51
|
Tian MQ, Shen ZY, Zhao X, Walsh PJ, Hu XH. Iron-Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3-Diesters via a Functionalized Alkyl Radical. Angew Chem Int Ed Engl 2021; 60:9706-9711. [PMID: 33590589 DOI: 10.1002/anie.202100641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Indexed: 11/11/2022]
Abstract
Direct oxidative C(sp)-H/C(sp3 )-H cross-coupling offers an ideal and environmentally benign protocol for C(sp)-C(sp3 ) bond formations. As such, reactivity and site-selectivity with respect to C(sp3 )-H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron-catalyzed/silver-mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3-dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3 )-H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon-centered radical species.
Collapse
Affiliation(s)
- Ming-Qing Tian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen-Yao Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuefei Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
52
|
Tian M, Shen Z, Zhao X, Walsh PJ, Hu X. Iron‐Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3‐Diesters via a Functionalized Alkyl Radical. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ming‐Qing Tian
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Zhen‐Yao Shen
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Xuefei Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Xu‐Hong Hu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
53
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
54
|
Fu Y, Wu Q, Du Z. Debenzylative Sulfonylation of Tertiary Benzylamines Promoted by Visible Light. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Qing‐Kui Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
55
|
Cremer C, Goswami M, Rank CK, Bruin B, Patureau FW. Tellur(II)/Tellur(III)‐katalysierte dehydrierende C‐N‐Bindungsbildung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | | | - Christian K. Rank
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
56
|
Cremer C, Goswami M, Rank CK, de Bruin B, Patureau FW. Tellurium(II)/Tellurium(III)-Catalyzed Cross-Dehydrogenative C-N Bond Formation. Angew Chem Int Ed Engl 2021; 60:6451-6456. [PMID: 33320996 PMCID: PMC7986434 DOI: 10.1002/anie.202015248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Indexed: 01/03/2023]
Abstract
The TeII /TeIII -catalyzed dehydrogenative C-H phenothiazination of challenging phenols featuring electron-withdrawing substituents under mild aerobic conditions and with high yields is described. These unexpected TeII /TeIII radical catalytic properties were characterized by cyclic voltammetry, EPR spectroscopy, kinetic experiments, and DFT calculations.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | - Christian K. Rank
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
57
|
|
58
|
Mei R, Yang C, Xiong F, Mao M, Li H, Sun J, Zou L, Ma W, Ackermann L. Access to 10‐Phenanthrenols
via
Electrochemical C−H/C−H Arylation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Meihua Mao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Hongmei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Junmei Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
59
|
Peng K, Dong Z. Recent Advances in Cross‐Dehydrogenative Couplings (CDC) of C−H Bond in Aqueous Media. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001358] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 People's Republic of China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
- Key Laboratory of Green Chemical Process Ministry of Education Wuhan Institute of Technology Wuhan 430205 People's Republic of China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology Wuhan 430205 People's Repubic of China
| |
Collapse
|
60
|
Jana S, Empel C, Nguyen TV, Koenigs RM. Multi C-H Functionalization Reactions of Carbazole Heterocycles via Gold-Catalyzed Carbene Transfer Reactions. Chemistry 2021; 27:2628-2632. [PMID: 33278310 PMCID: PMC7898811 DOI: 10.1002/chem.202004724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Indexed: 01/29/2023]
Abstract
Herein we describe a multiple C-H functionalization reaction of carbazole heterocycles with diazoalkanes. We show that gold catalysts play a distinct role in enabling a multiple C-H functionalization reaction to introduce up to six carbene fragments onto molecules containing multiple carbazole units or to link multiple carbazole units into a single molecule. A one-pot stepwise approach enables the introduction of two different carbene fragments to allow orthogonal deprotection and straightforward derivatization.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| | | | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| |
Collapse
|
61
|
Ahmad MS, Ahmad A. Cu-catalyzed cyanomethylation of imines and α,β-alkenes with acetonitrile and its derivatives. RSC Adv 2021; 11:5427-5431. [PMID: 35423113 PMCID: PMC8694676 DOI: 10.1039/d0ra10693c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
We describe copper-catalyzed cyanomethylation of imines and α,β-alkenes with a methylnitrile source and provide an efficient route to synthesize arylacrylonitriles and β,γ-unsaturated nitriles. This method tolerates aliphatic and aromatic alkenes substituted with a variety of functional groups such as F, Cl, Br, Me, OMe, tert-Bu, NO2, NH2 and CO2H with good to excellent yields (69-98%). These systems consist of inexpensive, simple copper catalyst and acetonitrile with its derivatives (α-bromo/α-iodo-acetonitrile) and are highly applicable in the industrial production of acrylonitriles.
Collapse
Affiliation(s)
| | - Atique Ahmad
- Department of Physical Sciences, Air University, Islamabad Campus Pakistan
| |
Collapse
|
62
|
Paul A, Kim JH, Daniel SD, Seidel D. Diversification of Unprotected Alicyclic Amines by C-H Bond Functionalization: Decarboxylative Alkylation of Transient Imines. Angew Chem Int Ed Engl 2021; 60:1625-1628. [PMID: 32975859 PMCID: PMC7854982 DOI: 10.1002/anie.202011641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Despite extensive efforts by many practitioners in the field, methods for the direct α-C-H bond functionalization of unprotected alicyclic amines remain rare. A new advance in this area utilizes N-lithiated alicyclic amines. These readily accessible intermediates are converted to transient imines through the action of a simple ketone oxidant, followed by alkylation with a β-ketoacid under mild conditions to provide valuable β-amino ketones with unprecedented ease. Regioselective α'-alkylation is achieved for substrates with existing α-substituents. The method is further applicable to the convenient one-pot synthesis of polycyclic dihydroquinolones through the incorporation of a SN Ar step.
Collapse
Affiliation(s)
- Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- Current address: College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Scott D Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
63
|
Pipaliya BV, Seth K, Chakraborti AK. Ruthenium (II) Catalyzed C(sp 2 )-H Bond Alkenylation of 2-Arylbenzo[d]oxazole and 2-Arylbenzo[d]thiazole with Unactivated Olefins. Chem Asian J 2021; 16:87-96. [PMID: 33230945 DOI: 10.1002/asia.202001304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 01/10/2023]
Abstract
Functionalization of the bio-relevant heterocycles 2-arylbenzo[d]oxazole and 2-arylbenzo[d]thiazole has been achieved through Ru(II)-catalyzed alkenylation with unactivated olefins leading to selective formation of the mono-alkenylated products. This approach has a broad substrate scope with respect to the coupling partners, affords high yields, and works for gram scale synthesis using a readily available Ru-based catalyst. Mechanistic studies reveal a C-H activation pathway for the dehydrogenative coupling leading to the alkenylation. However, the results of the ESI-MS-guided deuterium kinetic isotope effect studies indicate that the C-H activation stage may not be the rate-determining step of the reaction. The use of a radical scavenging agent such as TEMPO did not show any detrimental effect on the reaction outcome, eliminating the possibility of the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Bhavin V Pipaliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India.,Department of Chemistry, S. S. Bhatnagar Building, Main Campus, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
64
|
Li X, Liu C, Guo S, Wang W, Zhang Y. PIFA‐Mediated Cross‐Dehydrogenative Coupling of
N
‐Heteroarenes with Cyclic Ethers: Ethanol as an Efficient Promoter. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chaoyang Liu
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shixun Guo
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
- Department of Pharmacology and Toxicology and BIO5 Institute University of Arizona Tucson AZ 85721-0207 USA
| | - Yongqiang Zhang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
65
|
Patil MR, Shah J, Kumar AV, Kapdi AR. Photo-induced sp 3 C-H bond arylation, cyanation and nitroalkylation of tetrahydroisoquinolines (THIQs) under visible light irradiation using a combination of NHPI and Rose Bengal. Chem Asian J 2020; 15:4302-4306. [PMID: 33052020 DOI: 10.1002/asia.202000999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/12/2020] [Indexed: 11/12/2022]
Abstract
This work reports a sustainable protocol for α-arylation of tetrahydroisoquinolines (THIQs) with aryl diazonium salts using a combination of a cheap and stable oxidant, N-hydroxyphthalimide (NHPI), and an inexpensive dye photosensitizer, Rose Bengal (RB), for the first time. The reaction was performed at ambient temperature using green LED light irradiation under an oxygen atmosphere. The developed α-arylation protocol shows a diverse substrate scope for various THIQs and aryl diazonium salts. The work also explores nitroalkylation and cyanation under the developed reaction conditions. A possible SET mechanism is involved which was confirmed by ESI-MS analysis of the reaction mixture.
Collapse
Affiliation(s)
- Mahendra R Patil
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Jagrut Shah
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - A Vijay Kumar
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
66
|
|
67
|
Paul A, Kim JH, Daniel SD, Seidel D. Diversification of Unprotected Alicyclic Amines by C−H Bond Functionalization: Decarboxylative Alkylation of Transient Imines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
- Current address: College of Pharmacy Kangwon National University Chuncheon 24341 Republic of Korea
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
68
|
Yang T, Ding X, Zhan X, Weng Y. Pd‐Catalyzed Cross‐Dehydrogenative Coupling of 3‐Benzoyl Substituted Coumarins: Efficient Access to Indeno[2,1‐
c
]chromene‐6,7‐diones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Yang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xingxing Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xuecheng Zhan
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
69
|
Direct Introduction of Sulfonamide Groups into Quinoxalin‐2(1
H
)‐ones by Cu‐Catalyzed C3‐H Functionalization. Chem Asian J 2020; 15:3365-3369. [DOI: 10.1002/asia.202000916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/14/2022]
|
70
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|
71
|
Batra A, Singh KN. Recent Developments in Transition Metal‐Free Cross‐Dehydrogenative Coupling Reactions for C–C Bond Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women Sec 36/A 160036 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University 160014 Chandigarh India
| |
Collapse
|
72
|
Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. Chemistry 2020; 26:10936-10947. [PMID: 32329534 PMCID: PMC7497266 DOI: 10.1002/chem.202001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
73
|
Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020; 59:16926-16932. [DOI: 10.1002/anie.202006317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022]
|
74
|
Xia H, Li Z, Gu Q, Dong X, Fang J, Du X, Wang L, Liu X. Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai‐Dong Xia
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jia‐Heng Fang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xuan‐Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Li‐Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
75
|
Kianmehr E, Seifinoferest B, Afaridoun H. Palladium-Catalyzed Regioselective Acylation of Diazines with Toluenes: A New Approach to the Synthesis of ortho
-Diacylbenzenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | | | - Hadi Afaridoun
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| |
Collapse
|
76
|
Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2020; 59:14275-14280. [DOI: 10.1002/anie.202005724] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Pin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng‐Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
77
|
Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005724] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng‐Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
78
|
Liu J, Zhang K, Chen Z, Wei Z, Zhang L. A Porous and Stable Porphyrin Metal‐Organic Framework as an Efficient Catalyst towards Visible‐Light‐Mediated Aerobic Cross‐Dehydrogenative‐Coupling Reactions. Chem Asian J 2020; 15:1118-1124. [DOI: 10.1002/asia.201901697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jiewei Liu
- School of Biotechnology and Health SciencesWuyi University Jiangmen 529020 P.R. China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529040 P. R. China
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen 529020 P.R. China
| | - Zhiyao Chen
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhang‐Wen Wei
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Li Zhang
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
79
|
Nozawa‐Kumada K, Saga S, Matsuzawa Y, Hayashi M, Shigeno M, Kondo Y. Copper‐Catalyzed Oxidative Benzylic C(sp
3
)−H Cyclization for the Synthesis of β‐Lactams. Chemistry 2020; 26:4496-4499. [DOI: 10.1002/chem.201905777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Kanako Nozawa‐Kumada
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Satoshi Saga
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Yuta Matsuzawa
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Masahito Hayashi
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| |
Collapse
|
80
|
Wang Y, Tian B, Ding M, Shi Z. Electrochemical Cross-Dehydrogenative Coupling between Phenols and β-Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry 2020; 26:4297-4303. [PMID: 31900957 DOI: 10.1002/chem.201904750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/10/2022]
Abstract
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4 NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Bailin Tian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Mengning Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
81
|
Hu R, Han D, Li N, Huang J, Feng Y, Xu D. Iron‐Catalyzed Direct Oxidative Alkylation and Hydroxylation of Indolin‐2‐ones with Alkyl‐Substituted N‐Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ren‐Ming Hu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Yang Han
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ning Li
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie Huang
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Feng
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
82
|
Kumar GR, Banik S, Ramesh B, Sridhar B, Venkata Subba Reddy B. Oxidative Annulation of 3-Aryl-2 H
-benzo[e][1,2,4]thiadiazine-1,1-dioxides with Aryl Aldehydes: An Easy Access to Hydroxyisoindolo[1,2- b
] benzothiadiazinedioxide Scaffolds. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G. Ravi Kumar
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Swarnayu Banik
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Boora Ramesh
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Balasubramanian Sridhar
- Laboratory of X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | | |
Collapse
|
83
|
Jana S, Li F, Empel C, Verspeek D, Aseeva P, Koenigs RM. Stoichiometric Photochemical Carbene Transfer by Bamford-Stevens Reaction. Chemistry 2020; 26:2586-2591. [PMID: 31825123 PMCID: PMC7065054 DOI: 10.1002/chem.201904994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 01/07/2023]
Abstract
The photolysis of diazoalkanes is a timely strategy to conduct carbene-transfer reactions under mild and metal-free reaction conditions, and has developed as an important alternative to conventional metal-catalyzed carbene-transfer reactions. One of the major limitations lies within the rapidly occurring side reaction of the carbene intermediate with remaining diazoalkane molecules that result in the use of an excess of the reaction partner and thus impacts on the reaction efficiency. Herein, we describe a protocol that takes advantage of the in situ generation of donor-acceptor diazoalkanes by Bamford-Stevens reaction. Following this strategy, the concentration of the diazoalkane reaction partner can be minimized to reduce unwanted side reactions and to now conduct photochemical carbene transfer reactions under stoichiometric reaction conditions. We have explored this approach in the C-H and N-H functionalization and cyclopropanation reaction of N-heterocycles and could demonstrate the applicability of this method in 51 examples.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Fang Li
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Dennis Verspeek
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Polina Aseeva
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| |
Collapse
|
84
|
Purtsas A, Kataeva O, Knölker H. Iron-Catalyzed Oxidative C-C Cross-Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant. Chemistry 2020; 26:2499-2508. [PMID: 31858652 PMCID: PMC7064917 DOI: 10.1002/chem.201905595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/14/2022]
Abstract
A mild procedure for the oxidative C-C cross-coupling of tertiary anilines with phenols is described which provides the products generally in high yields and with excellent selectivity. The reaction is catalyzed by the hexadecafluorinated iron-phthalocyanine complex FePcF16 in the presence of substoichiometric amounts of methanesulfonic acid and ambient air as sole oxidant.
Collapse
Affiliation(s)
- Alexander Purtsas
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical ChemistryRussian Academy of SciencesArbuzov Str. 8Kazan420088Russia
| | | |
Collapse
|
85
|
Chen R, Wang K, Wang Z, Ma X, Wang D, Zhang A, Liu L. Co–Catalyzed Oxidative Alkylation between Styrenes and Cyclic Ethers via sp3 C−H Functionalization. ChemistrySelect 2020. [DOI: 10.1002/slct.201904405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongxiang Chen
- College of Chemistry and Chemical Engineering Xinxiang University, Xinxiang Henan 453000 P. R. China
| | - Kai‐Kai Wang
- College of Chemistry and Chemical Engineering Xinxiang University, Xinxiang Henan 453000 P. R. China
| | - Zhan‐Yong Wang
- College of Chemistry and Chemical Engineering Xinxiang University, Xinxiang Henan 453000 P. R. China
| | - Xueji Ma
- College of Chemistry and Chemical Engineering Xinxiang University, Xinxiang Henan 453000 P. R. China
| | - Doudou Wang
- College of Chemistry and Chemical Engineering Xinxiang University, Xinxiang Henan 453000 P. R. China
| | - An‐an Zhang
- College of Chemistry and Chemical Engineering Shangqiu Normal University, Shangqiu Henan 476000 P. R. China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering Shangqiu Normal University, Shangqiu Henan 476000 P. R. China
| |
Collapse
|
86
|
Sobottka S, Nößler M, Ostericher AL, Hermann G, Subat NZ, Beerhues J, Behr‐van der Meer M, Suntrup L, Albold U, Hohloch S, Tremblay JC, Sarkar B. Tuning Pt II -Based Donor-Acceptor Systems through Ligand Design: Effects on Frontier Orbitals, Redox Potentials, UV/Vis/NIR Absorptions, Electrochromism, and Photocatalysis. Chemistry 2020; 26:1314-1327. [PMID: 31778594 PMCID: PMC7027812 DOI: 10.1002/chem.201903700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Asymmetric platinum donor-acceptor complexes [(pimp)Pt(Q2- )] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q2- =catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q2- )] with Q2- =3,5-di-tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor-acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands.
Collapse
Affiliation(s)
- Sebastian Sobottka
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Maite Nößler
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Andrew L. Ostericher
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Current address: Department of Chemistry and BiochemistryUniversity of California San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Gunter Hermann
- QoD Technologies GmbHc/o Freie Universität BerlinAltensteinstrasse 4014195BerlinGermany
| | - Noah Z. Subat
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Julia Beerhues
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Margarethe Behr‐van der Meer
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Lisa Suntrup
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Current address: Department of ChemistryUniversity of Massachusetts Boston100 Morrissey BoulevardBostonMA02125USA
| | - Uta Albold
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Stephan Hohloch
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Current address: University of PaderbornWarburger Strasse 10033098PaderbornGermany
| | - Jean Christophe Tremblay
- Laboratoire de physique et chimie théoriquesCNRS/Université de Lorraine—UMR 70191 bd Arago57070MetzFrance
| | - Biprajit Sarkar
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Institut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
87
|
Hu R, Han D, Li N, Huang J, Feng Y, Xu D. Iron‐Catalyzed Direct Oxidative Alkylation and Hydroxylation of Indolin‐2‐ones with Alkyl‐Substituted N‐Heteroarenes. Angew Chem Int Ed Engl 2020; 59:3876-3880. [DOI: 10.1002/anie.201913400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ren‐Ming Hu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Yang Han
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ning Li
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie Huang
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Feng
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
88
|
Yu J, Ying P, Wang H, Xiang K, Su W. Mechanochemical Asymmetric Cross‐Dehydrogenative Coupling Reaction: Liquid‐Assisted Grinding Enables Reaction Acceleration and Enantioselectivity Control. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ping Ying
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Keyu Xiang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
89
|
Tan C, Liu X, Jia H, Zhao X, Chen J, Wang Z, Tan J. Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)-H Compounds. Chemistry 2019; 26:881-887. [PMID: 31625634 DOI: 10.1002/chem.201904237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Herein, we report a highly efficient ZnI2 -triggered oxidative cross-coupling reaction of P(O)-H compounds and amines. This operationally simple protocol provides unprecedented generic access to phosphinic amides/phosphoramidate derivatives in good yields and short reaction time. Besides, the reaction proceeds under mild conditions, which avoids the use of hazardous reagents, and is applicable to scale-up syntheses as well as late-stage functionalization of drug molecules. The stereospecific coupling is also achieved from readily available optically enriched P(O)-H compounds.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyuan Liu
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huanxin Jia
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaowen Zhao
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Chen
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry &, Center for Excellence in Molecular Synthesis of, the Chinese Academy of Sciences, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
90
|
Li F, Li X, Gong T, Fu Y. Selective Conversion of Furoic Acid Derivatives to Multi‐Substituted Furanacrylate by a Ruthenium Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Feng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Xinglong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Tianjun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
91
|
Rocaboy R, Anastasiou I, Baudoin O. Redox‐Neutral Coupling between Two C(sp
3
)−H Bonds Enabled by 1,4‐Palladium Shift for the Synthesis of Fused Heterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Ioannis Anastasiou
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
92
|
Rocaboy R, Anastasiou I, Baudoin O. Redox‐Neutral Coupling between Two C(sp
3
)−H Bonds Enabled by 1,4‐Palladium Shift for the Synthesis of Fused Heterocycles. Angew Chem Int Ed Engl 2019; 58:14625-14628. [DOI: 10.1002/anie.201908460] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Ioannis Anastasiou
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
93
|
Jiang C, Chen Y, Zhang H, Tan JP, Wang T. Catalyst-Free Synthesis of α-Functionalized 2H-Chromenes in Water: A Tandem Self-Promoted pseudo-Substitution and Decarboxylation Process. Chem Asian J 2019; 14:2938-2944. [PMID: 31298487 DOI: 10.1002/asia.201900641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Indexed: 11/07/2022]
Abstract
A catalyst-free decarboxylative reaction between β-keto acids and 2H-chromene acetals in water was developed. This reaction featured a broad substrate scope and easily obtainable starting materials to afford α-functionalized 2H-chromenes in high yields. The synthetic value of this protocol was also demonstrated by the scale-up synthesis and versatile conversions of the title product into other useful compounds. In addition, control experiments indicated that water was essential for the reactivity. Mechanistic studies further revealed that the reaction proceeded through a self-promoted tandem pseudo-substitution and decarboxylation process.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.,Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.,Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
94
|
Paul S, Bhakat M, Guin J. Radical C−H Acylation of Nitrogen Heterocycles Induced by an Aerobic Oxidation of Aldehydes. Chem Asian J 2019; 14:3154-3160. [DOI: 10.1002/asia.201900857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Subhasis Paul
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Manotosh Bhakat
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Joyram Guin
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| |
Collapse
|
95
|
Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Metal-Free Aerobic Oxidative C-O Coupling of C(sp
3
)-H with Carboxylic Acids Catalyzed by DDQ and tert
-Butyl Nitrite. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Decheng Pan
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zilong Pan
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zhiming Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Meichao Li
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Xinquan Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Liqun Jin
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Nan Sun
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Baoxiang Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zhenlu Shen
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| |
Collapse
|
96
|
Ji J, Chen L, Qiu Z, Ren X, Li Y. Visible‐Light Photoredox‐Catalyzed Cross‐Dehydrogenative Coupling of Tetrahydroisoquinolines with 3‐Fluorooxindoles. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Ji
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Zi‐Bin Qiu
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Xinfeng Ren
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Ya Li
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| |
Collapse
|
97
|
Huang L, Han D, Xu D. Iron‐Catalyzed Cross‐Dehydrogenative Coupling of Oxindoles with Thiols/Selenols for Direct C(
sp
3
)−S/Se Bond Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lu‐Shan Huang
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Dong‐Yang Han
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
98
|
Jin T, Terada M, Bao M, Yamamoto Y. Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations. CHEMSUSCHEM 2019; 12:2936-2954. [PMID: 30811897 DOI: 10.1002/cssc.201900318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Nanoporous metal (MNPore) skeleton catalysts have attracted increasing attention in the field of green and sustainable heterogeneous catalysis owing to their unique three-dimensional nanopore structural features. In general, MNPores are fabricated through chemical or electrochemical corrosive dealloying of monolithic alloys. The dealloying process produces various MNPores with an open nanoporous network structure by formation of concave and convex hyperboloid-like ligaments. The large surface-to-volume ratio compared to bulk metals and high density of steps and kinks on ligaments of the unsupported MNPores make them promising heterogeneous catalyst candidates for highly active and selective molecular transformations. In this context, a variety of heterogeneous catalytic reactions using MNPores as nanocatalysts under gas- and liquid-phase conditions were developed over the last decade. In addition, the bulk metallic shape and mechanistic rigidity of the MNPore catalysts make the processes of catalyst recovery and reuse more facile and greener. This Minireview mainly focuses on the catalytic performance of nanoporous Au, Pd, Cu, and AuPd with respect to the achievements on catalytic applications in various molecular transformations.
Collapse
Affiliation(s)
- Tienan Jin
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Azaaoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- State Key Laboratory of Fine Chemicals and School of Chemistry, Dalian University of Technology, Dalian, 116023, P.R. China
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aramaki Azaaoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Azaaoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals and School of Chemistry, Dalian University of Technology, Dalian, 116023, P.R. China
| | - Yoshinori Yamamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Azaaoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- State Key Laboratory of Fine Chemicals and School of Chemistry, Dalian University of Technology, Dalian, 116023, P.R. China
| |
Collapse
|
99
|
Niu B, Yang K, Lawrence B, Ge H. Transient Ligand-Enabled Transition Metal-Catalyzed C-H Functionalization. CHEMSUSCHEM 2019; 12:2955-2969. [PMID: 30958921 DOI: 10.1002/cssc.201900151] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Indexed: 05/20/2023]
Abstract
Transition metal-catalyzed C-H bond functionalization is among the most efficient and powerful strategies in synthetic organic chemistry to derivatize otherwise inert sites of organic molecules for the construction of C-C and C-heteroatom bonds. However, additional steps are often required to install the directing groups to realize selective C-H bond functionalization of the substrates. These tedious steps run counter to the step-economical nature of the C-H activation. In contrast, direct functionalization of the substrate by using transient ligands avoids the unnecessary steps for the pre-functionalization of the substrates. This Minireview provides a short overview of the major progress made in this field for C-H functionalization at sp2 and sp3 carbon centers with different transient working modes, including covalent, hydrogen, and ionic bonds.
Collapse
Affiliation(s)
- Ben Niu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu, 213164, China
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu, 213164, China
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Brianna Lawrence
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Haibo Ge
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
100
|
Reddy TN, de Lima DP. Recent Advances in the Functionalization of Hydrocarbons: Synthesis of Amides and its Derivatives. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thatikonda Narendar Reddy
- Instituto de Química (INQUI)Universidade Federal de Mato Grosso do Sul 179074-460 Campo Grande, MS Brazil
| | - Dênis Pires de Lima
- Instituto de Química (INQUI)Universidade Federal de Mato Grosso do Sul 179074-460 Campo Grande, MS Brazil
| |
Collapse
|