51
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
52
|
Le VV, Ko SR, Kang M, Oh HM, Ahn CY. Mucilaginibacter aquariorum sp. nov., Isolated from Fresh Water. J Microbiol Biotechnol 2022; 32:1553-1560. [PMID: 36377201 PMCID: PMC9843747 DOI: 10.4014/jmb.2208.08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
A Gram-stain-negative, rod-shaped bacterial strain, JC4T, was isolated from a freshwater sample and determined the taxonomic position. Initial identification based on 16S rRNA gene sequences revealed that strain JC4T is affiliated to the genus Mucilaginibacter with a sequence similarity of 97.97% to Mucilaginibacter rigui WPCB133T. The average nucleotide identity and digital DNA-DNA hybridization values between strain JC4T and Mucilaginibacter species were estimated below 80.92% and 23.9%, respectively. Strain JC4T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and iso-C15:0 as predominant cellular fatty acids. The dominant polar lipids were identified as phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, and two unidentified lipids. The respiratory quinone was MK-7. The genomic DNA G+C content of strain JC4T was determined to be 42.44%. The above polyphasic evidences support that strain JC4T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter aquariorum sp. nov. is proposed. The type strain is JC4T (= KCTC 92230T = LMG 32715T).
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding author Phone: +82-42-860-4329 Fax: +82-42-860-4594 E-mail:
| |
Collapse
|
53
|
Langsdorf A, Drommershausen AL, Volkmar M, Ulber R, Holtmann D. Fermentative α-Humulene Production from Homogenized Grass Clippings as a Growth Medium. Molecules 2022; 27:8684. [PMID: 36557817 PMCID: PMC9788380 DOI: 10.3390/molecules27248684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Green waste, e.g., grass clippings, is currently insufficiently recycled and has untapped potential as a valuable resource. Our aim was to use juice from grass clippings as a growth medium for microorganisms. Herein, we demonstrate the production of the sesquiterpene α-humulene with the versatile organism Cupriavidus necator pKR-hum on a growth medium from grass clippings. The medium was compared with established media in terms of microbial growth and terpene production. C. necator pKR-hum shows a maximum growth rate of 0.43 h-1 in the grass medium and 0.50 h-1 in a lysogeny broth (LB) medium. With the grass medium, 2 mg/L of α-humulene were produced compared to 10 mg/L with the LB medium. By concentrating the grass medium and using a controlled bioreactor in combination with an optimized in situ product removal, comparable product concentrations could likely be achieved. To the best of our knowledge, this is the first time that juice from grass clippings has been used as a growth medium without any further additives for microbial product synthesis. This use of green waste as a material represents a new bioeconomic utilization option of waste materials and could contribute to improving the economics of grass biorefineries.
Collapse
Affiliation(s)
- Alexander Langsdorf
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| | - Anna-Lena Drommershausen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| | - Marianne Volkmar
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, D-67663 Kaiserslautern, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, D-67663 Kaiserslautern, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, D-35390 Giessen, Germany
| |
Collapse
|
54
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
55
|
Huang S, Xue Y, Ma Y, Zhou C. Microbial (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate reductase (IspH) and its biotechnological potential: A mini review. Front Bioeng Biotechnol 2022; 10:1057938. [DOI: 10.3389/fbioe.2022.1057938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) reductase (IspH) is a [4Fe-4S] cluster-containing enzyme, involved in isoprenoid biosynthesis as the final enzyme of the methylerythritol phosphate (MEP) pathway found in many bacteria and malaria parasites. In recent years, many studies have revealed that isoprenoid compounds are an alternative to petroleum-derived fuels. Thus, ecofriendly methods harnessing the methylerythritol phosphate pathway in microbes to synthesize isoprenoid compounds and IspH itself have received notable attention from researchers. In addition to its applications in the field of biosynthesis, IspH is considered to be an attractive drug target for infectious diseases such as malaria and tuberculosis due to its survivability in most pathogenic bacterium and its absence in humans. In this mini-review, we summarize previous reports that have systematically illuminated the fundamental and structural properties, substrate binding and catalysis, proposed catalytic mechanism, and novel catalytic activities of IspH. Potential bioengineering and biotechnological applications of IspH are also discussed.
Collapse
|
56
|
A guanidinium group is an effective mimic of the tertiary carbocation formed by isopentenyl diphosphate isomerase. Bioorg Med Chem Lett 2022; 75:128971. [PMID: 36064124 DOI: 10.1016/j.bmcl.2022.128971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022]
Abstract
Type I isopentenyl diphosphate isomerase is a metal-dependent enzyme that generates a tertiary carbocation intermediate during catalysis. This study describes an inhibitor (2-guanidinoethyl(dihydroxyphosphorylmethyl)phosphinate) of the isomerase that bears a guanidinium as a carbocation mimic and a phosphinylphosphonate as a non-hydrolyzable metal binding functionality. Inhibition kinetics show that the compound acts in a competitive manner with a Ki value of 129 nM (KM,IPP/Ki = 27). An analogous inhibitor bearing a tertiary ammonium as the carbocation mimic was 50-fold less potent, suggesting that the planar guanidinium is a more effective carbocation mimic. Inhibitors bearing an acylated methanesulfonamide or a hydroxamate group in place of the pyrophosphate inhibited the enzyme at millimolar concentrations indicating that the isomerase is highly specific for binding to the diphosphate portion of the intermediate.
Collapse
|
57
|
TG-FTIR-QMS analysis of more environmentally friendly poly(geranyl methacrylate)-co-poly(cyclohexyl methacrylate) copolymers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
58
|
Faylo JL, van Eeuwen T, Gupta K, Murakami K, Christianson DW. Transient Prenyltransferase-Cyclase Association in Fusicoccadiene Synthase, an Assembly-Line Terpene Synthase. Biochemistry 2022; 61:2417-2430. [PMID: 36227241 PMCID: PMC9648990 DOI: 10.1021/acs.biochem.2c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fusicoccadiene synthase from the fungus Phomopsis amygdali (PaFS) is an assembly-line terpene synthase that catalyzes the first two steps in the biosynthesis of Fusiccocin A, a diterpene glycoside. The C-terminal prenyltransferase domain of PaFS catalyzes the condensation of one molecule of C5 dimethylallyl diphosphate and three molecules of C5 isopentenyl diphosphate to form C20 geranylgeranyl diphosphate, which then transits to the cyclase domain for cyclization to form fusicoccadiene. Previous structural studies of PaFS using electron microscopy (EM) revealed a central octameric prenyltransferase core with eight cyclase domains tethered in random distal positions through flexible 70-residue linkers. However, proximal prenyltransferase-cyclase configurations could be captured by covalent cross-linking and observed by cryo-EM and mass spectrometry. Here, we use cryo-EM to show that proximally configured prenyltransferase-cyclase complexes are observable even in the absence of covalent cross-linking; moreover, such complexes can involve multiple cyclase domains. A conserved basic patch on the prenyltransferase domain comprises the primary touchpoint with the cyclase domain. These results support a model for transient prenyltransferase-cyclase association in which the cyclase domains of PaFS are in facile equilibrium between proximal associated and random distal positions relative to the central prenyltransferase octamer. The results of biophysical measurements using small-angle X-ray scattering, analytical ultracentrifugation, dynamic light scattering, and size-exclusion chromatography in-line with multi-angle light scattering are consistent with this model. This model accordingly provides a framework for understanding substrate transit between the prenyltransferase and cyclase domains as well as the cooperativity observed for geranylgeranyl diphosphate cyclization.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Trevor van Eeuwen
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
59
|
Ye K, Ai HL. Pimarane Diterpenes from Fungi. Pharmaceuticals (Basel) 2022; 15:ph15101291. [PMID: 36297402 PMCID: PMC9609704 DOI: 10.3390/ph15101291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pimarane diterpenes are a kind of tricyclic diterpene, generally isolated from plant and fungi. In nature, fungi distribute widely and there are nearly two to three million species. They provide many secondary metabolites, including pimarane diterpenes, with novel skeletons and bioactivities. These natural products from fungi have the potential to be developed into clinical medicines. Herein, the structures and bioactivities of 197 pimarane diterpenes are summarized and the biosynthesis and pharmacological researches of pimarane diterpenes are introduced. This review may be useful improving the understanding of pimarane diterpenes from fungi.
Collapse
|
60
|
Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Ma M, Meng H, Lei E, Wang T, Zhang W, Lu B. De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae). BMC PLANT BIOLOGY 2022; 22:467. [PMID: 36171538 PMCID: PMC9519402 DOI: 10.1186/s12870-022-03827-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Amomum tsaoko is a medicinal and food dual-use crop that belongs to the Zingiberaceae family. However, the lack of transcriptomic and genomic information has limited the understanding of the genetic basis of this species. Here, we performed transcriptome sequencing of samples from different A. tsaoko tissues, and identified and characterized the expressed sequence tag-simple sequence repeat (EST-SSR) markers. RESULTS A total of 58,278,226 high-quality clean reads were obtained and de novo assembled to generate 146,911 unigenes with an N50 length of 2002 bp. A total of 128,174 unigenes were successfully annotated by searching seven protein databases, and 496 unigenes were identified as annotated as putative terpenoid biosynthesis-related genes. Furthermore, a total of 55,590 EST-SSR loci were detected, and 42,333 primer pairs were successfully designed. We randomly selected 80 primer pairs to validate their polymorphism in A. tsaoko; 18 of these primer pairs produced distinct, clear, and reproducible polymorphisms. A total of 98 bands and 96 polymorphic bands were amplified by 18 pairs of EST-SSR primers for the 72 A. tsaoko accessions. The Shannon's information index (I) ranged from 0.477 (AM208) to 1.701 (AM242) with an average of 1.183, and the polymorphism information content (PIC) ranged from 0.223 (AM208) to 0.779 (AM247) with an average of 0.580, indicating that these markers had a high level of polymorphism. Analysis of molecular variance (AMOVA) indicated relatively low genetic differentiation among the six A. tsaoko populations. Cross-species amplification showed that 14 of the 18 EST-SSR primer pairs have transferability between 11 Zingiberaceae species. CONCLUSIONS Our study is the first to provide transcriptome data of this important medicinal and edible crop, and these newly developed EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity, and molecular marker-assisted selection in A. tsaoko.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - Hengling Meng
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - En Lei
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Tiantao Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Wei Zhang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China.
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China.
| |
Collapse
|
62
|
Xia H, Noushahi HA, Khan AH, Liu Y, Cosoveanu A, Cui L, Tang J, Iqbal S, Shu S. Genome sequencing of Colletotrichum gloeosporioides ESO026 reveals plausible pathway of HupA. Mol Biol Rep 2022; 49:11611-11622. [PMID: 36161578 DOI: 10.1007/s11033-022-07850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.
Collapse
Affiliation(s)
- Haiyang Xia
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Bio-Pharmaceuticals Institute , Taizhou University, 317000, Taizhou, China
| | - Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Liu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Andreea Cosoveanu
- Department of Botany, Ecology & Plant Physiology, CIPEV Group, Faculty of Science, Biology Section, Universidad de La Laguna, 38206, San Cristobal de La Laguna, Tenerife, Spain
| | - Lingli Cui
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Tang
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shehzad Iqbal
- Faculty of Agricultural Sciences, University of Talca, 3460000, Talca, Chile
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
63
|
|
64
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
65
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207202. [DOI: 10.1002/anie.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
66
|
Zhang L, Zhang X, Min J, Liu B, Huang JW, Yang Y, Liu W, Dai L, Yang Y, Chen CC, Guo RT. Structural insights to a bi-functional isoprenyl diphosphate synthase that can catalyze head-to-tail and head-to-middle condensation. Int J Biol Macromol 2022; 214:492-499. [PMID: 35764165 DOI: 10.1016/j.ijbiomac.2022.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Isoprenoids represent the largest group of natural products, whose basal skeletons are synthesized by various isoprenyl diphosphate synthases (IDSs). As majority of IDSs catalyze head-to-tail reaction to produce linear form isoprenoids, some catalyze head-to-middle reaction to produce branched form products. In a previous study, an IDS termed MA1831 from Methanosarcina acetivorans was found to be capable of catalyzing both types of reaction. In addition to the canonical linear product of C35 in length, MA1831 also catalyzes head-to-middle condensation of farnesyl diphosphate (FPP) and dimethylallyl diphosphate (DMAPP) to produce geranyllavandulyl diphosphate. In order to investigate the mechanism of action of MA1831, we determined its crystal structures in apo-form and in complex with substrates and analogues. The complex structures that contain isopentenyl S-thiolodiphosphate and DMAPP as homoallylic substrates were also reported, which should represent the reaction modes of MA1831-mediated head-to-tail and head-to-middle reaction, respectively. Based on the structural information, the mechanism of MA1831 catalyze head-to-tail and head-to-middle condensation reaction was proposed.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xiaowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Beibei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yunyun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
67
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
68
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
69
|
Vo NNQ, Nomura Y, Kinugasa K, Takagi H, Takahashi S. Identification and Characterization of Bifunctional Drimenol Synthases of Marine Bacterial Origin. ACS Chem Biol 2022; 17:1226-1238. [PMID: 35446557 PMCID: PMC9128629 DOI: 10.1021/acschembio.2c00163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural drimane-type sesquiterpenes, including drimenol, display diverse biological activities. These active compounds are distributed in plants and fungi; however, their accumulation in bacteria remains unknown. Consequently, bacterial drimane-type sesquiterpene synthases remain to be characterized. Here, we report five drimenol synthases (DMSs) of marine bacterial origin, all belonging to the haloacid dehalogenase (HAD)-like hydrolase superfamily with the conserved DDxxE motif typical of class I terpene synthases and the DxDTT motif found in class II diterpene synthases. They catalyze two continuous reactions: the cyclization of farnesyl pyrophosphate (FPP) into drimenyl pyrophosphate and dephosphorylation of drimenyl pyrophosphate into drimenol. Protein structure modeling of the characterized Aquimarina spongiae DMS (AsDMS) suggests that the FPP substrate is located within the interdomain created by the DDxxE motif of N-domain and DxDTT motif of C-domain. Biochemical analysis revealed two aspartate residues of the DDxxE motif that might contribute to the capture of the pyrophosphate moiety of FPP inside the catalytic site of AsDMS, which is essential for efficient cyclization and subsequent dephosphorylation reactions. The middle aspartate residue of the DxDTT motif is also critical for cyclization. Thus, AsDMS utilizes both motifs in the reactions. Remarkably, the unique protein architecture of AsDMS, which is characterized by the fusion of a HAD-like domain (N-domain) and a terpene synthase β domain (C-domain), significantly differentiates this new enzyme. Our findings of the first examples of bacterial DMSs suggest the biosynthesis of drimane sesquiterpenes in bacteria and shed light on the divergence of the structures and functions of terpene synthases.
Collapse
Affiliation(s)
- Nhu Ngoc Quynh Vo
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuhta Nomura
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyomi Kinugasa
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroshi Takagi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
70
|
Hueting DA, Vanga SR, Syrén PO. Thermoadaptation in an Ancestral Diterpene Cyclase by Altered Loop Stability. J Phys Chem B 2022; 126:3809-3821. [PMID: 35583961 PMCID: PMC9169049 DOI: 10.1021/acs.jpcb.1c10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Thermostability is
the key to maintain the structural integrity
and catalytic activity of enzymes in industrial biotechnological processes,
such as terpene cyclase-mediated generation of medicines, chiral synthons,
and fine chemicals. However, affording a large increase in the thermostability
of enzymes through site-directed protein engineering techniques can
constitute a challenge. In this paper, we used ancestral sequence
reconstruction to create a hyperstable variant of the ent-copalyl diphosphate synthase PtmT2, a terpene cyclase involved in
the assembly of antibiotics. Molecular dynamics simulations on the
μs timescale were performed to shed light on possible molecular
mechanisms contributing to activity at an elevated temperature and
the large 40 °C increase in melting temperature observed for
an ancestral variant of PtmT2. In silico analysis
revealed key differences in the flexibility of a loop capping the
active site, between extant and ancestral proteins. For the modern
enzyme, the loop collapses into the active site at elevated temperatures,
thus preventing biocatalysis, whereas the loop remains in a productive
conformation both at ambient and high temperatures in the ancestral
variant. Restoring a Pro loop residue introduced in the ancestral
variant to the corresponding Gly observed in the extant protein led
to reduced catalytic activity at high temperatures, with only moderate
effects on the melting temperature, supporting the importance of the
flexibility of the capping loop in thermoadaptation. Conversely, the
inverse Gly to Pro loop mutation in the modern enzyme resulted in
a 3-fold increase in the catalytic rate. Despite an overall decrease
in maximal activity of ancestor compared to wild type, its increased
thermostability provides a robust backbone amenable for further enzyme
engineering. Our work cements the importance of loops in enzyme catalysis
and provides a molecular mechanism contributing to thermoadaptation
in an ancestral enzyme.
Collapse
Affiliation(s)
- David A Hueting
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| | - Sudarsana R Vanga
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
71
|
Hu YC, Min XT, Ji DW, Chen QA. Catalytic prenylation and reverse prenylation of aromatics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Mohanty B, Majedi SM, Pavagadhi S, Te SH, Boo CY, Gin KYH, Swarup S. Effects of Light and Temperature on the Metabolic Profiling of Two Habitat-Dependent Bloom-Forming Cyanobacteria. Metabolites 2022; 12:406. [PMID: 35629910 PMCID: PMC9146292 DOI: 10.3390/metabo12050406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid proliferation of cyanobacteria in both benthic and suspended (planktonic) habitats is a major threat to environmental safety, as they produce nuisance compounds such as cytotoxins and off-flavors, which degrade the safety and quality of water supplies. Temperature and light irradiance are two of the key factors in regulating the occurrence of algal blooms and production of major off-flavors. However, the role of these factors in regulating the growth and metabolism is poorly explored for both benthic and planktonic cyanobacteria. To fill this gap, we studied the effects of light and temperature on the growth and metabolic profiling of both benthic (Hapalosiphon sp. MRB220) and planktonic (Planktothricoides sp. SR001) environmental species collected from a freshwater reservoir in Singapore. Moreover, this study is the first report on the metabolic profiling of cyanobacteria belonging to two different habitats in response to altered environmental conditions. The highest growth rate of both species was observed at the highest light intensity (100 μmol photons/m²/s) and at a temperature of 33 °C. Systematic metabolite profiling analysis suggested that temperature had a more profound effect on metabolome of the Hapalosiphon, whereas light had a greater effect in the case of Planktothricoides. Interestingly, Planktothricoides sp. SR001 showed a specialized adaptation mechanism via biosynthesis of arginine, and metabolism of cysteine and methionine to survive and withstand higher temperatures of 38 °C and higher. Hence, the mode of strategies for coping with different light and temperature conditions was correlated with the growth and alteration in metabolic activities for physiological and ecological adaptations in both species. In addition, we putatively identified a number of unique metabolites with a broad range of antimicrobial activities in both species in response to both light and temperature. These metabolites could play a role in the dominant behavior of these species in suppressing competition during bloom formation. Overall, this study elucidated novel insights into the effects of environmental factors on the growth, metabolism, and adaptation strategies of cyanobacteria from two different habitats, and could be useful in controlling their harmful effects on human health and environmental concerns.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
| | - Seyed Mohammad Majedi
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Shruti Pavagadhi
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Shu Harn Te
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
| | - Chek Yin Boo
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sanjay Swarup
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; (B.M.); (S.M.M.); (S.P.); (S.H.T.); (C.Y.B.); (K.Y.-H.G.)
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
73
|
Incorporation of Azido Functionality into Prenylated Molecules Enable the Fluorescent Labeling of Prenylated RNA in Living Cells. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel) 2022; 11:antibiotics11040469. [PMID: 35453220 PMCID: PMC9031819 DOI: 10.3390/antibiotics11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.
Collapse
|
75
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Terpenes and terpenoids are the main bioactive compounds of essential oils (EOs). EOs and their major constituents confer several biological activities. EOs are potential as natural food preservatives.
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.,Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia.,Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
76
|
Gao J, Li T, Jiao L, Jiang C, Chen S, Huang L, Liu J. Metabolome and transcriptome analyses identify the plant immunity systems that facilitate sesquiterpene and lignan biosynthesis in Syringa pinnatifolia Hemsl. BMC PLANT BIOLOGY 2022; 22:132. [PMID: 35317751 PMCID: PMC8939180 DOI: 10.1186/s12870-022-03537-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Syringa pinnatifolia Hemsl. is a shrub belonging to the Oleaceae family. The peeled woody stems and roots of S. pinnatifolia are used in Chinese traditional medicine. This plant has been used for centuries, and modern pharmacological research has revealed its medicinal value. However, the wild populations of S. pinnatifolia have been decreasing, and it has been listed as an endangered plant in China. To elucidate the molecular mechanism leading to the synthesis of the major components of S. pinnatifolia for its further development and sustainable use, this study compared peeled stems and twigs at the metabolic and molecular levels. RESULTS Peeled stems with the purple substance visible (SSP) and peeled twigs without the purple substance (TSP) were compared at different levels. Microscopic observation showed resin-like fillers in SSP and wood fiber cell walls approximately 1.0 μm thicker than those in TSP (wood fiber cell thickness approximately 2.7 μm). In addition, 104 volatile organic compounds and 870 non-volatile metabolites were detected in the non-targeted and widely-targeted metabolome analyses, respectively. Among the 76 differentially accumulated metabolites (DAMs) detected, 62 were up-accumulated in SSP. Most of these DAMs were terpenes, of which 90% were identified as sesquiterpenes in the volatile organic compound analysis. In the analysis of the non-volatile metabolites, 21 differentially accumulated lignans were identified, of which 18, including five subtypes, were accumulated in SSP. RNA sequencing revealed 4,421 upregulated differentially expressed genes (DEGs) and 5,522 downregulated DEGs in SSP compared with TSP, as well as 33,452 genes that were not differentially expressed. Analysis of the DEGs suggested that sesquiterpenes and lignans were mostly biosynthesized via the mevalonate and phenylpropanoid pathways, respectively. Additionally, in SSP, the enriched Gene Ontology terms included response to biotic stimulus and defense response, while the enriched Kyoto Encyclopedia of Genes and Genomes pathways included plant-pathogen interaction and many other pathways related to plant immunity. CONCLUSIONS This study provides metabolome and transcriptome information for S. pinnatifolia, suggesting that biotic stimuli, including pathogens, are potential and valuable approaches to promoting the biosynthesis of the metabolites linked to the medicinal properties of this plant.
Collapse
Affiliation(s)
- Jiaqi Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Tianxiao Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Suyile Chen
- Alashan Mongolian Hospital, Alashan East Banner of Alashan, 75030, Inner Mongolia, China
| | - Luqi Huang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Juan Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
77
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
78
|
Rajakumara E, Abhishek S, Nitin K, Saniya D, Bajaj P, Schwaneberg U, Davari MD. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chem Biol 2022; 17:266-280. [PMID: 35041385 DOI: 10.1021/acschembio.1c00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure-function relationship, cooperativity in binding of substrates, and dynamics of substrate-enzyme-cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure-activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes' structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Kulhar Nitin
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Priyanka Bajaj
- National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
79
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
80
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
81
|
Dimos N, Helmer CPO, Chánique AM, Wahl MC, Kourist R, Hilal T, Loll B. CryoEM analysis of small plant biocatalysts at sub-2 Å resolution. Acta Crystallogr D Struct Biol 2022; 78:113-123. [PMID: 34981767 PMCID: PMC8725159 DOI: 10.1107/s205979832101216x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial in order to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryoEM) has revolutionized structural biology, its applicability to high-resolution structural analysis of comparatively small enzymes has so far been largely unexplored. Here, it is shown that cryoEM can reveal the structures of plant borneol dehydrogenases of ∼120 kDa at or below 2 Å resolution, paving the way for the rapid development of new biocatalysts that can provide access to bioactive terpenes and terpenoids.
Collapse
Affiliation(s)
- Nicole Dimos
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, Pharmacy, Laboratory of Structural Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Carl P. O. Helmer
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, Pharmacy, Laboratory of Structural Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Andrea M. Chánique
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7810000 Santiago, Chile
| | - Markus C. Wahl
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, Pharmacy, Laboratory of Structural Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Free University of Berlin, Fabeckstrasse 36A, 14195 Berlin, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, Pharmacy, Laboratory of Structural Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
- moloX GmbH, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
82
|
Kwon M, Utomo JC, Park K, Pascoe CA, Chiorean S, Ngo I, Pelot KA, Pan CH, Kim SW, Zerbe P, Vederas JC, Ro DK. Cytochrome P450-Catalyzed Biosynthesis of a Dihydrofuran Neoclerodane in Magic Mint (Salvia divinorum). ACS Catal 2021. [DOI: 10.1021/acscatal.1c03691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joseph C. Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Cameron A. Pascoe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. NW, Edmonton, Alberta T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. NW, Edmonton, Alberta T6G 2G2, Canada
| | - Iris Ngo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Kyle A. Pelot
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
- Department of Biological Chemistry, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - John C. Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. NW, Edmonton, Alberta T6G 2G2, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
83
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
84
|
Stamm A, Öhlin J, Mosbech C, Olsén P, Guo B, Söderberg E, Biundo A, Fogelström L, Bhattacharyya S, Bornscheuer UT, Malmström E, Syrén PO. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS AU 2021; 1:1949-1960. [PMID: 34849510 PMCID: PMC8620555 DOI: 10.1021/jacsau.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.
Collapse
Affiliation(s)
- Arne Stamm
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Johannes Öhlin
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Caroline Mosbech
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Boyang Guo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Elisabeth Söderberg
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Linda Fogelström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | | | - Uwe T. Bornscheuer
- Department
of Biotechnology and Enzyme Catalysis, University
of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Eva Malmström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| |
Collapse
|
85
|
Pang B, Li J, Eiben CB, Oksen E, Barcelos C, Chen R, Englund E, Sundstrom E, Keasling JD. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels. Metab Eng 2021; 68:210-219. [PMID: 34673235 DOI: 10.1016/j.ymben.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/31/2022]
Abstract
Terpenes constitute the largest class of natural products with over 55,000 compounds with versatile applications including drugs and biofuels. Introducing structural modifications to terpenes through metabolic engineering is an efficient and sustainable way to improve their properties. Here, we report the optimization of the lepidopteran mevalonate (LMVA) pathway towards the efficient production of isopentenyl pyrophosphate (IPP) analogs as terpene precursors. First, we linked the LMVA pathway to NudB, a promiscuous phosphatase, resulting in the production of the six-carbon analog of 3-methyl-3-buten-1-ol (isoprenol), 3-ethyl-3-buten-1-ol (C6-isoprenol). Using C6-isoprenol as the final product, we then engineered the LMVA pathway by redirecting its upstream portion from a thiolase-dependent pathway to a beta-oxidation pathway. The beta-oxidation LMVA pathway transforms valeric acid, a platform chemical that can be produced from biomass, into C6-isoprenol at a titer of 110.3 mg/L, improved from 5.5 mg/L by the thiolase LMVA pathway, which used propionic acid as a feedstock. Knockout of the E. coli endogenous thiolase genes further improved the C6-isoprenol titer to 390 mg/L, implying efficient production of homo isopentenyl pyrophosphate (HIPP). The beta-oxidation LMVA-NudB pathway also converts butanoic acid and hexanoic acid into isoprenol and isoprenol's seven-carbon analog, 3-propyl-3-buten-1-ol (C7-isoprenol), respectively, suggesting the beta-oxidation LMVA pathway produces IPP and C7-IPP from the corresponding fatty acids. Fuel property tests revealed the longer chain isoprenol analogs have lower water solubilities, similar or higher energy densities, and comparable research octane number (RON) boosting effects to isopentenols. This work not only optimizes the LMVA pathway, setting the basis for homoterpene biosynthesis to expand terpene chemical space, but provides an efficient pathway to produce isoprenol analogs as next-generation biofuels from sustainable feedstocks.
Collapse
Affiliation(s)
- Bo Pang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, United States
| | - Jia Li
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Christopher B Eiben
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Ethan Oksen
- Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Carolina Barcelos
- Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Rong Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Elias Englund
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Eric Sundstrom
- Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, United States; Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK 2970 Horsholm, Denmark; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
86
|
Faylo JL, Ronnebaum TA, Christianson DW. Assembly-Line Catalysis in Bifunctional Terpene Synthases. Acc Chem Res 2021; 54:3780-3791. [PMID: 34254507 DOI: 10.1021/acs.accounts.1c00296] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C5n isoprenoid diphosphates (n ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, β, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a β domain or at the interface of β and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αβ, αβγ, βγ, and β.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C15 farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C12 geosmin and C3 acetone products. In comparison, plant abietadiene synthase is an αβγ domain enzyme in which C20 geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αβγ)6 architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the βγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα)6 or (αα)8 architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
87
|
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9:microorganisms9102041. [PMID: 34683362 PMCID: PMC8541629 DOI: 10.3390/microorganisms9102041] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of drug- resistant pathogens raises an urgent need to identify and isolate new bioactive compounds from medicinal plants using standardized modern analytical procedures. Medicinal plant-derived compounds could provide novel straightforward approaches against pathogenic bacteria. This review explores the antimicrobial activity of plant-derived components, their possible mechanisms of action, as well as their chemical potential. The focus is put on the current challenges and future perspectives surrounding medicinal plants antimicrobial activity. There are some inherent challenges regarding medicinal plant extracts and their antimicrobial efficacy. Appropriate and optimized extraction methodology plant species dependent leads to upgraded and selective extracted compounds. Antimicrobial susceptibility tests for the determination of the antimicrobial activity of plant extracts may show variations in obtained results. Moreover, there are several difficulties and problems that need to be overcome for the development of new antimicrobials from plant extracts, while efforts have been made to enhance the antimicrobial activity of chemical compounds. Research on the mechanisms of action, interplay with other substances, and the pharmacokinetic and/or pharmacodynamic profile of the medicinal plant extracts should be given high priority to characterize them as potential antimicrobial agents.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); (E.S.)
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland
- Correspondence: (N.V.); (E.S.)
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece;
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
88
|
Bashir R, Ahmad Zargar O, Hamid Dar A, Yedukondalu N, Parvaiz Q, Hamid R. The modulation of PI3K/Akt pathway by 3β hydroxylup-12-en-28-oic acid isolated from Thymus linearis induces cell death in HCT-116 cells. Chem Biol Drug Des 2021; 99:162-178. [PMID: 34558199 DOI: 10.1111/cbdd.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
The presence of intricate carbon skeletons in natural compounds enhances their bioactivity spectrum with unique modes of action at several targets in various dreadful diseases like cancer. The present study was designed to purify the molecules from Thymus linearis and elucidate their antiproliferative activity. The compounds were isolated from the active methanolic extract of Thymus linearis through column chromatography and characterized by various spectroscopic techniques. Antiproliferative activity of isolated compounds was evaluated using MTT assay on cancer and normal cell lines. Mechanism of cell death was elucidated using flow cytometric, microscopic, and Western blot analysis. Four compounds, Sitosterol, Chrysin, 3β-hydroxylup-12-en-28-oic acid (3BH), and β-Sitosterol glycoside, were isolated. Among these, 3BH was most potent antiproliferative agent across all cell lines under study, HCT-116 being the most affected one. 3BH was demonstrated to downregulate PI3Ksubunits (p110α and p85α), downstream pAktSer473 and prompted G1 phase cell cycle arrest. The cell cycle CDK inhibitor p27 and p21 were upregulated with simultaneous downregulation of cyclin D1 and cyclin E in HCT-116 cells. This was accompanied by apoptosis, as depicted by decrease in Bcl-2/Bax ratio, with increase in active caspases-3 and caspase-9, cleavage of PARP-1, the generation of reactive oxygen species (ROS), and the loss of mitochondrial membrane potential. The findings established that 3BH induced cell death in HCT-116 cells by modulating PI3K/Akt signaling axis, impeding cell cycle, and instigating apoptosis.
Collapse
Affiliation(s)
- Rohina Bashir
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Ovais Ahmad Zargar
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Abid Hamid Dar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | | | - Qazi Parvaiz
- Microbial Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
89
|
Weston-Green K, Clunas H, Jimenez Naranjo C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front Psychiatry 2021; 12:583211. [PMID: 34512404 PMCID: PMC8426550 DOI: 10.3389/fpsyt.2021.583211] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
"Medicinal cannabis" is defined as the use of cannabis-based products for the treatment of an illness. Investigations of cannabis compounds in psychiatric and neurological illnesses primarily focus on the major cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), which are hypothesised to benefit multiple illnesses manifesting cognitive impairment, neurodegeneration and neuro-inflammation, as well as chronic pain, epilepsy and post-traumatic stress disorder, respectively. The cannabis plant contains >500 compounds, including terpenes responsible for the flavour and fragrance profiles of plants. Recently, research has begun providing evidence on the potential use of certain plant-derived terpenes in modern medicine, demonstrating anti-oxidant, anti-inflammatory, and neuroprotective effects of these compounds. This review examined the effects of two key terpenes, pinene and linalool, on parameters relevant to neurological and psychiatric disorders, highlighting gaps in the literature and recommendations for future research into terpene therapeutics. Overall, evidence is mostly limited to preclinical studies and well-designed clinical trials are lacking. Nevertheless, existing data suggests that pinene and linalool are relevant candidates for further investigation as novel medicines for illnesses, including stroke, ischemia, inflammatory and neuropathic pain (including migraine), cognitive impairment (relevant to Alzheimer's disease and ageing), insomnia, anxiety, and depression. Linalool and pinene influence multiple neurotransmitter, inflammatory and neurotrophic signals as well as behaviour, demonstrating psycho-activity (albeit non-intoxicating). Optimising the phytochemical profile of cannabis chemovars to yield therapeutic levels of beneficial terpenes and cannabinoids, such as linalool, pinene and CBD, could present a unique opportunity to discover novel medicines to treat psychiatric and neurological illnesses; however, further research is needed.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Helen Clunas
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Carlos Jimenez Naranjo
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| |
Collapse
|
90
|
Feilner JM, Plangger I, Wurst K, Magauer T. Bifunctional Polyene Cyclizations: Synthetic Studies on Pimarane Natural Products. Chemistry 2021; 27:12410-12421. [PMID: 34213030 PMCID: PMC8457131 DOI: 10.1002/chem.202101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/10/2022]
Abstract
Polyene cyclizations generate molecular complexity from a linear polyene in a single step. While methods to initiate these cyclizations have been continuously expanded and improved over the years, the majority of polyene substrates are still limited to simple alkyl-substituted alkenes. In this study, we took advantage of the unique reactivity of higher-functionalized bifunctional alkenes. The realization of a polyene tetracyclization of a dual nucleophilic aryl enol ether involving a transannular endo-termination step enabled the total synthesis of the tricyclic diterpenoid pimara-15-en-3α-8α-diol. The highly flexible and modular route allowed for the preparation of a diverse library of cyclization precursors specifically designed for the total synthesis of the tetracyclic nor-diterpenoid norflickinflimiod C. The tetracyclization of three diversely substituted allenes enabled access to complex pentacyclic products and provided a detailed insight into the underlying reaction pathways.
Collapse
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Immanuel Plangger
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
91
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
92
|
Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. A Modular In Vitro Platform for the Production of Terpenes and Polyketides from CO 2. Angew Chem Int Ed Engl 2021; 60:16420-16425. [PMID: 33938102 PMCID: PMC8362062 DOI: 10.1002/anie.202102333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Indexed: 01/12/2023]
Abstract
A long-term goal in realizing a sustainable biocatalysis and organic synthesis is the direct use of the greenhouse gas CO2 as feedstock for the production of bulk and fine chemicals, such as pharmaceuticals, fragrances and food additives. Here we developed a modular in vitro platform for the continuous conversion of CO2 into complex multi-carbon compounds, such as monoterpenes (C10 ), sesquiterpenes (C15 ) and polyketides. Combining natural and synthetic metabolic pathway modules, we established a route from CO2 into the key intermediates acetyl- and malonyl-CoA, which can be subsequently diversified through the action of different terpene and polyketide synthases. Our proof-of-principle study demonstrates the simultaneous operation of different metabolic modules comprising of up to 29 enzymes in one pot, which paves the way for developing and optimizing synthesis routes for the generation of complex CO2 -based chemicals in the future.
Collapse
Affiliation(s)
- Srividhya Sundaram
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Jan Bamberger
- Equipment Center for Mass Spectrometry and Elemental AnalysisDepartment of ChemistryPhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| | - Tobias J. Erb
- Department of Biochemistry and Synthetic MetabolismMax Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Strasse 1035043MarburgGermany
| |
Collapse
|
93
|
Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. Eine modulare In‐vitro‐Plattform für die Produktion von Terpenen und Polyketiden aus CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srividhya Sundaram
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Christoph Diehl
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Niña Socorro Cortina
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Jan Bamberger
- Gerätezentrum Massenspektrometrie und Elementanalytik Abteilung Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Nicole Paczia
- Serviceeinheit Metabolomics und Kleinmolekül-Massenspektrometrie Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| | - Tobias J. Erb
- Abteilung Biochemie und Synthetischer Metabolismus Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10 35043 Marburg Deutschland
| |
Collapse
|
94
|
Zhang J, Li Y, Wang S, Wang R. Labeling of prenylated nucleic acid by Ene-type fluorination under physiological condition. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
95
|
Jahangeer M, Fatima R, Ashiq M, Basharat A, Qamar SA, Bilal M, Iqbal HM. Therapeutic and Biomedical Potentialities of Terpenoids – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021; 15:471-483. [DOI: 10.22207/jpam.15.2.04] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Terpenoids are the most diverse and largest class of chemicals of the innumerable plant-based compounds. Plants carry out a number of essential growth and production functions using terpenoid metabolites. In contrast, most terpenoids are used in the abiotic and biotic systems for complex chemical interactions and defense. Terpenoids derived from plants mostly used humans for pharmaceutical, food, and chemical industries in the past. However, recently biofuel products have been developed by terpenoids. The metabolism of high-quality terpenoids in plants and microbes is facilitated in synthetic biology by genomic resources and emerging tools. Further focus has been given to the ecological value of terpenoids for establishing effective pesticide control approaches and abiotic stress protection. The awareness of the diverse metabolic and molecular regulatory networks for terpenoid biosynthesis needs to be increased continuously in all these efforts. This review gives an overview and highlights current improvements in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and discusses the prominent therapeutic roles of terpenoids. This review provides an overview and highlights recent literature in our understanding about the biomedical and therapeutic importance of terpenoids, regulation as well as the diversion of core and specialized metabolized terpenoid pathways.
Collapse
|
96
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
97
|
Cho SH, Jeong Y, Lee E, Ko SR, Ahn CY, Oh HM, Cho BK, Cho S. Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M. J Microbiol Biotechnol 2021; 31:601-609. [PMID: 33526758 PMCID: PMC9723273 DOI: 10.4014/jmb.2012.12054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pangenome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.
Collapse
Affiliation(s)
- Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eunju Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,
B.-K. Cho E-mail:
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Corresponding authors S. Cho Phone: +82-42-350-2660 Fax: +82-42-350-5620 E-mail:
| |
Collapse
|
98
|
Okada M, Unno H, Emi KI, Matsumoto M, Hemmi H. A versatile cis-prenyltransferase from Methanosarcina mazei catalyzes both C- and O-prenylations. J Biol Chem 2021; 296:100679. [PMID: 33872599 PMCID: PMC8131916 DOI: 10.1016/j.jbc.2021.100679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Polyprenyl groups, products of isoprenoid metabolism, are utilized in peptidoglycan biosynthesis, protein N-glycosylation, and other processes. These groups are formed by cis-prenyltransferases, which use allylic prenyl pyrophosphates as prenyl-donors to catalyze the C-prenylation of the general acceptor substrate, isopentenyl pyrophosphate. Repetition of this reaction forms (Z,E-mixed)-polyprenyl pyrophosphates, which are converted later into glycosyl carrier lipids, such as undecaprenyl phosphate and dolichyl phosphate. MM_0014 from the methanogenic archaeon Methanosarcina mazei is known as a versatile cis-prenyltransferase that accepts both isopentenyl pyrophosphate and dimethylallyl pyrophosphate as acceptor substrates. To learn more about this enzyme’s catalytic activity, we determined the X-ray crystal structures of MM_0014 in the presence or absence of these substrates. Surprisingly, one structure revealed a complex with O-prenylglycerol, suggesting that the enzyme catalyzed the prenylation of glycerol contained in the crystallization buffer. Further analyses confirmed that the enzyme could catalyze the O-prenylation of small alcohols, such as 2-propanol, expanding our understanding of the catalytic ability of cis-prenyltransferases.
Collapse
Affiliation(s)
- Miyako Okada
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hideaki Unno
- Graduate School of Engineering, Nagasaki University, Nagasaki, Nagasaki, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Koh-Ichi Emi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mayuko Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Hemmi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
99
|
Schriever K, Saenz-Mendez P, Rudraraju RS, Hendrikse NM, Hudson EP, Biundo A, Schnell R, Syrén PO. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. J Am Chem Soc 2021; 143:3794-3807. [PMID: 33496585 PMCID: PMC8023661 DOI: 10.1021/jacs.0c10214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.
Collapse
Affiliation(s)
- Karen Schriever
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | | | - Natalie M. Hendrikse
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Swedish
Orphan Biovitrum AB, 112
76 Stockholm, Sweden
| | - Elton P. Hudson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Protein Science, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 165 Stockholm, Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Wallenberg
Wood Science Center, Teknikringen 56−58, 100 44 Stockholm, Sweden
| |
Collapse
|
100
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|