51
|
You T, Zeng SH, Fan J, Wu L, Kang F, Liu Y, Che CM. A soluble iron(II)-phthalocyanine-catalyzed intramolecular C(sp 3)-H amination with alkyl azides. Chem Commun (Camb) 2021; 57:10711-10714. [PMID: 34553711 DOI: 10.1039/d1cc04573c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we describe a soluble iron(II)-phthalocyanine, [FeII(tBu4Pc)(py)2] (Pc = phthalocyaninato(2-)), as an effective catalyst in intramolecular C(sp3)-H bond amination, with alkyl azides as the nitrogen source, to afford the amination products in moderate to excellent yields with a broad substrate scope.
Collapse
Affiliation(s)
- Tingjie You
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Si-Hao Zeng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Liangliang Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Fangyuan Kang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.,College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, P. R. China
| |
Collapse
|
52
|
Dhara S, Panda S, Lahiri GK. Redox induced S-S bond cleavage of 2,2'-dithiobisbenzothiazole - leading to a [2Ru-2S] core analogous to [2Fe-2S] cluster. Dalton Trans 2021; 50:12408-12412. [PMID: 34378605 DOI: 10.1039/d1dt02211c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile reduction of 2,2'-dithiobisbenzothiazole by the mediation of metal-to-ligand charge transfer or by internal reducing equivalent is demonstrated. It leads to various binding modes of thiolates (κ1, κ2, μ) in a series of mononuclear and dinuclear ruthenium complexes. The dinuclear complex exhibited electron transfer processes similar to a [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
53
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
54
|
Reckziegel A, Kour M, Battistella B, Mebs S, Beuthert K, Berger R, Werncke CG. High-Spin Imido Cobalt Complexes with Imidyl Radical Character*. Angew Chem Int Ed Engl 2021; 60:15376-15380. [PMID: 33977634 PMCID: PMC8362137 DOI: 10.1002/anie.202103841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Indexed: 01/21/2023]
Abstract
We report on the synthesis of a variety of trigonal imido cobalt complexes [Co(NAryl)L2 ]- , (L=N(Dipp)SiMe3 ), Dipp=2,6-diisopropylphenyl) with very long Co-NAryl bonds of around 1.75 Å. Their electronic structure was interrogated using a variety of physical and spectroscopic methods such as EPR or X-Ray absorption spectroscopy which leads to their description as highly unusual imidyl cobalt complexes. Computational analyses corroborate these findings and further reveal that the high-spin state is responsible for the imidyl character. Exchange of the Dipp substituent on the imide by the smaller mesityl function (2,4,6-trimethylphenyl) effectuates the unexpected Me3 Si shift from the ancillary ligand set to the imidyl nitrogen, revealing a highly reactive, nucleophilic character of the imidyl unit.
Collapse
Affiliation(s)
- Alexander Reckziegel
- Department of ChemistryPhilipps-University MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Manjinder Kour
- Department of ChemistryPhilipps-University MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Beatrice Battistella
- Institute of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Stefan Mebs
- Department of PhysicsFreie Universität zu BerlinArnimallee 1414195BerlinGermany
| | - Katrin Beuthert
- Department of ChemistryPhilipps-University MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Robert Berger
- Department of ChemistryPhilipps-University MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - C. Gunnar Werncke
- Department of ChemistryPhilipps-University MarburgHans-Meerwein-Strasse 435032MarburgGermany
| |
Collapse
|
55
|
Reckziegel A, Kour M, Battistella B, Mebs S, Beuthert K, Berger R, Werncke CG. High‐Spin‐Imidocobaltkomplexe mit Imidylradikalcharakter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Reckziegel
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Manjinder Kour
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Beatrice Battistella
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Stefan Mebs
- Fachbereich Physik Freie Universität zu Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Katrin Beuthert
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Robert Berger
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - C. Gunnar Werncke
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| |
Collapse
|
56
|
Jiang Y, Gu Z, Chen Y, Xia J. Pd‐Catalyzed Amidation of Silyl Enol Ethers With CO and Azides via an Isocyanate Intermediate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Qian Jiang
- School Chemistry of Chemical Engineering Guizhou University 550025 Guiyang P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
| | - Zheng‐Yang Gu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province Yancheng Institute of Technology 224003 Jiangsu P. R. China
| | - Ye Chen
- School Chemistry of Chemical Engineering Guizhou University 550025 Guiyang P. R. China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
| |
Collapse
|
57
|
Sridharan A, Brown AC, Suess DLM. A Terminal Imido Complex of an Iron-Sulfur Cluster. Angew Chem Int Ed Engl 2021; 60:12802-12806. [PMID: 33772994 DOI: 10.1002/anie.202102603] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/10/2022]
Abstract
We report the synthesis and characterization of the first terminal imido complex of an Fe-S cluster, (IMes)3 Fe4 S4 =NDipp (2; IMes=1,3-dimesitylimidazol-2-ylidene, Dipp=2,6-diisopropylphenyl), which is generated by oxidative group transfer from DippN3 to the all-ferrous cluster (IMes)3 Fe4 S4 (PPh3 ). This two-electron process is achieved by formal one-electron oxidation of the imido-bound Fe site and one-electron oxidation of two IMes-bound Fe sites. Structural, spectroscopic, and computational studies establish that the Fe-imido site is best described as a high-spin Fe3+ center, which is manifested in its long Fe-N(imido) distance of 1.763(2) Å. Cluster 2 abstracts hydrogen atoms from 1,4-cyclohexadiene to yield the corresponding anilido complex, demonstrating competency for C-H activation.
Collapse
Affiliation(s)
- Arun Sridharan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| |
Collapse
|
58
|
Sridharan A, Brown AC, Suess DLM. A Terminal Imido Complex of an Iron–Sulfur Cluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arun Sridharan
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Alexandra C. Brown
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Daniel L. M. Suess
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
59
|
Liang Q, DeMuth JC, Radović A, Wolford NJ, Neidig ML, Song D. [2Fe-2S] Cluster Supported by Redox-Active o-Phenylenediamide Ligands and Its Application toward Dinitrogen Reduction. Inorg Chem 2021; 60:13811-13820. [PMID: 34043353 DOI: 10.1021/acs.inorgchem.1c00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As prevalent cofactors in living organisms, iron-sulfur clusters participate in not only the electron-transfer processes but also the biosynthesis of other cofactors. Many synthetic iron-sulfur clusters have been used in model studies, aiming to mimic their biological functions and to gain mechanistic insight into the related biological systems. The smallest [2Fe-2S] clusters are typically used for one-electron processes because of their limited capacity. Our group is interested in functionalizing small iron-sulfur clusters with redox-active ligands to enhance their electron storage capacity, because such functionalized clusters can potentially mediate multielectron chemical transformations. Herein we report the synthesis, structural characterization, and catalytic activity of a diferric [2Fe-2S] cluster functionalized with two o-phenylenediamide ligands. The electrochemical and chemical reductions of such a cluster revealed rich redox chemistry. The functionalized diferric cluster can store up to four electrons reversibly, where the first two reduction events are ligand-based and the remainder metal-based. The diferric [2Fe-2S] cluster displays catalytic activity toward silylation of dinitrogen, affording up to 88 equiv of the amine product per iron center.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
60
|
Dong Y, Wrobel AT, Porter GJ, Kim JJ, Essman JZ, Zheng SL, Betley TA. O-Heterocycle Synthesis via Intramolecular C-H Alkoxylation Catalyzed by Iron Acetylacetonate. J Am Chem Soc 2021; 143:7480-7489. [PMID: 33949855 DOI: 10.1021/jacs.1c02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intramolecular alkoxylation of C-H bonds can rapidly introduce structural and functional group complexities into seemingly simple or inert precursors. The transformation is particularly important due to the ubiquitous presence of tetrahydrofuran (THF) motifs as fundamental building blocks in a wide range of pharmaceuticals, agrochemicals, and natural products. Despite the various synthetic methodologies known for generating functionalized THFs, most show limited functional group tolerance and lack demonstration for the preparation of spiro or fused bi- and tricyclic ether units prevalent in molecules for pharmacological purposes. Herein we report an intramolecular C-H alkoxylation to furnish oxacycles from easily prepared α-diazo-β-ketoesters using commercially available iron acetylacetonate (Fe(acac)2) as a catalyst. The reaction is proposed to proceed through the formation of a vinylic carboradical arising from N2 extrusion, which mediates a proximal H-atom abstraction followed by a rapid C-O bond forming radical recombination step. The radical mechanism is probed using an isotopic labeling study (vinyl C-D incorporation), ring opening of a radical clock substrate, and Hammett analysis and is further corroborated by density functional theory (DFT) calculations. Heightened reactivity is observed for electron-rich C-H bonds (tertiary, ethereal), while greater catalyst loadings or elevated reaction temperatures are required to fully convert substrates with benzylic, secondary, and primary C-H bonds. The transformation is highly functional group tolerant and operates under mild reaction conditions to provide rapid access to complex structures such as spiro and fused bi-/tricyclic O-heterocycles from readily available precursors.
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alexandra T Wrobel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Gerard J Porter
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jessica J Kim
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jake Z Essman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
61
|
Desnoyer AN, Nicolay A, Ziegler MS, Lakshmi KV, Cundari TR, Tilley TD. A Dicopper Nitrenoid by Oxidation of a Cu ICu I Core: Synthesis, Electronic Structure, and Reactivity. J Am Chem Soc 2021; 143:7135-7143. [PMID: 33877827 DOI: 10.1021/jacs.1c02235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dicopper nitrenoid complex was prepared by formal oxidative addition of the nitrenoid fragment to a dicopper(I) center by reaction with the iminoiodinane PhINTs (Ts = tosylate). This nitrenoid complex, (DPFN)Cu2(μ-NTs)[NTf2]2 (DPFN = 2,7-bis(fluorodi(2-pyridyl)methyl)-1,8-naphthyridine), is a powerful H atom abstractor that reacts with a range of strong C-H bonds to form a mixed-valence Cu(I)/Cu(II) μ-NHTs amido complex in the first example of a clean H atom transfer to a dicopper nitrenoid core. In line with this reactivity, DFT calculations reveal that the nitrenoid is best described as an iminyl (NR radical anion) complex. The nitrenoid was trapped by the addition of water to form a mixed-donor hydroxo/amido dicopper(II) complex, which was independently obtained by reaction of a Cu2(μ-OH)2 complex with an amine through a protonolysis pathway. This mixed-donor complex is an analogue for the proposed intermediate in copper-catalyzed Chan-Evans-Lam coupling, which proceeds via C-X (X = N or O) bond formation. Treatment of the dicopper(II) mixed donor complex with MgPh2(THF)2 resulted in generation of a mixture that includes both phenol and a previously reported dicopper(I) bridging phenyl complex, illustrating that both reduction of dicopper(II) to dicopper(I) and concomitant C-X bond formation are feasible.
Collapse
Affiliation(s)
- Addison N Desnoyer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amélie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy, Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
62
|
Barluzzi L, Hsueh FC, Scopelliti R, Atkinson BE, Kaltsoyannis N, Mazzanti M. Synthesis, structure, and reactivity of uranium(vi) nitrides. Chem Sci 2021; 12:8096-8104. [PMID: 34194699 PMCID: PMC8208130 DOI: 10.1039/d1sc01796a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber-Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(O t Bu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(O t Bu)3)3(μ-N)}2], 2 and [K2{U(OSi(O t Bu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant ("magic blue") yields the U(vi)/U(vi) complex [{U(OSi(O t Bu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(O t Bu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(O t Bu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U-N bonding. Computational studies show a delocalised bond across the U-N-U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U-N σ orbital well localised to U[triple bond, length as m-dash]N and π orbitals which partially delocalise to form the U-N single bond with the other uranium.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
63
|
Grant LN, Bhunia M, Pinter B, Rebreyend C, Carroll ME, Carroll PJ, de Bruin B, Mindiola DJ. Pursuit of an Electron Deficient Titanium Nitride. Inorg Chem 2021; 60:5635-5646. [PMID: 33825450 DOI: 10.1021/acs.inorgchem.0c03644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitride salt [(PN)2Ti≡N{μ2-K(OEt2)}]2 (1) (PN- = (N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) can be oxidized with two equiv of I2 or four equiv of ClCPh3 to produce the phosphinimide-halide complexes (NPN')(PN)Ti(X) (X- = I (2), Cl (3); NPN' = N-(2-NPiPr2-4-methylphenyl)-2,4,6-Me3C6H22-), respectively. In the case of 2, H2 was found to be one of the other products; whereas, HCPh3 and Gomberg's dimer were observed upon the formation of 3. Independent studies suggest that the oxidation of 1 could imply the formation of the transient nitridyl species [(PN)2Ti(≡N•)] (A), which can either oxidize the proximal phosphine atom to produce the Ti(III) intermediate [(NPN')(PN)Ti] (B) or, alternatively, engage in H atom abstraction to form the parent imido (PN)2Ti≡NH (4). The latter was independently prepared and was found to photochemically convert to the titanium-hydride, (NPN')(PN)Ti(H) (5). Isotopic labeling studies using (PN)2Ti≡ND (4-d1) as well as reactivity studies of 5 with a hydride abstractor demonstrate the presence of the hydride ligand in 5. An alternative route to putative A was observed via a photochemically promoted incomplete reduction of the azide ligand in (PN)2Ti(N3) (6) to 4. This process was accompanied by some formation of 5. Frozen matrix X-band EPR studies of 6, performed under photolytic conditions, were consistent with species B being formed under these reaction conditions, originating from a low barrier N-insertion into the phosphine group in the putative nitridyl species A. Computational studies were also undertaken to discover the mechanism and plausibility of the divergent pathways (via intermediates A and B) in the formation of 2 and 3, and to characterize the bonding and electronic structure of the elusive nitrogen-centered radical in A.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Christophe Rebreyend
- Department of Homogeneous Catalysis, Universiteit van Amsterdam, Faculty of Science, van 't Hoff Institute for Molecular Sciences, Postbus 94720, Amsterdam
| | - Maria E Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bas de Bruin
- Department of Homogeneous Catalysis, Universiteit van Amsterdam, Faculty of Science, van 't Hoff Institute for Molecular Sciences, Postbus 94720, Amsterdam
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
64
|
Wang D, Tricoire M, Cemortan V, Moutet J, Nocton G. Redox activity of a dissymmetric ligand bridging divalent ytter-bium and reactive nickel fragments. Inorg Chem Front 2021; 8:647-657. [PMID: 33575034 PMCID: PMC7116723 DOI: 10.1039/d0qi00952k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of a reactive nickel dimethyl 1 bearing a redox-active, dissymmetric ligand, which is obtained by deprotonation of 2-pyrimidin-2-yl-1H-benzimidazole (Hbimpm) with a divalent lanthanide complex, Cp*2Yb(OEt2), affords an unprecedented, trimeric 2 with C(sp3)-C(sp3) bond formation between two ligands in an exo position. Meanwhile, the transient, dimeric species 3 can be isolated with the same ligand coupling fashion, however, with a drastic distorsion angle of the bimpm ligand and reactive NiMe2 fragment, revealing the possible mechanism of this rearrangement. A much more stable dimeric congener, 5, with an exo ligand coupling, is synthesized in the presence of 18-crown-6, which captures the potassium counter ion. The C-C coupling formation between two bimpm ligands results from the effective electron transfer from divalent lanthanide fragments. Without the divalent lanthanide, the reductive coupling occurs on a different carbon of the ligand, nicely showing the modulation of the spin density induced by the presence of the lanthanide ion. The electronic structures of these complexes are investigated by magnetic study (SQUID), indicating a 2F7/2 ground state for each ytterbium in all the heterometallics. This work firstly reports ligand coupling reactivity in a redox-active, yet dissymmetric system with divalent organolanthanides, and the reactive nickel moiety can impact the intriguing transition towards a stable homoleptic, trinulear lanthanide species.
Collapse
Affiliation(s)
- Ding Wang
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Maxime Tricoire
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Valeriu Cemortan
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Jules Moutet
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Grégory Nocton
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
65
|
Sarkar P, Sarmah A, Mukherjee C. Synthesis, crystallographic and spectroscopic characterization, and theoretical elucidation of an elusive aminyl radical containing a Cu II-aminyl-iminosemiquinone complex. Chem Commun (Camb) 2021; 57:1352-1355. [PMID: 33432948 DOI: 10.1039/d0cc07378d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An elusive aminyl radical and an iminosemiquinone radical-coordinated square pyramidal Cu(ii) complex (1) have been isolated by the reaction between the noninnocent ligand H4LPy(AP) and Cu(ClO4)2·6H2O in the presence of Et3N and air as the sole oxidant. The geometry and electronic structure of the complex were concluded by X-ray crystallography, magnetic and EPR measurements, and density functional theory (DFT) calculations. This work reports the first crystallographic example of the two different types of radicals co-existing in a stable complex.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | | |
Collapse
|
66
|
Haaf S, Kaifer E, Wadepohl H, Himmel H. Use of Crown Ether Functions as Secondary Coordination Spheres for the Manipulation of Ligand-Metal Intramolecular Electron Transfer in Copper-Guanidine Complexes. Chemistry 2021; 27:959-970. [PMID: 32833269 PMCID: PMC7839521 DOI: 10.1002/chem.202003469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/16/2023]
Abstract
Intramolecular electron transfer (IET) between a redox-active organic ligand and a metal in a complex is of fundamental interest and used in a variety of applications. In this work it is demonstrated that secondary coordination sphere motifs can be applied to trigger a radical change in the electronic structure of copper complexes with a redox-active guanidine ligand through ligand-metal IET. Hence, crown ether functions attached to the ligand allow the manipulation of the degree of IET between the guanidine ligand and the copper atom through metal encapsulation.
Collapse
Affiliation(s)
- Sebastian Haaf
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
67
|
Peng HL, Li Y, Chen XY, Li LP, Ke Z, Ye BH. Visible-Light-Induced Amination of Quinoline at the C8 Position via a Postcoordinated Interligand-Coupling Strategy under Mild Conditions. Inorg Chem 2021; 60:908-918. [PMID: 33393292 DOI: 10.1021/acs.inorgchem.0c03026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The postcoordinated interligand-coupling strategy provides a useful and complementary protocol for synthesizing polydentate ligands. Herein, diastereoselective photoreactions of Λ-[Ir(pq)2(d-AA)] (Λ-d) and Λ-[Ir(pq)2(l-AA)] (Λ-l, where pq is 2-phenylquinoline and AA is an amino acid) are reported in the presence of O2 under mild conditions. Diastereomer Λ-d is dehydrogenatively oxidized into an imino acid complex, while diastereomer Λ-l mainly occurs via interligand C-N cross-dehydrogenative coupling between quinoline at the C8 position and AA ligands at room temperature, affording Λ-[Ir(pq)(l-pq-AA)]. Furthermore, the photoreaction of diastereomer Λ-l is temperature-dependent. Mechanistic experiments reveal the ligand-radical intermediates may be involved in the reaction. Density functional theory calculations were used to eluciate the origin of diastereoselectivity and temperature dependence. This will provide a new protocol for the amination of quinoline at the C8 position via the postcoordinated interligand C-N cross-coupling strategy under mild conditions.
Collapse
Affiliation(s)
- He-Long Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing-Yang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
68
|
Gu ZY, Xia JB. [3 + 1 + 1] cyclization of vinyl oxiranes with azides and CO by tandem palladium catalysis: efficient synthesis of oxazolidinones. Org Chem Front 2021. [DOI: 10.1039/d1qo00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient [3 + 1 + 1] cyclization of vinyl oxiranes for the synthesis of oxazolidinones has been developed via tandem palladium catalysis.
Collapse
Affiliation(s)
- Zheng-Yang Gu
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Jiangsu
- China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Center for Excellence in Molecular Synthesis
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| |
Collapse
|
69
|
Xiao L, Chen P, Yang W, Zhao X, Dong F. Photocatalytic reaction mechanisms at the gas–solid interface for environmental and energy applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01776d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Five gas–solid photocatalytic reactions including the oxidation of NOx, VOCs and NH3, and reduction of CO2 and N2 are summarized. Besides, basic properties of gas molecules, their adsorption and activation, and various reaction pathways are analyzed.
Collapse
Affiliation(s)
- Lei Xiao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Peng Chen
- The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Weiping Yang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| |
Collapse
|
70
|
Nurdin L, Yang Y, Neate PGN, Piers WE, Maron L, Neidig ML, Lin JB, Gelfand BS. Activation of ammonia and hydrazine by electron rich Fe(ii) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(iii) amido intermediate. Chem Sci 2020; 12:2231-2241. [PMID: 34163989 PMCID: PMC8179247 DOI: 10.1039/d0sc06466a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the use of electron rich iron complexes supported by a dianionic diborate pentadentate ligand system, B2Pz4Py, for the coordination and activation of ammonia (NH3) and hydrazine (NH2NH2). For ammonia, coordination to neutral (B2Pz4Py)Fe(ii) or cationic [(B2Pz4Py)Fe(iii)]+ platforms leads to well characterized ammine complexes from which hydrogen atoms or protons can be removed to generate, fleetingly, a proposed (B2Pz4Py)Fe(iii)–NH2 complex (3Ar-NH2). DFT computations suggest a high degree of spin density on the amido ligand, giving it significant aminyl radical character. It rapidly traps the H atom abstracting agent 2,4,6-tri-tert-butylphenoxy radical (ArO˙) to form a C–N bond in a fully characterized product (2Ar), or scavenges hydrogen atoms to return to the ammonia complex (B2Pz4Py)Fe(ii)–NH3 (1Ar-NH3). Interestingly, when (B2Pz4Py)Fe(ii) is reacted with NH2NH2, a hydrazine bridged dimer, (B2Pz4Py)Fe(ii)–NH2NH2–Fe(ii)(B2Pz4Py) ((1Ar)2-NH2NH2), is observed at −78 °C and converts to a fully characterized bridging diazene complex, 4Ar, along with ammonia adduct 1Ar-NH3 as it is allowed to warm to room temperature. Experimental and computational evidence is presented to suggest that (B2Pz4Py)Fe(ii) induces reductive cleavage of the N–N bond in hydrazine to produce the Fe(iii)–NH2 complex 3Ar-NH2, which abstracts H˙ atoms from (1Ar)2-NH2NH2 to generate the observed products. All of these transformations are relevant to proposed steps in the ammonia oxidation reaction, an important process for the use of nitrogen-based fuels enabled by abundant first row transition metals. Synopsis: a highly reactive Fe(iii)–NH2 complex is generated via activation of ammonia or hydrazine in reactions of relevance to fundamental steps in ammonia oxidation processes mediated by an abundant, first row transition metal.![]()
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Yan Yang
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Peter G N Neate
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Warren E Piers
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Michael L Neidig
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
71
|
Guo Y, Pei C, Jana S, Koenigs RM. Synthesis of Trifluoromethylated Aziridines Via Photocatalytic Amination Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yujing Guo
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany
| | - Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany
| |
Collapse
|
72
|
Stüker T, Hohmann T, Beckers H, Riedel S. Fluoro Nitrenoid Complexes FN=MF
2
(M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF
3. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tony Stüker
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Thomas Hohmann
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Helmut Beckers
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Sebastian Riedel
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| |
Collapse
|
73
|
Stüker T, Hohmann T, Beckers H, Riedel S. Fluoro Nitrenoid Complexes FN=MF 2 (M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF 3. Angew Chem Int Ed Engl 2020; 59:23174-23179. [PMID: 32886443 PMCID: PMC7756499 DOI: 10.1002/anie.202010950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/30/2020] [Indexed: 11/10/2022]
Abstract
The fluoronitrenoid metal complexes FNCoF2 and FNRhF2 as well as the first ternary RhVI and IrVI complexes NIrF3 and NRhF3 are described. They were obtained by the reaction of excited Group-9 metal atoms with NF3 and their IR spectra, isolated in solid rare gases (neon and argon), were recorded. Aided by the observed 14/15 N isotope shifts and quantum-chemical predictions, all four stretching fundamentals of the novel complexes were safely assigned. The F-N stretching frequencies of the fluoronitrenoid complexes FNCoF2 (1056.8 cm-1 ) and FNRhF2 (872.6 cm-1 ) are very different and their N-M bonds vary greatly. In FNCoF2 , the FN ligand is singly bonded to Co and bears considerable iminyl/nitrene radical character, while the N-Rh bond in FNRhF2 is a strong double bond with comparatively strong σ- and π-bonds. The anticipated rearrangement of FNCoF2 to the nitrido CoVI complex is predicted to be endothermic and was not observed.
Collapse
Affiliation(s)
- Tony Stüker
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Thomas Hohmann
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Helmut Beckers
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Sebastian Riedel
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| |
Collapse
|
74
|
Zhu H, Aboonasr Shiraz MH, Yao L, Adair K, Wang Z, Tong H, Song X, Sham TK, Arjmand M, Song X, Liu J. Molecular-layer-deposited tincone: a new hybrid organic-inorganic anode material for three-dimensional microbatteries. Chem Commun (Camb) 2020; 56:13221-13224. [PMID: 33026408 DOI: 10.1039/d0cc03869e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new hybrid organic-inorganic film, tincone, was developed by using molecular layer deposition (MLD), and exhibited high electrochemical activity toward Li storage. The self-limiting growth behavior, high uniformity on various substrates and good Li-storage performance make tincone a very promising new anode material for 3D microbatteries.
Collapse
Affiliation(s)
- Hongzheng Zhu
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Barluzzi L, Scopelliti R, Mazzanti M. Photochemical Synthesis of a Stable Terminal Uranium(VI) Nitride. J Am Chem Soc 2020; 142:19047-19051. [DOI: 10.1021/jacs.0c09814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
76
|
Dunn PL, Cook BJ, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia with Molecular Complexes. J Am Chem Soc 2020; 142:17845-17858. [PMID: 32977718 DOI: 10.1021/jacs.0c08269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation of ammonia by molecular complexes is a burgeoning area of research, with critical scientific challenges that must be addressed. A fundamental understanding of individual reaction steps is needed, particularly for cleavage of N-H bonds and formation of N-N bonds. This Perspective evaluates the challenges of designing molecular catalysts for oxidation of ammonia and highlights recent key contributions to realizing the goals of viable energy storage and retrieval based on the N-H bonds of ammonia in a carbon-free energy cycle.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian J Cook
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
77
|
Gu ZY, Chen J, Xia JB. Pd-catalyzed amidation of 1,3-diketones with CO and azides via a nitrene intermediate. Chem Commun (Camb) 2020; 56:11437-11440. [PMID: 32845951 DOI: 10.1039/d0cc04565a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient Pd-catalyzed amidation of 1,3-diketones has been developed using carbon monoxide and organic azides. This reaction provides a step-economic approach to produce β-ketoamides from readily available compounds under mild ligand-, oxidant-, and base-free conditions. The mechanistic studies showed that the reaction occurred through an in situ generated isocyanate intermediate.
Collapse
Affiliation(s)
- Zheng-Yang Gu
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224003, China
| | | | | |
Collapse
|
78
|
Arczyński M, Pinkowicz D. Influence of the Increasing Number of Organic Radicals on the Structural, Magnetic, and Electrochemical Properties of the Copper(II)-Dioxothiadiazole Family of Complexes. Inorg Chem 2020; 59:13489-13501. [PMID: 32907320 PMCID: PMC7509843 DOI: 10.1021/acs.inorgchem.0c01904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 01/17/2023]
Abstract
The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td·-) are reported: {[CuIICl(td)](μ-Cl)2[CuIICl(td)]} (1), which incorporates only neutral td ligands; [CuIICl(td·-)(td)]·2MeCN (2), which comprises one neutral td and one radical td·-; and PPN[CuIICl(td·-)2]·2DMA (3), where CuII ions are coordinated by two radical anions td·- (DMA, dimethylacetamide; PPN+, the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by CuII···CuII interactions (JCuCu) mediated through the Cl- bridges, while the magnetic properties of 2 and 3 are governed mainly by the td·-···td·- (Jtdtd) and CuII-td·- (JCutd) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with Jtdtd = -36.0(5) cm-1 and JCutd = -12.6(2) cm-1 only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in Jtdtd = -5.6(1) cm-1 and two JCutd constants, -12.4(2) and -22.6(4) cm-1. The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of -600 to -100 mV vs Fc/Fc+. Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism).
Collapse
Affiliation(s)
- Mirosław Arczyński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
79
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N-H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020; 59:15215-15219. [PMID: 32441448 PMCID: PMC7680347 DOI: 10.1002/anie.202006391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 01/07/2023]
Abstract
Despite their connection to ammonia synthesis, little is known about the ability of iron-bound, bridging nitrides to form N-H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox-active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N-H bonds via proton-coupled electron transfer to generate a μ-amide product. The structurally analogous μ-silyl- and μ-borylamide complexes were shown to form from the net insertion of the nitride into the E-H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox-activity of the ligand during PCET.
Collapse
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Thomas J Longo
- Department of Physics, Villanova University, Villanova, PA, 19085, USA
| | - Laura M Thierer
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
80
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N−H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Thomas J. Longo
- Department of Physics Villanova University Villanova PA 19085 USA
| | - Laura M. Thierer
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
81
|
A platinum(ii) metallonitrene with a triplet ground state. Nat Chem 2020; 12:1054-1059. [DOI: 10.1038/s41557-020-0522-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/08/2020] [Indexed: 11/08/2022]
|
82
|
Coin G, Patra R, Rana S, Biswas JP, Dubourdeaux P, Clémancey M, de Visser SP, Maiti D, Maldivi P, Latour JM. Fe-Catalyzed Aziridination Is Governed by the Electron Affinity of the Active Imido-Iron Species. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01427] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, DCM, 38000 Grenoble, France
| | - Ranjan Patra
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SYMMES, 38000 Grenoble, France
- Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Sector-125, Noida, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | | | | | - Martin Clémancey
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SYMMES, 38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| |
Collapse
|
83
|
Xing X, Zhang S, Thierer LM, Gau MR, Carroll PJ, Tomson NC. Reversible nickel-metallacycle formation with a phosphinimine-based pincer ligand. Dalton Trans 2020; 49:7796-7806. [PMID: 32459241 PMCID: PMC7370460 DOI: 10.1039/d0dt01118e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pincer ligands have a remarkable ability to impart control over small molecule activation chemistry and catalytic activity; therefore, the design of new pincer ligands and the exploration of their reactivity profiles continues to be a frontier in synthetic inorganic chemistry. In this work, a novel, monoanionic NNN pincer ligand containing two phosphinimine donors was used to create a series of mononuclear Ni complexes. Ligand metallation in the presence of NaOPh yielded a nickel phenoxide complex that was used to form a mononuclear hydride complex on treatment with pinacolborane. Attempts at ligand metallation with NaN(SiMe3)2 resulted in the activation of both phosphinimine methyl groups to yield an anionic, cis-dialkyl product, in which dissociation of one phosphinimine nitrogen leads to retention of a square planar coordination environment about Ni. Protonolysis of this dialkyl species generated a monoalkyl product that retained the 4-membered metallacycle. The insertion of 2,6-dimethylphenyl isocyanide (xylNC) into this nickel metallacycle, followed by proton transfer, generated a new five-membered nickel metallacycle. Kinetic studies suggested rate-limiting proton transfer (KIE ≥ 3.9 ± 0.5) from the α-methylene unit of the putative iminoacyl intermediate.
Collapse
Affiliation(s)
- Xiujing Xing
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
85
|
Panda S, Goel P, Lahiri GK. Non-Spectator Feature of α-Diimine Mimicked Di/tetrahydro-bisisoquinoline and Biimidazopyridine on {Ru(acac)2
} Platform. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Puneet Goel
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
86
|
Carsch KM, DiMucci IM, Iovan DA, Li A, Zheng SL, Titus CJ, Lee SJ, Irwin KD, Nordlund D, Lancaster KM, Betley TA. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 2020; 365:1138-1143. [PMID: 31515388 DOI: 10.1126/science.aax4423] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/29/2019] [Accepted: 08/13/2019] [Indexed: 01/17/2023]
Abstract
Terminal copper-nitrenoid complexes have inspired interest in their fundamental bonding structures as well as their putative intermediacy in catalytic nitrene-transfer reactions. Here, we report that aryl azides react with a copper(I) dinitrogen complex bearing a sterically encumbered dipyrrin ligand to produce terminal copper nitrene complexes with near-linear, short copper-nitrenoid bonds [1.745(2) to 1.759(2) angstroms]. X-ray absorption spectroscopy and quantum chemistry calculations reveal a predominantly triplet nitrene adduct bound to copper(I), as opposed to copper(II) or copper(III) assignments, indicating the absence of a copper-nitrogen multiple-bond character. Employing electron-deficient aryl azides renders the copper nitrene species competent for alkane amination and alkene aziridination, lending further credence to the intermediacy of this species in proposed nitrene-transfer mechanisms.
Collapse
Affiliation(s)
- Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Diana A Iovan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alex Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Sang Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kent D Irwin
- Department of Physics, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
87
|
Rodríguez AM, Rodríguez MR, Díaz‐Requejo MM, Pérez PJ. Pyrrole Functionalization by Copper‐Catalyzed Nitrene Transfer Reactions. Isr J Chem 2020. [DOI: 10.1002/ijch.201900181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anabel M. Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - Manuel R. Rodríguez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - M. Mar Díaz‐Requejo
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007 - Huelva Spain
| |
Collapse
|
88
|
Ren Y, Forté J, Cheaib K, Vanthuyne N, Fensterbank L, Vezin H, Orio M, Blanchard S, Desage-El Murr M. Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. iScience 2020; 23:100955. [PMID: 32199288 PMCID: PMC7083792 DOI: 10.1016/j.isci.2020.100955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis. We design a catalyst interfacing two reactivity-enhancing tools from metalloenzymes This work merges redox-active cofactors and entatic state reactivity The modifications in the coordination sphere lead to enhanced catalytic behavior These results open perspectives in bioinspired catalysis and group-transfer reactions
Collapse
Affiliation(s)
- Yufeng Ren
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Jeremy Forté
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Khaled Cheaib
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France
| | - Louis Fensterbank
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Hervé Vezin
- Université des Sciences et Technologies de Lille, LASIR, UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France
| | - Sébastien Blanchard
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Marine Desage-El Murr
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| |
Collapse
|
89
|
Liang S, Zhao X, Yang T, Yu W. Iron–Phosphine Complex-Catalyzed Intramolecular C(sp3)–H Amination of Azides. Org Lett 2020; 22:1961-1965. [DOI: 10.1021/acs.orglett.0c00308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyu Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaopeng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
90
|
Jori N, Falcone M, Scopelliti R, Mazzanti M. Carbon Dioxide Reduction by Multimetallic Uranium(IV) Complexes Supported by Redox-Active Schiff Base Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nadir Jori
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marta Falcone
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
91
|
Dunn PL, Johnson SI, Kaminsky W, Bullock RM. Diversion of Catalytic C-N Bond Formation to Catalytic Oxidation of NH 3 through Modification of the Hydrogen Atom Abstractor. J Am Chem Soc 2020; 142:3361-3365. [PMID: 32009401 DOI: 10.1021/jacs.9b13706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO·), abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO· to form 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to 2,6-di-tert-butyl-4-tritylphenoxyl radical, which contains a trityl group at the para position, prevents C-N coupling and diverts the reaction to catalytic oxidation of NH3 to give N2. We achieved 125 ± 5 turnovers at 22 °C for oxidation of NH3, the highest turnover number (TON) reported to date for a molecular catalyst.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Werner Kaminsky
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|
92
|
Carsch KM, Lukens JT, DiMucci IM, Iovan DA, Zheng SL, Lancaster KM, Betley TA. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes. J Am Chem Soc 2020; 142:2264-2276. [PMID: 31917556 PMCID: PMC7262786 DOI: 10.1021/jacs.9b09616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dicopper complexes templated by dinucleating, pacman dipyrrin ligand scaffolds (Mesdmx, tBudmx: dimethylxanthine-bridged, cofacial bis-dipyrrin) were synthesized by deprotonation/metalation with mesitylcopper (CuMes; Mes: mesityl) or by transmetalation with cuprous precursors from the corresponding deprotonated ligand. Neutral imide complexes (Rdmx)Cu2(μ2-NAr) (R: Mes, tBu; Ar: 4-MeOC6H4, 3,5-(F3C)2C6H3) were synthesized by treatment of the corresponding dicuprous complexes with aryl azides. While one-electron reduction of (Mesdmx)Cu2(μ2-N(C6H4OMe)) with potassium graphite initiates an intramolecular, benzylic C-H amination at room temperature, chemical reduction of (tBudmx)Cu2(μ2-NAr) leads to isolable [(tBudmx)Cu2(μ2-NAr)]- product salts. The electronic structures of the thermally robust [(tBudmx)Cu2(μ2-NAr)]0/- complexes were assessed by variable-temperature electron paramagnetic resonance spectroscopy, X-ray absorption spectroscopy (Cu L2,3/K-edge, N K-edge), optical spectroscopy, and DFT/CASSCF calculations. These data indicate that the formally Class IIIA mixed valence complexes of the type [(Rdmx)Cu2(μ2-NAr)]- feature significant NAr-localized spin following reduction from electronic population of the [Cu2(μ2-NAr)] π* manifold, contrasting previous methods for engendering iminyl character through chemical oxidation. The reactivity of the isolable imido and iminyl complexes are examined for prototypical radical-promoted reactivity (e.g., nitrene transfer and H-atom abstraction), where the divergent reactivity is rationalized by the relative degree of N-radical character afforded from different aryl substituents.
Collapse
Affiliation(s)
- Kurtis M. Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - James T. Lukens
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M. DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Diana A. Iovan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
93
|
Dinda S, Roy S, Patra SC, Bhandary S, Pramanik K, Ganguly S. Polyaromatic hydrocarbon derivatized azo-oximes of cobalt( iii) for the ligand-redox controlled electrocatalytic oxygen reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj05527d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two new polyaromatic hydrocarbon (PAH) derivatized cobalt(iii) azo-oxime complexes were synthesized and their activity in electrocatalytic oxygen reduction reaction (ORR) were explored.
Collapse
Affiliation(s)
- Soumitra Dinda
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata–700016
- India
| | - Syamantak Roy
- Molecular Materials Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Jakkur
- Bangalore
| | | | - Subhrajyoti Bhandary
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal By-pass Road
- Bhauri
- Bhopal
| | | | - Sanjib Ganguly
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata–700016
- India
| |
Collapse
|
94
|
Liang Q, Lin JH, DeMuth JC, Neidig ML, Song D. Syntheses and characterizations of iron complexes of bulky o-phenylenediamide ligand. Dalton Trans 2020; 49:12287-12297. [DOI: 10.1039/d0dt02087g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the reactivity of the iron complexes of a bulky phenylenediamide ligand.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Jack H. Lin
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | | | - Datong Song
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
95
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
96
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
97
|
Wei K, Yang T, Chen Q, Liang S, Yu W. Iron-catalysed 1,2-aryl migration of tertiary azides. Chem Commun (Camb) 2020; 56:11685-11688. [DOI: 10.1039/d0cc04579a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2-Carbon to nitrogen aryl migration of α,α-diaryl tertiary azides was realized by using FeCl2 and N-heterocyclic carbene SIPr·HCl as a catalyst.
Collapse
Affiliation(s)
- Kaijie Wei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Qing Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Siyu Liang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
98
|
van Leest NP, Tepaske MA, Oudsen JPH, Venderbosch B, Rietdijk NR, Siegler MA, Tromp M, van der Vlugt JI, de Bruin B. Ligand Redox Noninnocence in [Co III(TAML)] 0/- Complexes Affects Nitrene Formation. J Am Chem Soc 2019; 142:552-563. [PMID: 31846578 PMCID: PMC6956250 DOI: 10.1021/jacs.9b11715] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The redox noninnocence of the TAML scaffold in cobalt-TAML
(tetra-amido
macrocyclic ligand) complexes has been under debate since 2006. In
this work, we demonstrate with a variety of spectroscopic measurements
that the TAML backbone in the anionic complex [CoIII(TAMLred)]– is truly redox noninnocent
and that one-electron oxidation affords [CoIII(TAMLsq)]. Multireference (CASSCF) calculations show that the electronic
structure of [CoIII(TAMLsq)] is best described as an
intermediate spin (S = 1) cobalt(III) center that
is antiferromagnetically coupled to a ligand-centered radical, affording
an overall doublet (S = 1/2) ground-state. Reaction
of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor
leads to TAML-centered oxidation and produces nitrene radical complexes
without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLsq) determines whether mono- or bis-nitrene
radical complexes are formed. Reaction of [CoIII(TAMLsq)] or [CoIII(TAMLred)]– with PhINNs results in the formation of [CoIII(TAMLq)(N•Ns)] and [CoIII(TAMLq)(N•Ns)2]–, respectively. Herein, ligand-to-substrate
single-electron transfer results in one-electron-reduced Fischer-type
nitrene radicals (N•Ns–) that are intermediates in catalytic nitrene transfer to styrene.
These nitrene radical species were characterized by EPR, XANES, and
UV–vis spectroscopy, high-resolution mass spectrometry, magnetic
moment measurements, and supporting CASSCF calculations.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime A Siegler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | | | | | | |
Collapse
|
99
|
Dong Y, Lukens JT, Clarke RM, Zheng SL, Lancaster KM, Betley TA. Synthesis, characterization and C-H amination reactivity of nickel iminyl complexes. Chem Sci 2019; 11:1260-1268. [PMID: 34123250 PMCID: PMC8147896 DOI: 10.1039/c9sc04879k] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Metalation of the deprotonated dipyrrin (AdFL)Li with NiCl2(py)2 afforded the divalent Ni product (AdFL)NiCl(py)2 (1) (AdFL: 1,9-di(1-adamantyl)-5-perfluorophenyldipyrrin; py: pyridine). To generate a reactive synthon on which to explore oxidative group transfer, we used potassium graphite to reduce 1, affording the monovalent Ni synthon (AdFL)Ni(py) (2) and concomitant production of a stoichiometric equivalent of KCl and pyridine. Slow addition of mesityl- or 1-adamantylazide in benzene to 2 afforded the oxidized Ni complexes (AdFL)Ni(NMes) (3) and (AdFL)Ni(NAd) (4), respectively. Both 3 and 4 were characterized by multinuclear NMR, EPR, magnetometry, single-crystal X-ray crystallography, theoretical calculations, and X-ray absorption spectroscopies to provide a detailed electronic structure picture of the nitrenoid adducts. X-ray absorption near edge spectroscopy (XANES) on the Ni reveals higher energy Ni 1s → 3d transitions (3: 8333.2 eV; 4: 8333.4 eV) than NiI or unambiguous NiII analogues. N K-edge X-ray absorption spectroscopy performed on 3 and 4 reveals a common low-energy absorption present only for 3 and 4 (395.4 eV) that was assigned via TDDFT as an N 1s promotion into a predominantly N-localized, singly occupied orbital, akin to metal-supported iminyl complexes reported for iron. On the continuum of imido (i.e., NR2−) to iminyl (i.e., 2NR−) formulations, the complexes are best described as NiII-bound iminyl species given the N K-edge and TDDFT results. Given the open-shell configuration (S = 1/2) of the iminyl adducts, we then examined their propensity to undergo nitrenoid-group transfer to organic substrates. The adamantyl complex 4 readily consumes 1,4-cyclohexadiene (CHD) via H-atom abstraction to afford the amide (AdFL)Ni(NHAd) (5), whereas no reaction was observed upon treatment of the mesityl variant 3 with excess amount of CHD over 3 hours. Toluene can be functionalized by 4 at room temperature, exclusively affording the N-1-adamantyl-benzylidene (6). Slow addition of the organoazide substrate (4-azidobutyl)benzene (7) with 2 exclusively forms 4-phenylbutanenitrile (8) as opposed to an intramolecular cyclized pyrrolidine, resulting from facile β-H elimination outcompeting H-atom abstraction from the benzylic position, followed by rapid H2-elimination from the intermediate Ni hydride ketimide intermediate. Nickel-supported nitrenoids exhibit iminyl character, as determined by multi-edge XAS and TDDFT analysis, demonstrate efficacy for C–H activation and nitrene transfer chemistry.![]()
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - James T Lukens
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca New York 14853 USA
| | - Ryan M Clarke
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca New York 14853 USA
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
100
|
Grass A, Wannipurage D, Lord RL, Groysman S. Group-transfer chemistry at transition metal centers in bulky alkoxide ligand environments. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|