51
|
Wu C, Li C, Yu X, Chen L, Gao C, Zhang X, Zhang G, Zhang D. An Efficient Diazirine‐Based Four‐Armed Cross‐linker for Photo‐patterning of Polymeric Semiconductors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Changchun Wu
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaobo Yu
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenying Gao
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
52
|
Zhang L, Song T, Shi L, Wen N, Wu Z, Sun C, Jiang D, Guo Z. Recent progress for silver nanowires conducting film for flexible electronics. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 11:323-341. [PMID: 34367531 PMCID: PMC8325546 DOI: 10.1007/s40097-021-00436-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Silver nanowires (AgNWs), as one-dimensional nanometallic materials, have attracted wide attention due to the excellent electrical conductivity, transparency and flexibility, especially in flexible and stretchable electronics. However, the microscopic discontinuities require AgNWs be attached to some carrier for practical applications. Relative to the preparation method, how to integrate AgNWs into the flexible matrix is particularly important. In recent years, plenty of papers have been published on the preparation of conductors based on AgNWs, including printing techniques, coating techniques, vacuum filtration techniques, template-assisted assembly techniques, electrospinning techniques and gelating techniques. The aim of this review is to discuss different assembly method of AgNW-based conducting film and their advantages. GRAPHIC ABSTRACT Conducting films based on silver nanowires (AgNWs) have been reviewed with a focus on their assembly and their advantages.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Tingting Song
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Lianxu Shi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
| | - Caiying Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhanhu Guo
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
53
|
|
54
|
Anthony S, Wonilowicz LG, McVeigh MS, Garg NK. Leveraging Fleeting Strained Intermediates to Access Complex Scaffolds. JACS AU 2021; 1:897-912. [PMID: 34337603 PMCID: PMC8317162 DOI: 10.1021/jacsau.1c00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 05/07/2023]
Abstract
Arynes, strained cyclic alkynes, and strained cyclic allenes were validated as plausible intermediates in the 1950s and 1960s. Despite initially being considered mere scientific curiosities, these transient and highly reactive species have now become valuable synthetic building blocks. This Perspective highlights recent advances in the field that have allowed access to structural and stereochemical complexity, including recent breakthroughs in asymmetric catalysis.
Collapse
|
55
|
Elsner J, Giannini S, Blumberger J. Mechanoelectric Response of Single-Crystal Rubrene from Ab Initio Molecular Dynamics. J Phys Chem Lett 2021; 12:5857-5863. [PMID: 34139118 PMCID: PMC8256417 DOI: 10.1021/acs.jpclett.1c01385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
A robust understanding of the mechanoelectric response of organic semiconductors is crucial for the development of materials for flexible electronics. In particular, the prospect of using external mechanical strain to induce a controlled modulation in the charge mobility of the material is appealing. Here we develop an accurate computational protocol for the prediction of the mechanical strain dependence of charge mobility. Ab initio molecular dynamics simulations with a van der Waals density functional are carried out to quantify the off-diagonal electronic disorder in the system as a function of strain by the explicit calculation of the thermal distributions of electronic coupling matrix elements. The approach is applied to a representative molecular organic semiconductor, single-crystal rubrene. We find that charge mobility along the high-mobility direction a⃗ increases with compressive strain, as one might expect. However, the increase is larger when compressive strain is applied in the perpendicular direction than in the parallel direction with respect to a⃗, in agreement with experimental reports. We show that this seemingly counterintuitive result is a consequence of a significantly greater suppression of electronic coupling fluctuations in the range of 50-150 cm-1, when strain is applied in the perpendicular direction. Thus our study highlights the importance of considering off-diagonal electron-phonon coupling in understanding the mechanoelectric response of organic semiconducting crystals. The computational approach developed here is well suited for the accurate prediction of strain-charge mobility relations and should provide a useful tool for the emerging field of molecular strain engineering.
Collapse
|
56
|
Bhat G, Liu Q, Kielar M, Hamada Y, Michinobu T, Sah P, Ko Kyaw AK, Pandey AK, Sonar P. Energy-Level Manipulation in Novel Indacenodithiophene-Based Donor-Acceptor Polymers for Near-Infrared Organic Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29866-29875. [PMID: 34152743 DOI: 10.1021/acsami.1c03643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic photodetectors (OPDs) are promising candidates for next-generation digital imaging and wearable sensors due to their low cost, tuneable optoelectrical properties combined with high-level performance, and solution-processed fabrication techniques. However, OPD detection is often limited to shorter wavelengths, whereas photodetection in the near-infrared (NIR) region is increasingly being required for wearable electronics and medical device applications. NIR sensing suffers from low responsivity and high dark currents. A common approach to enhance NIR photon detection is lowering the optical band gap via donor-acceptor (D-A) molecular engineering. Herein, we present the synthesis of two novel indacenodithiophene (IDT)-based D-A conjugated polymers, namely, PDPPy-IT and PSNT-IT via palladium-catalyzed Stille coupling reactions. These novel polymers exhibit optical band gaps of 1.81 and 1.27 eV for PDPPy-IT and PSNT-IT, respectively, with highly desirable visible and NIR light detection through energy-level manipulation. Moreover, excellent materials' solubility and thin-film processability allow easy incorporation of these polymers as an active layer into OPDs for light detection. In the case of PSNT-IT devices, a photodetection up to 1000 nm is demonstrated with a peak sensitivity centered at 875 nm, whereas PDPPy-IT devices are efficient in detecting the visible spectrum with the highest sensitivity at 660 nm. Overall, both OPDs exhibit spectral responsivities up to 0.11 A W-1 and dark currents in the nA cm-2 range. With linear dynamic ranges exceeding 140 dB and fast response times recorded below 100 μs, the use of novel IDT-based polymers in OPDs shows great potential for wearable optoelectronics.
Collapse
Affiliation(s)
- Gurudutt Bhat
- School of Chemistry and Physics, Science Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Qian Liu
- School of Chemistry and Physics, Science Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Marcin Kielar
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Electrical Engineering and Robotics, Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Yuya Hamada
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ajay K Pandey
- School of Electrical Engineering and Robotics, Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- Centre for Material Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Science Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- Centre for Material Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
57
|
Diversity-oriented synthesis of nanographenes enabled by dearomative annulative π-extension. Nat Commun 2021; 12:3940. [PMID: 34168148 PMCID: PMC8225822 DOI: 10.1038/s41467-021-24261-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Nanographenes and polycyclic aromatic hydrocarbons (PAHs) are among the most important classes of compounds, with potential applications in nearly all areas of science and technology. While the theoretically possible number of nanographene structures is extraordinary, most of these molecules remain synthetically out of reach due to a lack of programmable and diversity-oriented synthetic methods, and their potentially huge structure-property diversity has not been fully exploited. Herein we report a diversity-oriented, growth-from-template synthesis of nanographenes enabled by iterative annulative π-extension (APEX) reactions from small PAH starting materials. The developed dearomative annulative π-extension (DAPEX) reaction enables π-elongation at the less-reactive M-regions of PAHs, and is successfully combined with complementary APEX reactions that occur at K- and bay-regions to access a variety of previously untapped nanographenes. Nanographenes and polycyclic aromatic hydrocarbons (PAHs) are important classes of compounds with numerous applications, but challenging to access due to a lack of programmable and diversity-oriented methods. Here, the authors report a diversity-oriented, growth-from-template synthesis of nanographenes enabled by iterative annulative π-extension reactions from small PAH starting materials.
Collapse
|
58
|
Islam K, Narjinari H, Kumar A. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khadimul Islam
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Himani Narjinari
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Akshai Kumar
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
- Center for Nanotechnology Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
59
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
60
|
Ma Y, Chen Y, Lv L, Li Z. Regioselective Synthesis of Emission Color‐Tunable Pyrazolo[1,5‐a]pyrimidines with β,β‐Difluoro Peroxides as 1,3‐Bis‐Electrophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yangyang Ma
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yuanjin Chen
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
- College of Chemistry Peking University Beijing 100871 People's Republic of China
| | - Leiyang Lv
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhiping Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
61
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
62
|
Mayakrishnan S, Tamizmani M, Balachandran C, Aoki S, Maheswari NU. Rh(iii)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications. Org Biomol Chem 2021; 19:5413-5425. [PMID: 34047328 DOI: 10.1039/d1ob00376c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of a novel class of indazolo[2,1-a]cinnolin-7-ium and diazabenzofluoranthenium salts was developed by using Rh(iii)-catalyzed C-H activation/annulation reactions with 2-phenyl-2H-indazole, and internal alkynes, which resulted in structurally important polycyclic heteroaromatic compounds (PHAs). This reaction uses mild reaction conditions and has a high efficiency, low catalyst loading, and wide substrate scope. The overall catalytic process involves C-H activation followed by C-C/C-N bond formation. Furthermore, the synthesised cinnolinium/fluoranthenium salts exhibit potential fluorescence properties and 5i was targeted in particular for specific mitochondrial staining in order to investigate cancer cell lines.
Collapse
Affiliation(s)
- Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Narayanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| |
Collapse
|
63
|
Cardona-Serra S, Rosaleny LE, Giménez-Santamarina S, Martínez-Gil L, Gaita-Ariño A. Towards peptide-based tunable multistate memristive materials. Phys Chem Chem Phys 2021; 23:1802-1810. [PMID: 33434247 DOI: 10.1039/d0cp05236a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of new memristive hardware is a technological requirement towards widespread neuromorphic computing. Molecular spintronics seems to be a fertile field for the design and preparation of this hardware. Within molecular spintronics, recent results on metallopeptides demonstrating the interaction between paramagnetic ions and the chirality induced spin selectivity effect hold particular promise for developing fast (ns-μs) operation times. [R. Torres-Cavanillas et al., J. Am. Chem. Soc., 2020, DOI: 10.1021/jacs.0c07531]. Among the challenges in the field, a major highlight is the difficulty in modelling the spin dynamics in these complex systems, but at the same time the use of inexpensive methods has already allowed progress in that direction. Finally, we discuss the unique potential of biomolecules for the design of multistate memristors with a controlled- and indeed, programmable-nanostructure, allowing going beyond anything that is conceivable by employing conventional coordination chemistry.
Collapse
|
64
|
Shuler WG, Parvathaneni SP, Rodriguez JB, Lewis TN, Berges AJ, Bardeen CJ, Krische MJ. Synthesis and Photophysical Properties of Soluble N-Doped Rubicenes via Ruthenium-Catalyzed Transfer Hydrogenative Benzannulation. Chemistry 2021; 27:4898-4902. [PMID: 33576516 DOI: 10.1002/chem.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/10/2022]
Abstract
Ruthenium-catalyzed butadiene-mediated benzannulation enabled the first synthesis of 3,10-(di-tert-butyl)rubicene and its N-doped derivatives as well as preliminary studies on their photophysical properties. Unlike the parent rubicene and 3,10-(di-tert-butyl)rubicene, which adopt classical herringbone-type packing motifs in the solid state, the N-doped congener 7 b displayed columnar packing with an alternating co-facial arrangement of aromatic and heteroaromatic substructures.
Collapse
Affiliation(s)
- William G Shuler
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Sai P Parvathaneni
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jacob B Rodriguez
- Department of Materials Science and Engineering, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Taylor N Lewis
- Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Adam J Berges
- Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Christopher J Bardeen
- Department of Materials Science and Engineering, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA.,Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
65
|
Hei X, Li J. All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chem Sci 2021; 12:3805-3817. [PMID: 34163651 PMCID: PMC8179474 DOI: 10.1039/d0sc06629j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conventional inorganic semiconductors are best known for their superior physical properties and chemical robustness, and their widespread use in optoelectronic devices. However, implementation of these materials in many other applications has been hindered by their poor solubility and/or solution-processability, a longstanding drawback that is largely responsible for issues such as high cost. While recent progress on hybrid perovskites, an important class of inorganic-organic hybrid materials, has shed light on the development of high-performance solution processable semiconductors, they rely heavily on toxic metals and generally suffer from framework instability. To address these issues, a new group of hybrid semiconductors based on anionic copper(i) halide and cationic organic ligands has been developed. These compounds are noted as All-In-One (AIO) structures as they consist of covalently bonded anionic CuX inorganic modules that form both coordinate and ionic bonds with cationic organic ligands. Studies demonstrate that framework stability and solution processibility of these materials are greatly enhanced as a result of such bonds. In the perspective, we highlight the development of this newly emerged type of materials including their crystal structures, chemical and physical properties and possible applications. The untapped potential that the AIO approach can offer for other hybrid families is also discussed.
Collapse
Affiliation(s)
- Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| |
Collapse
|
66
|
Li Y, Sun Y, Zhang Y, Li Y, Verduzco R. High‐performance hybrid luminescent‐scattering solar concentrators based on a luminescent conjugated polymer. POLYM INT 2021. [DOI: 10.1002/pi.6189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yilin Li
- Department of Chemical and Biomolecular Engineering Rice University Houston TX USA
| | - Yujian Sun
- School of Environmental and Forest Sciences University of Washington Seattle WA USA
| | - Yongcao Zhang
- Department of Mechanical Engineering University of Houston Houston TX USA
| | - Yuxin Li
- Department of Chemistry University of Cincinnati Cincinnati OH USA
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering Rice University Houston TX USA
| |
Collapse
|
67
|
Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y. Solution-processed electronics for artificial synapses. MATERIALS HORIZONS 2021; 8:447-470. [PMID: 34821264 DOI: 10.1039/d0mh01520b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Artificial synaptic devices and systems have become hot topics due to parallel computing, high plasticity, integration of storage, and processing to meet the challenges of the traditional Von Neumann computers. Currently, two-terminal memristors and three-terminal transistors have been mainly developed for high-density storage with high switching speed and high reliability because of the adjustable resistivity, controllable ion migration, and abundant choices of functional materials and fabrication processes. To achieve the low-cost, large-scale, and easy-process fabrication, solution-processed techniques have been extensively employed to develop synaptic electronics towards flexible and highly integrated three-dimensional (3D) neural networks. Herein, we have summarized and discussed solution-processed techniques in the fabrication of two-terminal memristors and three-terminal transistors for the application of artificial synaptic electronics mainly reported in the recent five years from the view of fabrication processes, functional materials, electronic operating mechanisms, and system applications. Furthermore, the challenges and prospects were discussed in depth to promote solution-processed techniques in the future development of artificial synapse with high performance and high integration.
Collapse
Affiliation(s)
- Kuakua Lu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Matsunaga A, Ogawa Y, Kumaki D, Tokito S, Katagiri H. Control of Molecular Orientation in Organic Semiconductors Using Weak Iodine-Iodine Interactions. J Phys Chem Lett 2021; 12:111-116. [PMID: 33307707 DOI: 10.1021/acs.jpclett.0c02978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the molecular orientation of materials is a key issue for improving the performance of organic semiconductor devices. Herein, we demonstrate the structure-property relationships of iodinated and noniodinated molecules based on an asymmetric thienoacene framework. The noniodinated molecule formed an antiparallel slip-stack structure with small orbital overlap between molecules. In contrast, the iodinated molecule formed a head-to-head layered-herringbone structure, and as a result, the transfer integrals became larger and the hole mobility increased significantly compared with the noniodinated material. The iodinated molecule was made into a stable and solution-processable p-type organic semiconductor with a mobility of 2.2 cm2 V-1 s-1, which was 2 orders of magnitude higher than that of the noniodinated molecule. This study reveals that controlling molecular orientations using iodine-iodine interactions is a promising strategy for accelerating the development of organic semiconductor materials.
Collapse
Affiliation(s)
- Amane Matsunaga
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuta Ogawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Daisuke Kumaki
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
69
|
Sarmah M, Sharma A, Gogoi P. Exploration of Kobayashi's aryne precursor: a potent reactive platform for the synthesis of polycyclic aromatic hydrocarbons. Org Biomol Chem 2021; 19:722-737. [PMID: 33432965 DOI: 10.1039/d0ob02063j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes due to their transient nature leads to remarkable and versatile applications in the synthetic world. Apparently, researchers have focused on the construction of simple to complex π-conjugated systems using arynes as the reactive platform. In this regard, Kobayashi's aryne precursor has shown a great extent of reactivity and afforded significant advancement in the synthesis of polycyclic aromatic systems with wide practical utility. This review emphasizes the extensive utilization of Kobayashi's aryne intermediates and their derivatives for the synthesis of different classes of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India.
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
70
|
Jin S, Li SJ, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental-Sulfur-Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β-CF 3 -1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:881-888. [PMID: 32985082 DOI: 10.1002/anie.202009194] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
71
|
Gogoi G, Bhattacharya L, Sahoo SR, Sahu S, Sarma NS, Sharma S. Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds. RSC Adv 2021; 11:57-70. [PMID: 35423045 PMCID: PMC8690421 DOI: 10.1039/d0ra08345c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π–π stacking ability. This is also in good agreement for the predicted π–π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π–π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored.![]()
Collapse
Affiliation(s)
- Gautomi Gogoi
- Advanced Materials Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - Labanya Bhattacharya
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Smruti R. Sahoo
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Sridhar Sahu
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Neelotpal Sen Sarma
- Advanced Materials Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - Sagar Sharma
- Department of Chemistry
- School of Fundamental and Applied Sciences
- Assam Don Bosco University
- Guwahati-782402
- India
| |
Collapse
|
72
|
Dumur F. Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110178] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
73
|
Tian D, Zhang W, Shi G, Luo S, Chen Y, Chen W, Huang H, Xing S, Zhu B. Synthesis, structure and properties of semi-internally BN-substituted annulated thiophenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00534k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of semi-internally BN-substituted annulated thiophenes were synthesized from easily accessible 2,1-borazaronaphthalenes.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Wenhao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Guofei Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Sha Luo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Ying Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Wanying Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Huanan Huang
- School of Chemistry and Chemical Engineering; Jiangxi Province Engineering Research Center of Ecological Chemical Industry; Jiujiang Key Laboratory of Organosilicon Chemistry and Application
- Jiujiang University
- Jiujiang 332005
- People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| |
Collapse
|
74
|
Noirbent G, Brunel D, Bui TT, Péralta S, Aubert PH, Gigmes D, Dumur F. D–A dyads and A–D–A triads based on ferrocene: push–pull dyes with unusual behaviours in solution. NEW J CHEM 2021. [DOI: 10.1039/d1nj01680f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ferrocene has been extensively used for the design of chromophores with reversible electrochemical properties.
Collapse
Affiliation(s)
| | - Damien Brunel
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | | | | | | | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Frédéric Dumur
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| |
Collapse
|
75
|
Murad AR, Iraqi A, Aziz SB, Almeataq MS, Abdullah SN, Brza MA. Characteristics of Low Band Gap Copolymers Containing Anthracene-Benzothiadiazole Dicarboxylic Imide: Synthesis, Optical, Electrochemical, Thermal and Structural Studies. Polymers (Basel) 2020; 13:E62. [PMID: 33375767 PMCID: PMC7795893 DOI: 10.3390/polym13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022] Open
Abstract
Two novel low band gap donor-acceptor (D-A) copolymers, poly[9,10-bis(4-(dodecyloxy)phenyl)-2,6-anthracene-alt-5,5-(4',7'-bis(2-thienyl)-2',1',3'-benzothiadiazole-N-5,6-(3,7-dimethyloctyl)dicarboxylic imide)] (PPADTBTDI-DMO) and poly[9,10-bis(4-(dodecyloxy)phenyl)-2,6-anthracene-alt-5,5-(4',7'-bis(2-thienyl)-2',1',3'-benzothiadiazole-5,6-N-octyl-dicarboxylic imide)] (PPADTBTDI-8) were synthesized in the present work by copolymerising the bis-boronate ester of 9,10-phenylsubstituted anthracene flanked by thienyl groups as electron-donor units with benzothiadiazole dicarboxylic imide (BTDI) as electron-acceptor units. Both polymers were synthesized in good yields via Suzuki polymerisation. Two different solubilizing alkyl chains were anchored to the BTDI units in order to investigate the impact upon their solubilities, molecular weights, optical and electrochemical properties, structural properties and thermal stability of the resulting polymers. Both polymers have comparable molecular weights and have a low optical band gap (Eg) of 1.66 eV. The polymers have low-lying highest occupied molecular orbital (HOMO) levels of about -5.5 eV as well as the similar lowest unoccupied molecular orbital (LUMO) energy levels of -3.56 eV. Thermogravimetric analyses (TGA) of PPADTBTDI-DMO and PPADTBTDI-8 did not prove instability with decomposition temperatures at 354 and 313 °C, respectively. Powder X-ray diffraction (XRD) studies have shown that both polymers have an amorphous nature in the solid state, which could be used as electrolytes in optoelectronic devices.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal 46023, Iraq;
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Sulaimani 46001, Iraq
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | | | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Sulaimani 46001, Iraq;
| | - Mohamad A. Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 53100, Malaysia;
| |
Collapse
|
76
|
Schillmöller T, Ruth PN, Herbst‐Irmer R, Stalke D. Analysis of Solid-State Luminescence Emission Amplification at Substituted Anthracenes by Host-Guest Complex Formation. Chemistry 2020; 26:17390-17398. [PMID: 32779830 PMCID: PMC7821099 DOI: 10.1002/chem.202003017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/10/2022]
Abstract
Small robust organic molecules showing solid-state luminescence are promising candidates for optoelectronic materials. Herein, we investigate a series of diphenylphosphanyl anthracenes [9-PPh2 -10-R-(C14 H8 )] and their sulfur oxidised analogues. The oxidation causes drastic changes in the molecular structure as the new orientation of the bulky (S)PPh2 substituent induces a strong butterfly bent structure of the anthracene core, which triggers a strong bathochromic shift resulting in a green solid-state fluorescence. As the emission properties change only slightly upon aggregation the origin of the emission is attributed to a typical monomer fluorescence. The host-guest complexes of [9-(S)PPh2 -10-Ethyl-(C14 H8 )] with four basic arenes reveal an emission enhancement up to five-times higher quantum yields compared to the pure host. Less interchromophoric interactions and a restriction of intramolecular motion within the host molecules due to fixation by weak C-H⋅⋅⋅π interactions with the co-crystallised arene are responsible for that emission enhancement.
Collapse
Affiliation(s)
- Timo Schillmöller
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Paul Niklas Ruth
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
77
|
Deng G, Liu T, Wang Y, Liu B, Tan Q, Xu B. α‐Iminonitriles: Composite Functional Groups for Functionalization of Pyrene. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guigang Deng
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Tianqi Liu
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Yuqin Wang
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bingxin Liu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Qitao Tan
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bin Xu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
78
|
Patil BB, Takeda Y, Singh S, Wang T, Singh A, Do TT, Singh SP, Tokito S, Pandey AK, Sonar P. Electrode and dielectric layer interface device engineering study using furan flanked diketopyrrolopyrrole-dithienothiophene polymer based organic transistors. Sci Rep 2020; 10:19989. [PMID: 33203904 PMCID: PMC7673034 DOI: 10.1038/s41598-020-76962-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
We successfully demonstrated a detailed and systematic enhancement of organic field effect transistors (OFETs) performance using dithienothiophene (DTT) and furan-flanked diketopyrrolopyrrole based donor-acceptor conjugated polymer semiconductor namely PDPPF-DTT as an active semiconductor. The self-assembled monolayers (SAMs) treatments at interface junctions of the semiconductor-dielectric and at the semiconductor-metal electrodes has been implemented using bottom gate bottom contact device geometry. Due to SAM treatment at the interface using tailored approach, the significant reduction of threshold voltage (Vth) from - 15.42 to + 5.74 V has been observed. In addition to tuning effect of Vth, simultaneously charge carrier mobility (µFET) has been also enhanced the from 9.94 × 10-4 cm2/Vs to 0.18 cm2/Vs. In order to calculate the trap density in each OFET device, the hysteresis in transfer characteristics has been studied in detail for bare and SAM treated devices. Higher trap density in Penta-fluoro-benzene-thiol (PFBT) treated OFET devices enhances the gate field, which in turn controls the charge carrier density in the channel, and hence gives lower Vth = + 5.74 V. Also, PFBT treatment enhances the trapped interface electrons, which helps to enhance the mobility in this OFET architecture. The overall effect has led to possibility of reduction in the Vth with simultaneous enhancements of µFET in OFETs, following systematic device engineering methodology.
Collapse
Affiliation(s)
- Basanagouda B Patil
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Subhash Singh
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan
| | - Tony Wang
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Amandeep Singh
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thu Trang Do
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Samarendra P Singh
- Department of Physics, School of Natural Sciences, Shiv Nadar University (SNU), Gautam Buddha Nagar, Uttar Pradesh, 201307, India
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992- 8510, Japan.
| | - Ajay K Pandey
- School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
- Centre for Material Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
79
|
Jin S, Li S, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental‐Sulfur‐Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β‐CF
3
‐1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Shi‐Jun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
80
|
R. Murad A, Iraqi A, Aziz SB, N. Abdullah S, Brza MA. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers (Basel) 2020; 12:E2627. [PMID: 33182241 PMCID: PMC7695322 DOI: 10.3390/polym12112627] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we present a comprehensive summary of the different organic solar cell (OSC) families. Pure and doped conjugated polymers are described. The band structure, electronic properties, and charge separation process in conjugated polymers are briefly described. Various techniques for the preparation of conjugated polymers are presented in detail. The applications of conductive polymers for organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic photovoltaics (OPVs) are explained thoroughly. The architecture of organic polymer solar cells including single layer, bilayer planar heterojunction, and bulk heterojunction (BHJ) are described. Moreover, designing conjugated polymers for photovoltaic applications and optimizations of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy levels are discussed. Principles of bulk heterojunction polymer solar cells are addressed. Finally, strategies for band gap tuning and characteristics of solar cell are presented. In this article, several processing parameters such as the choice of solvent(s) for spin casting film, thermal and solvent annealing, solvent additive, and blend composition that affect the nano-morphology of the photoactive layer are reviewed.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK;
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Mohamad A. Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia;
| |
Collapse
|
81
|
Hirono A, Sakai H, Kochi S, Sato T, Hasobe T. Electrochemical Properties and Excited-State Dynamics of Azaperylene Derivatives. J Phys Chem B 2020; 124:9921-9930. [PMID: 33085485 DOI: 10.1021/acs.jpcb.0c07532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of azaperylene derivatives such as monoazaperylene (MAPery), 1,6-diazaperylene (1,6-DiAPery), 1,7-diazaperylene (1,7-DiAPery), 1,12-diazaperylene (1,12-DiAPery), triazaperylene (TriAPery), and tetraazaperylene (TetAPery) was synthesized by changing the position and number of nitrogen atoms at the bay region of a perylene skeleton in 1, 6, 7, and 12 positions. The density functional theory (DFT) calculations and electrochemical measurements suggested that the energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) states significantly become stabilized with increasing the number of nitrogen atoms, whereas the estimated HOMO-LUMO gaps approximately remain constant. This result is in good agreement with the absorption and fluorescence spectral measurements. Additionally, these steady-state spectroscopic measurements demonstrate the broadened spectra as compared to pristine perylene (Pery). In photophysical measurements, the fluorescence quantum yields (ΦFL) significantly decreased as the number of nitrogen atoms increased, whereas much enhanced quantum yields and rate constants of internal conversion (ΦIC and kIC) were observed. Especially, the increased kIC values of TriAPery (kIC: ∼108 s-1) and TetAPery (kIC: ∼109 s-1) are much larger than those of diazaperylene and monoazaperylene derivatives (kIC: ∼107 s-1). These photophysical trends were successfully explained by time-dependent DFT (TD-DFT) calculations. Finally, the characteristic protonated and deprotonated processes of nitrogen atoms in azaperylenes under acidic conditions were monitored utilizing absorption and fluorescence measurements. The binding constants demonstrate that the nitrogen atoms at 1 and 12 positions of a perylene skeleton are essential for the increased values.
Collapse
Affiliation(s)
- Akitsu Hirono
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Shuntaro Kochi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tohru Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
82
|
Cho SJ, Kim MJ, Wu Z, Son JH, Jeong SY, Lee S, Cho JH, Woo HY. A-D-A Type Semiconducting Small Molecules with Bis(alkylsulfanyl)methylene Substituents and Control of Charge Polarity for Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41842-41851. [PMID: 32819095 DOI: 10.1021/acsami.0c11561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we synthesize four different kinds of bis(alkylsulfanyl)methylene-substituted 4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene (IDT)-based acceptor-donor-acceptor (A-D-A) type small molecules (IDSIC, IDSIC-4F, IDSIC-4Cl, and IDSTIC) by incorporating electron-withdrawing halogen atoms or electron-releasing thiophene spacers. Herein, enhanced structural planarity and crystalline intermolecular packing are induced by the sp2-hybridized C═C double bond side chains and sulfur-sulfur chalcogen interactions. The fine control of intramolecular charge transfer modulates the electrochemical characteristics and the resulting carrier polarity in organic field-effect transistors (OFETs). Well-balanced ambipolar, n-dominant, and p-dominant charge transport properties are successfully demonstrated in OFETs by modulating the electron-donating or withdrawing strength based on the A-D-A structural motif, resulting in hole/electron mobilities of 0.599/0.553, 0.003/0.019, 0.092/0.897, and 0.683/0.103 cm2/V·s for IDSIC, IDSIC-4F, IDSIC-4Cl, and IDSTIC respectively, after thermal annealing at 200 °C. Thermal annealing of the as-cast films improves the intermolecular packing in an edge-on fashion, which is investigated in detail by grazing incidence X-ray scattering. Finally, complementary logic circuits, i.e., NOT, NAND, and NOR, are fabricated by assembling p-dominant IDSTIC and n-dominant IDSIC-4Cl OFETs. Therefore, a simple and efficient molecular design strategy for fine tuning the charge polarity and charge transport properties of OFET devices is presented.
Collapse
Affiliation(s)
- Sung Joon Cho
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Min Je Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Jae Hoon Son
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Sungkyunkwan University, Suwon 440-746 Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
83
|
Mariammal B, Shylaja A, Kumar SV, Rubina SR, Kumar RR. Thiazole‐tethered
biaryls as fluorescent chemosensors for the selective detection of Fe
3+
ions. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Balasubramanian Mariammal
- Department of Organic Chemistry School of Chemistry, Madurai Kamaraj University Madurai Tamil Nadu India
| | - Adaikalam Shylaja
- Department of Organic Chemistry School of Chemistry, Madurai Kamaraj University Madurai Tamil Nadu India
| | - Sundaravel Vivek Kumar
- Department of Organic Chemistry School of Chemistry, Madurai Kamaraj University Madurai Tamil Nadu India
| | - Stephen Raja Rubina
- Department of Organic Chemistry School of Chemistry, Madurai Kamaraj University Madurai Tamil Nadu India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry School of Chemistry, Madurai Kamaraj University Madurai Tamil Nadu India
| |
Collapse
|
84
|
Selenium-containing core-expanded naphthalene diimides for high performance n-type organic semiconductors. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9792-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
85
|
Jin H, Fürstner A. Modular Synthesis of Furans with up to Four Different Substituents by a trans-Carboboration Strategy. Angew Chem Int Ed Engl 2020; 59:13618-13622. [PMID: 32374441 PMCID: PMC7496670 DOI: 10.1002/anie.202005560] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 01/18/2023]
Abstract
Propargyl alcohols, on treatment with MHMDS (M=Na, K), B2 (pin)2 , an acid chloride and a palladium/copper co-catalyst system, undergo a reaction cascade comprised of trans-diboration, regioselective acylation, cyclization and dehydration to give trisubstituted furylboronic acid pinacol ester derivatives in good yields; subsequent Suzuki coupling allows a fourth substituent of choice to be introduced and hence tetrasubstituted (arylated) furans to be formed. In terms of modularity, the method seems unrivaled, not least because each product can be attained by two orthogonal but convergent ways ("diagonal split"). This asset is illustrated by the "serial" formation of a "library" of all twelve possible furan isomers that result from systematic permutation of four different substituents about the heterocyclic core.
Collapse
Affiliation(s)
- Hongming Jin
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
86
|
Jin H, Fürstner A. Modular Synthesis of Furans with up to Four Different Substituents by a
trans
‐Carboboration Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongming Jin
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
87
|
Bischak CG, Flagg LQ, Ginger DS. Ion Exchange Gels Allow Organic Electrochemical Transistor Operation with Hydrophobic Polymers in Aqueous Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002610. [PMID: 32596942 DOI: 10.1002/adma.202002610] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 05/21/2023]
Abstract
Conjugated-polymer-based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new polymers that interface digital electronics with the aqueous chemistry of life are being developed, the majority of high-performance organic transistor materials are poor at transporting biologically relevant ions. Here, the operating mode of an organic transistor is changed from that of an electrolyte-gated organic field-effect transistor (EGOFET) to that of an OECT by incorporating an ion exchange gel between the active layer and the aqueous electrolyte. This device works by taking up biologically relevant ions from solution and injecting more hydrophobic ions into the active layer. Using poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene] as the active layer and a blend of an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and poly(vinylidene fluoride-co-hexafluoropropylene) as the ion exchange gel, four orders of magnitude improvement in device transconductance and a 100-fold increase in kinetics are demonstrated. The ability of the ion-exchange-gel OECT to record biological signals by measuring the action potentials of a Venus flytrap is demonstrated. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductors as OECTs that can be gated by aqueous solutions.
Collapse
Affiliation(s)
- Connor G Bischak
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA
| | - Lucas Q Flagg
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA
| |
Collapse
|
88
|
Ito H, Matsuoka W, Yano Y, Shibata M, Itami K. Annulative π-Extension (APEX) Reactions for Precise Synthesis of Polycyclic Aromatic Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| | | | | | | | - Kenichiro Itami
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| |
Collapse
|
89
|
Theoretical study on the electronic, optoelectronic, linear and non linear optical properties and UV–Vis Spectrum of Coronene and Coronene substituted with Chlorine. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
90
|
Wu H, Iino H, Hanna JI. Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29497-29504. [PMID: 32436375 DOI: 10.1021/acsami.0c05105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fabrication of organic semiconductor thin films by printing technologies is expected to enable the low-cost production of devices such as flexible display drivers, RF-ID tags, and various chemical/biological sensors. However, large-scale high-speed fabrication of uniform semiconductor thin films with adequate electrical properties for these devices remains a big challenge. Herein, we demonstrate an ultrafast and scalable fabrication of uniform polycrystalline thin films with 100% surface coverage using liquid crystalline semiconductors such as 2-phenyl-7-decyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) and 2.7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8), at a rate of 3 orders of magnitude higher than before, i.e., 40 mm/s (2.4 m/min) or more by dip-coating in the drainage regime. Organic transistors fabricated with polycrystalline thin films of Ph-BTBT-10 show average mobilities of 4.13 ± 0.75 cm2/(V s) in the bottom-gate-bottom-contact configuration and 10.90 ± 2.40 cm2/(V s) in the bottom-gate-top-contact configuration comparable to those of the devices prepared with single-crystalline thin films. More importantly, these films almost maintain the FET performance when the substrate size is extended up to 4 square inch. The present findings are available for other liquid crystalline semiconductors and bring us one step closer to the realization of printed electronics.
Collapse
Affiliation(s)
- Hao Wu
- Imaging Science and Engineering Research Center, Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroaki Iino
- Imaging Science and Engineering Research Center, Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Jun-Ichi Hanna
- Imaging Science and Engineering Research Center, Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
91
|
Wu YS, Lin YC, Hung SY, Chen CK, Chiang YC, Chueh CC, Chen WC. Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Yuan Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
92
|
Dikcal F, Topal S, Unal M, Ozturk T. Synthesis, Characterization and Electrochemical Properties of Polymers Based on Dithienothiophene and Bithiazole. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatma Dikcal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
- Istanbul Sisli Vocational School Istanbul Turkey
| | - Sebahat Topal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
| | - Murat Unal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
| | - Turan Ozturk
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
- TUBITAK-UMEChemistry Group Laboratories Kocaeli Turkey
| |
Collapse
|
93
|
DENG SHIXIONG, LI YUHAO, CAI PENGFEI, WANG CHENGYUN, WANG HAN, SHEN YONGJIA. Synthesis and characterization of tetrathiafulvalene-σ-thiophene dyads. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01779-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Moliterni A, Altamura D, Lassandro R, Olieric V, Ferri G, Cardarelli F, Camposeo A, Pisignano D, Anthony JE, Giannini C. Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:427-435. [PMID: 32831261 DOI: 10.1107/s2052520620004424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Anthracene derivative compounds are currently investigated because of their unique physical properties (e.g. bright luminescence and emission tunability), which make them ideal candidates for advanced optoelectronic devices. Intermolecular interactions are the basis of the tunability of the optical and electronic properties of these compounds, whose prediction and exploitation benefit from knowledge of the crystal structure and the packing architecture. Polymorphism can occur due to the weak intermolecular interactions, requiring detailed structural analysis to clarify the origin of observed material property modifications. Here, two silylethyne-substituted anthracene compounds are characterized by single-crystal synchrotron X-ray diffraction, identifying a new polymorph in the process. Additionally, laser confocal microscopy and fluorescence lifetime imaging microscopy confirm the results obtained by the X-ray diffraction characterization, i.e. shifting the substituents towards the external benzene rings of the anthracene unit favours π-π interactions, impacting on both the morphology and the microscopic optical properties of the crystals. The compounds with more isolated anthracene units feature shorter lifetime and emission spectra, more similar to those of isolated molecules. The crystallographic study, supported by the optical investigation, sheds light on the influence of non-covalent interactions on the crystal packing and luminescence properties of anthracene derivatives, providing a further step towards their efficient use as building blocks in active components of light sources and photonic networks.
Collapse
Affiliation(s)
- Anna Moliterni
- Istituto di Cristallografia, CNR, Via Amendola, 122/O, Bari, 70126, Italy
| | - Davide Altamura
- Istituto di Cristallografia, CNR, Via Amendola, 122/O, Bari, 70126, Italy
| | - Rocco Lassandro
- Istituto di Cristallografia, CNR, Via Amendola, 122/O, Bari, 70126, Italy
| | - Vincent Olieric
- Paul Scherrer Institute, Forschungstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Gianmarco Ferri
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, I-56127, Italy
| | | | - Andrea Camposeo
- NEST, Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, I-56127, Italy
| | - Dario Pisignano
- NEST, Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, I-56127, Italy
| | - John E Anthony
- Center for Applied Energy Research, University of Kentucky, Research Park Drive, Lexington, KY 2582, USA
| | - Cinzia Giannini
- Istituto di Cristallografia, CNR, Via Amendola, 122/O, Bari, 70126, Italy
| |
Collapse
|
95
|
Ha S, Lee Y, Kwak Y, Mishra A, Yu E, Ryou B, Park CM. Alkyne-Alkene [2 + 2] cycloaddition based on visible light photocatalysis. Nat Commun 2020; 11:2509. [PMID: 32427846 PMCID: PMC7237675 DOI: 10.1038/s41467-020-16283-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
UV-activated alkyne-alkene [2 + 2] cycloaddition has served as an important tool to access cyclobutenes. Although broadly adopted, the limitations with UV light as an energy source prompted us to explore an alternative method. Here we report alkyne-alkene [2 + 2] cycloaddition based on visible light photocatalysis allowing the synthesis of diverse cyclobutenes and 1,3-dienes via inter- and intramolecular reactions. Extensive mechanistic studies suggest that the localized spin densities at sp2 carbons of alkenes account for the productive sensitization of alkenes despite their similar triplet levels of alkenes and alkynes. Moreover, the efficient formation of 1,3-dienes via tandem triplet activation of the resulting cyclobutenes is observed when intramolecular enyne cycloaddition is performed, which may serve as a complementary means to the Ru(II)-catalyzed enyne metathesis. In addition, the utility of the [2 + 2] cycloaddition has been demonstrated by several synthetic transformations including synthesis of various extended π-systems.
Collapse
Affiliation(s)
- Sujin Ha
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Yeji Lee
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Yoonna Kwak
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Akash Mishra
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Bokyeong Ryou
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan, 44919, Korea.
| |
Collapse
|
96
|
Uryu M, Hiraga T, Koga Y, Saito Y, Murakami K, Itami K. Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold C−H Activation. Angew Chem Int Ed Engl 2020; 59:6551-6554. [DOI: 10.1002/anie.202001211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Mizuho Uryu
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Taito Hiraga
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Yoshito Koga
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Yutaro Saito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
97
|
Uryu M, Hiraga T, Koga Y, Saito Y, Murakami K, Itami K. Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mizuho Uryu
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Taito Hiraga
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Yoshito Koga
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Yutaro Saito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
98
|
Moon S, Kato M, Nishii Y, Miura M. Synthesis of Benzo[
b
]thiophenes through Rhodium‐Catalyzed Three‐Component Reaction using Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sanghun Moon
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Moena Kato
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young ResearchersGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
99
|
Escalona C, Estrany F, Ahumada JC, Borras N, Soto JP, Alemán C. 2,7-Linked N-methylcarbazole copolymers by combining the macromonomer approach and the oxidative electrochemical polymerization. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02799-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
100
|
Multifunctional conjugated 1,6-heptadiynes and its derivatives stimulated molecular electronics: Future moletronics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|