51
|
Pulkes T, Liolitsa D, Eunson LH, Rose M, Nelson IP, Rahman S, Poulton J, Marchington DR, Landon DN, Debono AG, Morgan-Hughes JA, Hanna MG. New phenotypic diversity associated with the mitochondrial tRNA(SerUCN) gene mutation. Neuromuscul Disord 2005; 15:364-71. [PMID: 15833431 DOI: 10.1016/j.nmd.2005.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/15/2005] [Accepted: 01/21/2005] [Indexed: 01/29/2023]
Abstract
We performed detailed clinical, histopathological, biochemical, in vitro translation and molecular genetic analysis in patients from two unrelated families harbouring the tRNA(SerUCN) 7472C-insertion mutation. Proband 1 developed a progressive neurodegenerative phenotype characterised by myoclonus, epilepsy, cerebellar ataxia and progressive hearing loss. Proband 2 had a comparatively benign phenotype characterised by isolated myopathy with exercise intolerance. Both patients had the 7472C-insertion mutation in identical proportions and they exhibited a similar muscle biochemical and histopathological phenotype. However, proband 2 also had a previously unreported homoplasmic A to C transition at nucleotide position 7472 in the tRNA(SerUCN) gene. This change lengthens further the homopolymeric C run already expanded by the 7472C-insertion. These data extend the phenotypic range associated with the 7472C-insertion to include isolated skeletal myopathy, as well as a MERRF-like phenotype.
Collapse
MESH Headings
- Adolescent
- Adult
- DNA Mutational Analysis/methods
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/metabolism
- Electrophoresis/methods
- Female
- Humans
- Male
- Microscopy, Electron, Transmission/methods
- Mitochondria, Muscle/pathology
- Mitochondrial Encephalomyopathies/enzymology
- Mitochondrial Encephalomyopathies/genetics
- Mitochondrial Encephalomyopathies/pathology
- Mitochondrial Encephalomyopathies/physiopathology
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Mutation
- Nucleic Acid Conformation
- Phenotype
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- Serine/metabolism
Collapse
Affiliation(s)
- T Pulkes
- Centre for Neuromuscular Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Finsterer J, Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol 2005; 69:621-47. [PMID: 15850684 DOI: 10.1016/j.ijporl.2004.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | |
Collapse
|
53
|
Jacobs HT, Hutchin TP, Käppi T, Gillies G, Minkkinen K, Walker J, Thompson K, Rovio AT, Carella M, Melchionda S, Zelante L, Gasparini P, Pyykkö I, Shah ZH, Zeviani M, Mueller RF. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur J Hum Genet 2005; 13:26-33. [PMID: 15292920 DOI: 10.1038/sj.ejhg.5201250] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial mutations have previously been reported anecdotally in families with maternally inherited, nonsyndromic hearing impairment. To ascertain the contribution of mitochondrial mutations to postlingual but early-onset, nonsyndromic hearing impairment, we screened patients collected from within two different populations (southern Italy and UK) for previously reported mtDNA mutations associated with hearing disorders. Primer extension (SNP analysis) was used to screen for specific mutations, revealing cases of heteroplasmy and its extent. The most frequently implicated tRNA genes, Leu(UUR) and Ser(UCN), were also sequenced in all Italian patients. All tRNA genes were sequenced in those UK patients showing the clearest likelihood of maternal inheritance. Causative mtDNA mutations were found in approximately 5% of patients in both populations, representing almost 10% of cases that were clearly familial. Age of onset, where known, was generally before adulthood, and hearing loss was typically progressive. Haplogroup analysis revealed a possible excess of haplogroup cluster HV in the patients, compared with population controls, but of borderline statistical significance. In contrast, we did not find any of the previously reported mtDNA mutations, nor a significant deviation from haplogroup cluster frequencies typical of the control population, in patients with late adult-onset hearing loss (age-related hearing impairment) from the UK or Finland.
Collapse
Affiliation(s)
- Howard T Jacobs
- Institute of Medical Technology & Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Fetoni V, Briem E, Carrara F, Mora M, Zeviani M. Monomelic amyotrophy associated with the 7472insC mutation in the mtDNA tRNASer(UCN) gene. Neuromuscul Disord 2004; 14:723-6. [PMID: 15482956 DOI: 10.1016/j.nmd.2004.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 07/05/2004] [Accepted: 07/08/2004] [Indexed: 11/19/2022]
Abstract
We describe a 49-year-old male patient who experienced progressive amyotrophy with no sensorial abnormality in the left arm since 45 years of age. The neuromuscular syndrome was identical to that known as Hirayama disease, a rare form of focal lower motor neuron disease affecting the C7-C8-T1 metamers of the spinal cord. Asymmetric neurosensorial hearing loss was present since age 35 in the patient, and was also documented in an elder sister and in the mother. A muscle biopsy showed cytochrome c oxidase (COX) negative fibers but no ragged-red fibers, and mild reduction of COX was confirmed biochemically. The patient was found to have high levels of a known pathogenic mutation of mtDNA, the 7472insC in the gene encoding the tRNA(Ser(UCN)). Investigation on several family members showed a correlation between mutation load and clinical severity. This is the second report documenting the association of lower motor neurone involvement with a specific mtDNA.
Collapse
Affiliation(s)
- Vincenza Fetoni
- Unit of Neurology, Public Health Hospital, Melegnano (Milan), Italy
| | | | | | | | | |
Collapse
|
55
|
Toompuu M, Levinger LL, Nadal A, Gomez J, Jacobs HT. The 7472insC mtDNA mutation impairs 5' and 3' processing of tRNA(Ser(UCN)). Biochem Biophys Res Commun 2004; 322:803-13. [PMID: 15336535 DOI: 10.1016/j.bbrc.2004.07.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
The deafness-associated 7472insC mtDNA mutation was previously shown to decrease the steady-state level of tRNA(Ser(UCN)) post-transcriptionally. To identify the affected tRNA maturation step(s) we analysed the effects of the mutation on processing in vivo and in vitro. tRNA(Ser(UCN)) from cybrid cells homoplasmic for 7472insC contained a high frequency (>11%) of molecules misprocessed at one or both termini. In vitro assays using partially purified HeLa cell RNase P and mitochondrial tRNA 3' processing endonuclease (tRNase Z) confirmed that the efficiency of both 5' and 3' processing was impaired. A mutant precursor not already processed at the 5' end was poorly processed in vitro by tRNase Z. Misprocessing at the 3' end further impaired the efficiency and accuracy of 5' processing of the mutant substrate. The mutation thus appears to affect several distinct, but interdependent, RNA processing steps, with the predicted outcome dependent on the exact processing pathway operating in vivo.
Collapse
Affiliation(s)
- Marina Toompuu
- Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | | | | | | | | |
Collapse
|
56
|
Riemann K, Pfister M, Blin N, Kupka S. [Mitochondrial hearing impairment. Background, genetic predisposition and possibilities for diagnosis]. HNO 2004; 52:503-9. [PMID: 15241512 DOI: 10.1007/s00106-003-0993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing impairment (HI) is one of the most common neurosensory disorders, with sensorineural hereditary HI being the most common form. Mitochondrial maternally inherited HI appears to be increasing in frequency. The incidence of mitochondrial defects causing HI is estimated to be between 6 and 33% of all hearing deficiencies, with an even higher percentage for some syndromic cases. This review summarises the syndromic and non-syndromic characteristics of sensorineural HI based on mutations in mitochondrially encoded genes, the relationship to aminoglycoside-induced HI and related diagnostic tools.
Collapse
Affiliation(s)
- K Riemann
- Hals-Nasen-Ohren-Klinik der Universität Tübingen
| | | | | | | |
Collapse
|
57
|
Abstract
Mutations in the mitochondrial DNA (mtDNA) have been shown to be one important cause of deafness. In particular, mutations in the mtDNA have been associated with both syndromic and nonsyndromic forms of sensori-neural hearing loss. The deafness-linked mutations often occur in the mitochondrial 12S rRNA gene and in tRNA genes. Mutations in the 12S rRNA gene account for most of the cases of aminoglycoside ototoxicity. The other hot spot for mutations associated with hearing impairment is the tRNA(Ser(UCN)) gene, as five deafness-linked mutations have been identified in this gene. Nonsyndromic deafness-linked mtDNA mutations are often homoplasmic or at high levels of heteroplasmy, indicating a high threshold for pathogenicity. Phenotypic expression of these mtDNA mutations requires the contribution of other factors such as nuclear modifier gene(s), environmental factor(s), or mitochondrial haplotype(s).
Collapse
Affiliation(s)
- Min-Xin Guan
- Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
58
|
Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004; 14:237-45. [PMID: 15019701 DOI: 10.1016/j.nmd.2003.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/24/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
Mitochondrial respiratory chain abnormalities are an important cause of neuromuscular disease and may be due to defects of either the mitochondrial or nuclear genome. On account of the clinical and genetic heterogeneity exhibited by the mitochondrial myopathies, their investigation and diagnosis remains a challenge, requiring a combination of techniques including muscle histochemistry, biochemical assessment of respiratory chain function and molecular genetic studies. Here, we describe a step-by-step approach to the clinical and laboratory diagnosis of mitochondrial muscle disease, highlighting the many potential problems that can hinder reaching the correct diagnosis.
Collapse
Affiliation(s)
- Robert W Taylor
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
59
|
McFarland R, Schaefer AM, Gardner JL, Lynn S, Hayes CM, Barron MJ, Walker M, Chinnery PF, Taylor RW, Turnbull DM. Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol 2004; 55:478-84. [PMID: 15048886 DOI: 10.1002/ana.20004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have defined the genetic defect in a large family first described in one of the earliest reports of suspected mitochondrial myopathy, as the mutation T14709C in the mitochondrial transfer RNA(Glu) (mt-tRNA(Glu)) gene. Extraordinarily, this mutation has attained homoplasmy (100% mutated mt-tRNA(Glu)) on at least three independent occasions in this family and has done so in one individual who remains asymptomatic with no clinical evidence of disease. Heteroplasmy (dual populations of mutated and wild-type mtDNA) usually is regarded as one of the primary diagnostic criteria for pathogenicity and previous reports of the T14709C mutation detail heteroplasmy in a variety of tissues. In contrast, homoplasmy of mt-tRNA mutations generally has been regarded as evidence of a benign nature, with rare exceptions that result in organ-specific phenotypes. Discovering that T14709C, a common and severe mt-tRNA mutation, can attain homoplasmy without symptoms or clinical signs of disease has profound implications for the identification and prevalence of other pathogenic mt-tRNA mutations. Furthermore, variation in phenotype between homoplasmic individuals implies a crucial contribution from the nuclear genetic environment in determining the clinical outcome of mt-tRNA mutations.
Collapse
Affiliation(s)
- Robert McFarland
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Abstract
Given the unique biological requirements of sound transduction and the selective advantage conferred upon a species capable of sensitive sound detection, it is not surprising that up to 1% of the approximately 30,000 or more human genes are necessary for hearing. There are hundreds of monogenic disorders for which hearing loss is one manifestation of a syndrome or the only disorder and therefore is nonsyndromic. Herein we review the supporting evidence for identifying over 30 genes for dominantly and recessively inherited, nonsyndromic, sensorineural deafness. The state of knowledge concerning their biological roles is discussed in the context of the controversies within an evolving understanding of the intricate molecular machinery of the inner ear.
Collapse
Affiliation(s)
- Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
62
|
Taylor RW, Giordano C, Davidson MM, d'Amati G, Bain H, Hayes CM, Leonard H, Barron MJ, Casali C, Santorelli FM, Hirano M, Lightowlers RN, DiMauro S, Turnbull DM. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 2003; 41:1786-96. [PMID: 12767666 DOI: 10.1016/s0735-1097(03)00300-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The purpose of this study was to understand the clinical and molecular features of familial hypertrophic cardiomyopathy (HCM) in which a mitochondrial abnormality was strongly suspected. BACKGROUND Defects of the mitochondrial genome are responsible for a heterogeneous group of clinical disorders, including cardiomyopathy. The majority of pathogenic mutations are heteroplasmic, with mutated and wild-type mitochondrial deoxyribonucleic acid (mtDNA) coexisting within the same cell. Homoplasmic mutations (present in every copy of the genome within the cell) present a difficult challenge in terms of diagnosis and assigning pathogenicity, as human mtDNA is highly polymorphic. METHODS A detailed clinical, histochemical, biochemical, and molecular genetic analysis was performed on two families with HCM to investigate the underlying mitochondrial defect. RESULTS Cardiac tissue from an affected child in the presenting family exhibited severe deficiencies of mitochondrial respiratory chain enzymes, whereas histochemical and biochemical studies of the skeletal muscle were normal. Mitochondrial DNA sequencing revealed an A4300G transition in the mitochondrial transfer ribonucleic acid (tRNA)(Ile) gene, which was shown to be homoplasmic by polymerase chain reaction/restriction fragment length polymorphism analysis in all samples from affected individuals and other maternal relatives. In a second family, previously reported as heteroplasmic for this base substitution, the mutation has subsequently been shown to be homoplasmic. The pathogenic role for this mutation was confirmed by high-resolution Northern blot analysis of heart tissue from both families, revealing very low steady-state levels of the mature mitochondrial tRNA(Ile). CONCLUSIONS This report documents, for the first time, that a homoplasmic mitochondrial tRNA mutation may cause maternally inherited HCM. It highlights the significant contribution that homoplasmic mitochondrial tRNA substitutions may play in the development of cardiac disease. A restriction of the biochemical defect to the affected tissue has important implications for the screening of patients with cardiomyopathy for mitochondrial disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Cardiomyopathy, Hypertrophic/genetics
- Child
- Child, Preschool
- DNA, Mitochondrial/genetics
- Electron Transport
- Humans
- Infant
- Male
- Middle Aged
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Muscle/genetics
- Pedigree
- Point Mutation
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA/genetics
- RNA, Mitochondrial
- RNA, Transfer, Ile/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Neurology, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Grafakou O, Hol FA, Otfried Schwab K, Siers MH, ter Laak H, Trijbels F, Ensenauer R, Boelen C, Smeitink J. Exercise intolerance, muscle pain and lactic acidaemia associated with a 7497G>A mutation in the tRNASer(UCN) gene. J Inherit Metab Dis 2003; 26:593-600. [PMID: 14605505 DOI: 10.1023/a:1025960300710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A 13-year-old girl with non-familial exercise intolerance, muscle pain and lactic acidaemia underwent a muscle biopsy for suspected mitochondrial disease. Muscle morphology showed 25% ragged-red fibres and 80% COX-negative staining. Enzymatic activities of mitochondrially co-encoded respiratory chain enzymes (complexes I, III, and IV) were decreased in muscle but normal in cultured skin fibroblasts. mtDNA analysis revealed the presence of the 7497G>A mutation in the tRNASer(UCN) gene, homoplasmic in skeletal muscle and 90% in leukocytes. Analysis of the mother's mtDNA showed 10% heteroplasmy in blood. It may be concluded that the 7497G>A mutation is associated with a muscle-only disease presentation for which high levels of mutated mtDNA are required. Exercise intolerance and muscle pain in otherwise normal children warrants further mitochondrial evaluation.
Collapse
Affiliation(s)
- O Grafakou
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, University Medical Center Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Toompuu M, Yasukawa T, Suzuki T, Hakkinen T, Spelbrink JN, Watanabe K, Jacobs HT. The 7472insC mitochondrial DNA mutation impairs the synthesis and extent of aminoacylation of tRNASer(UCN) but not its structure or rate of turnover. J Biol Chem 2002; 277:22240-50. [PMID: 11919191 DOI: 10.1074/jbc.m200338200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 7472insC mitochondrial DNA mutation in the tRNA(Ser(UCN)) gene is associated with sensorineural deafness combined, in some patients, with a wider neurological syndrome. In cultured cybrid cells it causes a 70% decrease in tRNA(Ser(UCN)) abundance and mild respiratory impairment, previously suggested to be due to decreased tRNA stability. When mitochondrial transcription was blocked by ethidium bromide treatment, the half-life of the mutant tRNA was not significantly different from that of wild-type tRNA(Ser(UCN)). Over-expression of mitochondrial translational elongation factor EF-Tu also had no effect on the mutant phenotype. However, during recovery from prolonged ethidium bromide treatment, the synthesis of the mutant tRNA(Ser(UCN)) was specifically impaired, without polarity effects on downstream tRNAs of the light strand transcription unit. We infer that the mutation acts posttranscriptionally to decrease tRNA(Ser(UCN)) abundance by affecting its synthesis rather than its stability. The extent of aminoacylation of the mutant tRNA was also decreased by approximately 25%. In contrast, the mutation had no detectable effect on tRNA(Ser(UCN)) base modification or structure other than the insertion of an extra guanosine templated by the mutation, which was structurally protected from nuclease digestion like the surrounding nucleotides. These findings indicate a common molecular process underlying sensorineural deafness caused by mitochondrial tRNA(Ser(UCN)) mutations.
Collapse
MESH Headings
- Base Sequence
- DNA/biosynthesis
- DNA/metabolism
- DNA, Mitochondrial
- Ethidium/pharmacology
- Genotype
- Guanosine/chemistry
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Humans
- Kinetics
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Oligonucleotides/pharmacology
- Oxygen/metabolism
- Phenotype
- Protein Biosynthesis
- Protein Conformation
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer/metabolism
- RNA, Transfer, Ser/chemistry
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Marina Toompuu
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
65
|
Giordano C, Pallotti F, Walker WF, Checcarelli N, Musumeci O, Santorelli F, d'Amati G, Schon EA, DiMauro S, Hirano M, Davidson MM. Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation. Biochem Biophys Res Commun 2002; 293:521-9. [PMID: 12054632 DOI: 10.1016/s0006-291x(02)00256-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenic mechanisms of the A1555G mitochondrial DNA mutation in the 12S rRNA gene, associated with maternally inherited sensorineural deafness, are largely unknown. Previous studies have suggested an involvement of nuclear factor(s). To address this issue cybrids were generated by fusing osteosarcoma cells devoid of mtDNA with enucleated fibroblasts from two genetically unrelated patients. Furthermore, to determine the contribution, if any, of the mitochondrial and nuclear genomes, separately or in combination, in the expression of the disease phenotype, transmitochondrial fibroblasts were constructed using control and patient's fibroblasts as nuclear donors and homoplasmic mutant or wild-type cybrids as mitochondrial donors. Detailed analysis of mutant and wild-type cybrids from both patients and transmitochondrial fibroblast clones did not reveal any respiratory chain dysfunction suggesting that, if nuclear factors do indeed act as modifier agents, they may be tissue-specific. However, in the presence of high concentrations of neomycin or paromomycin, but not of streptomycin, mutant cells exhibit a decrease in the growth rate, when compared to wild-type cells. The decrease did not correlate with the rate of synthesis or stability of mitochondrial DNA-encoded subunits or respiratory chain activity. Further studies are required to determine the underlying biochemical defect.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Neurology, College of Physicians and Surgeons, Columbia University, Room 5-431, 630 West 168th Street, Columbia, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Mitochondrial dysfunction has gained considerable interest as a potential cause of epileptic seizures and therapy-resistant forms of severe epilepsy. Impairment of mitochondrial function has recently been observed in the seizure focus of human and experimental epilepsy. Additionally, a broad variety of mutation of mitochondrial DNA leading to the inhibition of mitochondrial respiratory chain or directly of mitochondrial adenosine triphosphate synthesis in epileptogenic areas of the human brain has been associated with epileptic phenotypes. Since mitochondrial oxidative phosphorylation provides the major source of adenosine triphosphate in neurons, and mitochondria participate in cellular Ca2+ homeostasis they can modulate neuronal excitability and synaptic transmission. Furthermore, mitochondria are intimately involved in pathways leading to the neuronal cell death characteristic for the areas of epileptogenesis.
Collapse
Affiliation(s)
- Wolfram S Kunz
- Department of Epileptology, University Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
67
|
Jaksch M, Kleinle S, Scharfe C, Klopstock T, Pongratz D, Müller-Höcker J, Gerbitz KD, Liechti-Gallati S, Lochmuller H, Horvath R. Frequency of mitochondrial transfer RNA mutations and deletions in 225 patients presenting with respiratory chain deficiencies. J Med Genet 2001; 38:665-73. [PMID: 11584044 PMCID: PMC1734743 DOI: 10.1136/jmg.38.10.665] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To evaluate the frequency of pathogenic mtDNA transfer RNA mutations and deletions in biochemically demonstrable respiratory chain (RC) deficiencies in paediatric and adult patients. METHODS We screened for deletions and sequenced mitochondrial transfer RNA genes in skeletal muscle DNA from 225 index patients with clinical symptoms suggestive of a mitochondrial disorder and with biochemically demonstrable RC deficiency in skeletal muscle. RESULTS We found pathogenic mitochondrial DNA mutations in 29% of the patients. The detection rate was significantly higher in adults (48%) than in the paediatric group (18%). Only one pathogenic mutation was detected in the neonatal group. In addition, we describe seven novel transfer RNA sequence variations with unknown pathogenic relevance (six homoplasmic and one heteroplasmic) and 13 homoplasmic polymorphisms. One heteroplasmic transfer RNA(Leu(UUR)) A>G mutation at position 3274 is associated with a distinct neurological syndrome. CONCLUSIONS We provide an estimation of the frequency of mitochondrial transfer RNA mutations and deletions in paediatric and adult patients with respiratory chain deficiencies.
Collapse
Affiliation(s)
- M Jaksch
- Metabolic Disease Centre Munich-Schwabing and Institute of Clinical Chemistry, Diagnostic Molecular Biology, and Mitochondrial Genetics, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Liepert J, Haueisen J, Hegemann S, Weiller C. Disinhibition of somatosensory and motor cortex in mitochondriopathy without myoclonus. Clin Neurophysiol 2001; 112:917-22. [PMID: 11336909 DOI: 10.1016/s1388-2457(01)00521-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To test electrophysiologically, if patients with mitochondriopathy but without evidence of myocloni have subclinical signs of disinhibition in motor and somatosensory cortices. METHODS Two patients were studied and compared with age-matched control groups. RESULTS In both patients, giant somatosensory evoked potentials after median nerve stimulation and a reduced intracortical inhibition tested by transcranial magnetic stimulation in a paired pulse paradigm indicated a dysfunction of inhibitory circuits in the motor as well as the somatosensory cortex. In addition, the somatosensory evoked 600 Hz activity recorded by magnetoencephalography was abolished. CONCLUSIONS Patients with mitochondriopathy may suffer from a subclinical disturbance of inhibition in the sensorimotor cortex. The loss of 600 Hz activity indicates that these high-frequency oscillations could reflect the activity of inhibitory neurons in the somatosensory cortex.
Collapse
Affiliation(s)
- J Liepert
- Department of Neurology, Friedrich Schiller University of Jena, Jena, Germany.
| | | | | | | |
Collapse
|
69
|
Hutchin TP, Thompson KR, Parker M, Newton V, Bitner-Glindzicz M, Mueller RF. Prevalence of mitochondrial DNA mutations in childhood/congenital onset non-syndromal sensorineural hearing impairment. J Med Genet 2001; 38:229-31. [PMID: 11283203 PMCID: PMC1734848 DOI: 10.1136/jmg.38.4.229] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic factors are the major causes of childhood hearing impairment. Whereas autosomal recessive mutations account for the majority of prelingual non-syndromic sensorineural hearing impairment (NSSHI), the relative contribution of mitochondrial DNA (mtDNA) mutations to childhood onset NSSHI has not been established. We screened 202 subjects with congenital/childhood onset NSSHI, consisting of 110 sporadic cases, 75 sib pairs, and 17 families with affected subjects in more than one generation, in order to determine the prevalence of mtDNA mutations associated with NSSHI.mtDNA mutations were found in three of 10 families (30%) in whom the affected members were related through the maternal lineage. One sporadic case (0.9%) was also found to have a known mtDNA mutation but none was found in the sib pairs. Although the prevalence of mtDNA mutations was low in the group as a whole (2%), we suggest that screening should be considered in cases of childhood hearing impairment when it is progressive and particularly in families where transmission is compatible with maternal inheritance.
Collapse
Affiliation(s)
- T P Hutchin
- Molecular Medicine Unit, Clinical Sciences Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Mitochondria are intracellular organelles responsible for the majority of a cell's energy production. They have their own small maternally inherited genome which, when mutated, can give rise to a large spectrum of diseases. The phenotype most commonly includes neurological and muscular symptoms, although hearing impairment is an additional feature in some mitochondrial syndromes. Often, syndromic mutations affect only a fraction of all mitochondrial DNA molecules, a condition referred to as heteroplasmy. It is believed that the degree of heteroplasmy in different tissues contributes to the phenotypic heterogeneity that is a hallmark of these syndromes. Five homoplasmic mutations leading to nonsyndromic hearing impairment have been reported (1555A-->G, 7445A-->G, 7472insC, 7510T-->C, 7511T-->C). The 1555A-->G is in the 12S rRNA gene, and in some populations, appears to be a frequent cause of hearing impairment. Carriers of the mutation are abnormally sensitive to aminoglycoside-induced ototoxicity even at 'appropriate' drug levels; in addition, even without aminoglycoside exposure, these persons can develop hearing impairment. The other four nonsyndromic mutations are located in the tRNA(Ser(UCN)) gene. In addition to hearing impairment, with two of these mutations (7445A-->G, 7472insC), other symptoms can be present in some patients. However, why these five mutations preferentially affect the inner ear, despite the crucial role of mitochondria in nearly all cells of the body, is unknown.
Collapse
Affiliation(s)
- G Van Camp
- Department of Medical Genetics, University of Antwerp, Belgium.
| | | |
Collapse
|
71
|
Toompuu M, Tiranti V, Zeviani M, Jacobs HT. Molecular phenotype of the np 7472 deafness-associated mitochondrial mutation in osteosarcoma cell cybrids. Hum Mol Genet 1999; 8:2275-83. [PMID: 10545608 DOI: 10.1093/hmg/8.12.2275] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nucleotide pair (np) 7472 insC mitochondrial DNA mutation in the tRNA(Ser)(UCN) gene is associated with sensorineural deafness, combined in some individuals with a wider syndrome including ataxia and myo-clonus. Previous studies in osteosarcoma cell cybrids revealed only a mild respiratory defect linked to the mutation. We have investigated the biochemical and molecular consequences of the mutation, using a panel of seven osteosarcoma cell cybrids containing 100% mutant mtDNA, plus two cybrids carrying 100% wild-type mtDNA from the same patient. The mutation is associated with a mild growth deficit in selective (galactose) medium that is only significant in combination with a reduced mtDNA copy number, suggesting a mechanism that might modulate clinical phenotype. The mutation results in a 65% drop in the steady-state level of tRNA(Ser)(UCN), but causes at most only a very mild and quantitative abnormality of mitochondrial protein synthesis, associated with modest hypersensitivity to doxycyclin. No evidence for a specific defect in aminoacylation was obtained, and unlike the case with the np 7445 mutation, the pattern of RNA processing of light strand transcripts of the ND6 region was not systematically altered. Comparing the np 7472 and np 7445 mutant phenotypes in cultured cells suggests that sensorineural deafness can result from a functional insufficiency of mitochondrial tRNA(Ser)(UCN), to which some cells of the auditory system are especially vulnerable.
Collapse
Affiliation(s)
- M Toompuu
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, PO Box 607, 33101 Tampere, Finland
| | | | | | | |
Collapse
|
72
|
Abstract
We report on the age and the causes of death in 16 patients with mitochondrial diseases. Nine patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) died at a mean age of 34 years and three patients with chronic progressive external ophthalmoplegia at a mean age of 56 years. The causes of death were cardiopulmonary failure (n = 5), status epilepticus (n = 4), aspiration pneumonia (n = 2), pulmonary embolism (n = 2), renal failure (n = 1), metabolic disturbance (n = 1), and unknown causes (n = 1). Thus, many patients in this series died of medical complications, some of which may be prevented.
Collapse
Affiliation(s)
- T Klopstock
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Germany
| | | | | |
Collapse
|
73
|
Bauer MF, Gempel K, Hofmann S, Jaksch M, Philbrook C, Gerbitz KD. Mitochondrial disorders. A diagnostic challenge in clinical chemistry. Clin Chem Lab Med 1999; 37:855-76. [PMID: 10596952 DOI: 10.1515/cclm.1999.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondria play a pivotal role in cellular metabolism and in energy production in particular. Defects in structure or function of mitochondria, mainly involving the oxidative phosphorylation (OXPHOS), mitochondrial biogenesis and other metabolic pathways, have been shown to be associated with a wide spectrum of clinical phenotypes. The ubiquitous nature of mitochondria and their unique genetic features contribute to the clinical, biochemical and genetic heterogeneity of mitochondrial diseases. We will focus on the recent advances in the field of mitochondrial disorders and their consequences for an advanced clinical and genetic diagnostics. In addition, an overview on recently identified genetic defects and their pathogenic molecular mechanisms will be given.
Collapse
Affiliation(s)
- M F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics, Diabetes Research Group, Academic Hospital Munich-Schwabing, Germany.
| | | | | | | | | | | |
Collapse
|
74
|
Sue CM, Tanji K, Hadjigeorgiou G, Andreu AL, Nishino I, Krishna S, Bruno C, Hirano M, Shanske S, Bonilla E, Fischel-Ghodsian N, DiMauro S, Friedman R. Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology 1999; 52:1905-8. [PMID: 10371545 DOI: 10.1212/wnl.52.9.1905] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thirty-six of 43 maternally related members of a large African American family experienced hearing loss. A muscle biopsy specimen from the proband showed cytochrome c oxidase (COX)-deficient fibers but no ragged-red fibers; biochemical analysis showed marked reduction of COX activity. A novel T7511C point mutation in the tRNA(Ser(UCN)) gene was present in almost homoplasmic levels (>95%) in the blood of 18 of 20 family members, and was also found in lower abundance in the other two. Single-fiber PCR showed that the mutational load was greater in COX-deficient muscle fibers. The tRNA(ser(UCN)) gene may be a "hot spot" for mutations associated with maternally transmitted hearing loss.
Collapse
Affiliation(s)
- C M Sue
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|