissues. Our in vivo data further disclose that the photo/sono-assisted chemodynamic therapies can significantly augment the treatment efficiency of malignant melanoma. We believe that our work will afford a new biocatalytic and homologous strategy for future clinical malignant melanoma treatments, which may inspire and guide more future studies to develop individualized biomedicine in precise tumor therapies.
Collapse
Affiliation(s)
- Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Luchang Liu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jianbo Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Liyun Wang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Song
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
70
|
Du F, Liu L, Wu Z, Zhao Z, Geng W, Zhu B, Ma T, Xiang X, Ma L, Cheng C, Qiu L. Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101095. [PMID: 34096109 DOI: 10.1002/adma.202101095] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Indexed: 02/05/2023]
Abstract
The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge. Here, new and facile Pd-single-atom coordinated porphyrin-based polymeric networks as biocatalysts, namely, Pd-Pta/Por, for chem-/sono-/photo-trimodal tumor therapies are designed. The atomic morphology and chemical structure analysis prove that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2 -Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies. The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1 O2 by the porphyrin-based sono-/photosensitizers to achieve combined sono-/photodynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation. Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistic chem-/sono-/photo-trimodal antitumor efficacies. It is believed that this study provides new promising single-atom-coordinated polymeric networks with highly efficient biocatalytic sites and synergistic trimodal therapeutic effects, which may inspire many new findings in reactive oxygen species-related biological applications across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Luchang Liu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zhenyang Zhao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Tian Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
71
|
Liu Y, Zhou L, Dong Y, Wang R, Pan Y, Zhuang S, Liu D, Liu J. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem 2021; 12:915-928. [PMID: 34223159 PMCID: PMC8221260 DOI: 10.1039/d0md00416b] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
With increasing pathogenic bacterial infection that is occurring worldwide, antibacterial therapy has become an important research field. There is great antimicrobial potential in the nanomaterial-based metal-organic framework (MOF) platform because it is highly biocompatible, biodegradable, and nontoxic, and it is now widely used in the anticancer agent industry and in the production of medical products. This review summarizes the possible mechanisms of representative MOF-based nanomaterials, and recounts recent progress in the design and development of MOF-based antibacterial materials for the remedy of postoperative infection. The existing shortcomings and future perspectives of the rapidly growing field of antimicrobial therapy addressing patient quality of life issues are also briefly discussed. Because of their wide applicability, further studies on the use of different MOF antimicrobial therapies will be of great interest.
Collapse
Affiliation(s)
- Yiwei Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Luyi Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Dong
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Rui Wang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Pan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Shuze Zhuang
- Dongguan Sixth People's Hospital No. 216 Dongcheng West Road, Guancheng District Dongguan 523808 China
| | - Dong Liu
- Shenzhen Huachuang Biopharmaceutical Technology Co. Ltd. Shenzhen 518112 Guangdong China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| |
Collapse
|
72
|
Zhu W, Wang L, Li Q, Jiao L, Yu X, Gao X, Qiu H, Zhang Z, Bing W. Will the Bacteria Survive in the CeO 2 Nanozyme-H 2O 2 System? Molecules 2021; 26:3747. [PMID: 34205408 PMCID: PMC8234868 DOI: 10.3390/molecules26123747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
As one of the nanostructures with enzyme-like activity, nanozymes have recently attracted extensive attention for their biomedical applications, especially for bacterial disinfection treatment. Nanozymes with high peroxidase activity are considered to be excellent candidates for building bacterial disinfection systems (nanozyme-H2O2), in which the nanozyme will promote the generation of ROS to kill bacteria based on the decomposition of H2O2. According to this criterion, a cerium oxide nanoparticle (Nanoceria, CeO2, a classical nanozyme with high peroxidase activity)-based nanozyme-H2O2 system would be very efficient for bacterial disinfection. However, CeO2 is a nanozyme with multiple enzyme-like activities. In addition to high peroxidase activity, CeO2 nanozymes also possess high superoxide dismutase activity and antioxidant activity, which can act as a ROS scavenger. Considering the fact that CeO2 nanozymes have both the activity to promote ROS production and the opposite activity for ROS scavenging, it is worth exploring which activity will play the dominating role in the CeO2-H2O2 system, as well as whether it will protect bacteria or produce an antibacterial effect. In this work, we focused on this discussion to unveil the role of CeO2 in the CeO2-H2O2 system, so that it can provide valuable knowledge for the design of a nanozyme-H2O2-based antibacterial system.
Collapse
Affiliation(s)
- Weisheng Zhu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Luyao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
| | - Qisi Li
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Lizhi Jiao
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Xiaokan Yu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Xiangfan Gao
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Hao Qiu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China
| |
Collapse
|
73
|
Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, Ma L, Cheng C, Guo Q, Qiu L. Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202101804] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liyun Wang
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Bihui Zhu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Yuting Deng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Tiantian Li
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Qinyu Tian
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Zhiguo Yuan
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Lang Ma
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| | - Quanyi Guo
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
74
|
Gayani B, Dilhari A, Kottegoda N, Ratnaweera DR, Weerasekera MM. Reduced Crystalline Biofilm Formation on Superhydrophobic Silicone Urinary Catheter Materials. ACS OMEGA 2021; 6:11488-11496. [PMID: 34056304 PMCID: PMC8154006 DOI: 10.1021/acsomega.1c00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 05/14/2023]
Abstract
Crystalline biofilm formation in indwelling urinary catheters is a serious health problem as it creates a barrier for antibacterial coatings. This emphasizes the failure of antibacterial coatings that do not have a mechanism to reduce crystal deposition on catheter surfaces. In this study, trifluoropropyl spray-coated polydimethylsiloxane (TFP-PDMS) has been employed as an antibiofilm forming surface without any antibacterial agent. Here, TFP was coated on half-cured PDMS using the spray coating technique to obtain a durable superhydrophobic coating for a minimum five cycles of different sterilization methods. The crystalline biofilm-forming ability of Proteus mirabilis in artificial urine, under static and flow conditions, was assessed on a TFP-PDMS surface. In comparison to the commercially available silver-coated latex and silicone catheter surfaces, TFP-PDMS displayed reduced bacterial attachment over 14 days. Moreover, the elemental analysis determined by atomic absorption spectroscopy and energy-dispersive X-ray analysis revealed that the enhanced antibiofilm forming ability of TFP-PDMS was due to the self-cleaning activity of the surface. We believe that this modified surface will significantly reduce biofilm formation in indwelling urinary catheters and further warrant future clinical studies.
Collapse
Affiliation(s)
- Buddhika Gayani
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Ayomi Dilhari
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Dilru R. Ratnaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Manjula Manoji Weerasekera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| |
Collapse
|