51
|
Tao F, Yu J, Zhang L, Zhou Y, Zhong Y, Huang C, Wang Y. Integrating Two Highly Active Components into One for Decontaminating Sulfur Mustard and Sarin. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangsheng Tao
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Yu
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong’An Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
52
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
53
|
Zhang P, Xu Y, Guo K, Yin Y, Wang J, Zeng Y. Hierarchical-pore UiO-66 modified with Ag + for π-complexation adsorption desulfurization. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126247. [PMID: 34119977 DOI: 10.1016/j.jhazmat.2021.126247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 05/25/2023]
Abstract
Adsorption desulfurization represents an alternative technology for the effective removal of thiophenic compounds from fuels. Metal-organic frameworks have been the ideal candidates for the adsorptive desulfurization of fuel due to the high surface areas. Pristine UiO-66 is thought to be appropriate for the removal of small thiophenic compounds. This work developed a new type of hierarchical-pore (micro and mesopores) UiO-66 with a higher specific surface area and porosity for the removal of larger adsorbates using MOF-5 as the template. To enhance adsorption desulfurization performance, the Ag+-exchanged hierarchical-pore UiO-66 (HP-UiO-66-SO3Ag) with π-complexation was synthesized by the ion-exchange method. The HP-UiO-66-SO3Ag samples were characterized by FTIR, XRD, SEM, TEM, and N2 adsorption-desorption isotherms. Compared with the original UiO-66, the HP-UiO-66-SO3Ag has a higher specific surface area, pore volume, and pore size. The static adsorption experiments showed that HP-UiO-66-SO3Ag had a high adsorption capacity for thiophene and benzothiophene. Moreover, the HP-UiO-66-SO3Ag sample still exhibits high adsorptive performance in the presence of toluene. The regeneration results show that about 90% of the initial adsorption capacity of HP-UiO-66-SO3Ag can be regenerated after four cycles.
Collapse
Affiliation(s)
- Peng Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yueyang Xu
- National Energy Group Research Institute of Science and Technology, Nanjing 210031, China
| | - Konglu Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yan Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jilong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongping Zeng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
54
|
Yang J, He X, Dai J, Tian R, Yuan D. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn 2S 4/UiO-66-NH 2 nanocomposite catalysts. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126056. [PMID: 33992917 DOI: 10.1016/j.jhazmat.2021.126056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Constructing versatile materials with self-detoxification properties are highly desired for emergency destruction of chemical warfare agents (CWAs). Herein, we first reported in-situ fabrication of ZnIn2S4/UiO-66-NH2 nanocomposites (ZnInS/UiO) and their application in catalytic detoxification of two CWA simulants. For nerve agent simulant dimethyl 4-nitrophenyl phosphate (DMNP), the optimal ZnInS/UiO-23.9 displayed 5.9 times increase in hydrolysis rate having the turnover frequency (TOF) of 0.0586 s-1 under simulated solar light (SSL), which is superior to the reported UiO-based catalysts. Photo-assisted enhancement in DMNP detoxification was due to photothermal effect of ZnInS and close interfacial contact in ZnInS/UiO heterostructures, facilitating instantaneous heat transfer from ZnInS to UiO catalytic sites. As for mustard gas surrogate 2-chloroethyl ethyl sulfide (CEES), under SSL irradiation for 15 min, ZnInS/UiO-23.9 can eliminate 96.7% of CEES in droplet experiment, being 4.17 and 3.24 times of ZnInS and UiO accordingly. It was ascribed to spatial separation of photoinduced electron-hole pairs and photothermally-assisted charge transfer in ZnInS/UiO composites, improving catalytic activity for CEES detoxification. Besides, the detected products suggested that CEES conversion underwent reductive dechlorination, radical reactions and hydrolysis. This study can be extended to other multifunctional catalysts based on metal-organic frameworks and provides new opportunities for photoassisted enhanced detoxification of CWAs.
Collapse
Affiliation(s)
- Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoqian He
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ran Tian
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dongsheng Yuan
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
55
|
Zhao J, Chen R, Huang J, Wang F, Tao CA, Wang J. Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40863-40871. [PMID: 34405983 DOI: 10.1021/acsami.1c08365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) metal-organic layer (MOL) materials are highly desired against chemical warfare agents (CWAs). However, the rapid synthesis of 2DMOLs with open metal sites in a single step is very challenging. Herein, a facile bottom-up method for synthesizing MOLs with microwave assistance is applied to produce Zr/Hf-BTB MOLs, composed of six-connected M6O4(OH)412+ and the tritopic carboxylate ligand 1,3,5-tris(4-carboxyphenyl)benzene (BTB). The synthesis and ligand exchange steps can be combined into a single step to yield MOLs with active open sites directly. The as-synthesized MOLs demonstrate excellent catalytic performance toward the degradation of a CWA simulant. The theoretical calculations confirm that the high catalytic activity is due to the formate groups coordinated to the metal nodes being replaced by hydroxyl groups. The present work not only develops a method for the fast synthesis of 2D MOLs with active open metal sites in a single step but also provides a first demonstration for the application of 2D metal coordination materials in CWA protection.
Collapse
Affiliation(s)
- Jie Zhao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Rui Chen
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jian Huang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
56
|
Zhang X, Sun Y, Liu Y, Zhai Z, Guo S, Peng L, Qin Y, Li C. UiO-66-NH 2 Fabrics: Role of Trifluoroacetic Acid as a Modulator on MOF Uniform Coating on Electrospun Nanofibers and Efficient Decontamination of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39976-39984. [PMID: 34379383 DOI: 10.1021/acsami.1c12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protective fabrics with air-permeable and flexible features are crucial for practical application in the detoxification of chemical warfare agents (CWAs). Zr-based metal-organic frameworks (Zr-MOFs) are desirable to exhibit outstanding degradation toward CWAs. However, generally, MOFs with powders cannot afford the utilization as a protective layer directly; meanwhile, it is still a puzzling challenge to integrate MOFs with textiles efficiently. Herein, we develop a scalable and controllable strategy to fabricate UiO-66-NH2 on electrospun polyacrylonitrile nanofibers (UiO-66-NH2 fabrics) firmly and uniformly to capture and catalyze 2-chloroethyl ethyl sulfide (CEES) effectively for self-detoxification. The obtained UiO-66-NH2 fabrics are greatly capable of specific surface area, ample porosity, excellent crystallinity, and abundant catalytic active sites. Consequently, CEES can be removed efficiently up to 97.7% after 48 h by reaction and adsorption. The degradation products mainly including ethyl-2-hydroxyethyl sulfide, ether, bis[2-(ethylthio)ethyl], and 2-(2-(ethylthio)ethylamino) terephthalic acid are detected. Moreover, the obtained nanofibrous fabrics possess air-permeable, washable, and flexible as well as lightweight merits, totally ensuring their promising engineering applications for protective clothing.
Collapse
Affiliation(s)
- Xiuling Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Zhenyu Zhai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Lichong Peng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yue Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| |
Collapse
|
57
|
Lyu Y, Morillas-Becerril L, Mancin F, Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125644. [PMID: 33773245 DOI: 10.1016/j.jhazmat.2021.125644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although banned by the Chemical Weapons Convention, organophosphorus nerve agents are still available and have been used in regional wars, terroristic attacks or for other crtaiminal purposes. Their degradation is of primary importance for the severe toxicity of these compounds. Here we report that gold nanoparticles passivated with thiolated molecules bearing 1,3,7-triazacyclononane and 1,3,7,10-tetraazacyclododecane ligands efficiently hydrolyze nerve agents simulants p-nitrophenyl diphenyl phosphate and methylparaoxon as transition metal complexes at 25 °C and pH 8 with half-lives of the order of a few minutes. Mechanistically, these catalysts show an enzyme-like behavior, hence they constitute an example of nanozymes. The catalytic site appears to involve a single metal ion and its recognition of the substrates is driven mostly by hydrophobic interactions. The ease of preparation and the mild conditions at which they operate, make these nanozymes appealing catalysts for the detoxification after contamination with organophosphorus nerve agents, particularly those poorly soluble in water.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
58
|
Lanuza J, Sánchez González Á, Bandeira NAG, Lopez X, Gil A. Mechanistic Insights into Promoted Hydrolysis of Phosphoester Bonds by MoO 2Cl 2(DMF) 2. Inorg Chem 2021; 60:11177-11191. [PMID: 34270231 DOI: 10.1021/acs.inorgchem.1c01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phosphoester bond is a crucial structural block in biological systems, whose occurrence is regulated by phosphatases. Molybdenum compounds have been reported to be active in phosphate ester hydrolysis of model phosphates. Specifically, MoO2Cl2(DMF)2 is active in the hydrolysis of para-nitrophenyl phosphate (pNPP), leading to heteropolyoxometalate structures. We use density functional theory (DFT) to clarify the mechanism by which these species promote the hydrolysis of the phosphoester bond. The present calculations give insight into several key aspects of this reaction: (i) the speciation of this complex prior to interaction with the phosphate (DMF release, Mo-Cl hydrolysis, and pH influence on the speciation), (ii) the competition between phosphate addition and the molybdate nucleation process, (iii) and the mechanisms by which some plausible active species promote this hydrolysis in different conditions. We described thoroughly two different pathways depending on the nucleation possibilities of the molybdenum complex: one mononuclear mechanism, which is preferred in conditions in which very low complex concentrations are used, and another dinuclear mechanism, which is preferred at higher concentrations.
Collapse
Affiliation(s)
- Jose Lanuza
- Polimero eta Material Aurreratuak, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Ángel Sánchez González
- BioISI-Biosystems and Integrative Sciences Institute-Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Nuno A G Bandeira
- BioISI-Biosystems and Integrative Sciences Institute-Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Xabier Lopez
- Polimero eta Material Aurreratuak, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Adrià Gil
- BioISI-Biosystems and Integrative Sciences Institute-Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.,CIC nanoGUNE BRTA, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Euskadi, Spain
| |
Collapse
|
59
|
Liao Y, Sheridan T, Liu J, Farha O, Hupp J. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30565-30575. [PMID: 34161064 DOI: 10.1021/acsami.1c05062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid degradation/destruction of chemical warfare agents, especially ones containing a phosphorous-fluorine bond, is of notable interest due to their extreme toxicity and typically rapid rate of human incapacitation. Recent studies of the hydrolytic destruction of a key nerve agent simulant, dimethyl 4-nitrophenylphosphate (DMNP), catalyzed by Zr6-based metal-organic frameworks (MOFs), have suggested deactivation of the active sites due to inhibition by the products as the reaction progresses. In this study, the interactions of two MOFs, NU-1000 and MOF-808, and two hydrolysis products, dimethyl phosphate (DMP) and ethyl methyl phosphonate (EMP), from the hydrolysis of the simulant (DMNP) and nerve agent ethyl methylphosphonofluoridate (EMPF), resembling the hydrolysis degradation product of the G-series nerve agent, Sarin (GB), have been investigated to deconvolute the effect of product inhibition from other effects on catalytic activity. Kinetic studies via in situ nuclear magnetic resonance spectroscopy indicated substantial product inhibition upon catalyst activity after several tens to several thousand turnovers, depending on specific conditions. Apparent product binding constants were obtained by fitting initial reaction rates at pH 7.0 and pH 10.5 to a Langmuir-Freundlich binding/adsorption model. For the fits, varying amounts/concentrations of candidate inhibitors were introduced before the start of catalytic hydrolysis. The derived binding constants proved suitable for quantitatively describing product inhibition effects upon reaction rates over the extended time course of simulant hydrolysis by aqua-ligand-bearing hexa-zirconium(IV) nodes.
Collapse
Affiliation(s)
- Yijun Liao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
60
|
Lee J, Ka D, Jung H, Cho K, Jin Y, Kim M. UiO-66-NH 2 and Zeolite-Templated Carbon Composites for the Degradation and Adsorption of Nerve Agents. Molecules 2021; 26:3837. [PMID: 34201878 PMCID: PMC8270328 DOI: 10.3390/molecules26133837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Composites of metal-organic frameworks and carbon materials have been suggested to be effective materials for the decomposition of chemical warfare agents. In this study, we synthesized UiO-66-NH2/zeolite-templated carbon (ZTC) composites for the adsorption and decomposition of the nerve agents sarin and soman. UiO-66-NH2/ZTC composites with good dispersion were prepared via a solvothermal method. Characterization studies showed that the composites had higher specific surface areas than pristine UiO-66-NH2, with broad pore size distributions centered at 1-2 nm. Owing to their porous nature, the UiO-66-NH2/ZTC composites could adsorb more water at 80% relative humidity. Among the UiO-66-NH2/ZTC composites, U0.8Z0.2 showed the best degradation performance. Characterization and gas adsorption studies revealed that beta-ZTC in U0.8Z0.2 provided additional adsorption and degradation sites for nerve agents. Among the investigated materials, including the pristine materials, U0.8Z0.2 also exhibited the best protection performance against the nerve agents. These results demonstrate that U0.8Z0.2 has the optimal composition for exploiting the degradation performance of pristine UiO-66-NH2 and the adsorption performance of pristine beta-ZTC.
Collapse
Affiliation(s)
| | | | | | | | - Youngho Jin
- Agency for Defense Development, P.O. Box 35, Yuseong-gu, Daejeon 34186, Korea; (J.L.); (D.K.); (H.J.); (K.C.)
| | - Minkun Kim
- Agency for Defense Development, P.O. Box 35, Yuseong-gu, Daejeon 34186, Korea; (J.L.); (D.K.); (H.J.); (K.C.)
| |
Collapse
|
61
|
Balow RB, McEntee M, Schweigert IV, Jeon S, Peterson GW, Pehrsson P. Battling Chemical Weapons with Zirconium Hydroxide Nanoparticle Sorbent: Impact of Environmental Contaminants on Sarin Sequestration and Decomposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6923-6934. [PMID: 34062060 DOI: 10.1021/acs.langmuir.1c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The promising reactive sorbent zirconium hydroxide (ZH) was challenged with common environmental contaminants (CO2, SO2, and NO2) to determine the impact on chemical warfare agent decomposition. Several environmental adsorbates rapidly formed on the ZH surface through available hydroxyl species and coordinatively unsaturated zirconium sites. ZH decontamination effectiveness was determined using a suite of instrumentation including in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor sarin (GB) decomposition in real time and at ambient pressure. Surface products were characterized by ex situ X-ray photoelectron spectroscopy (XPS). The adsorption enthalpies, entropies, and bond lengths for environmental contaminants and GB decomposition products were estimated using density functional theory (DFT). Consistent with the XPS and DRIFTS results, DFT simulations predicted the relative stabilities of molecular adsorbates and reaction products in the following order: CO2 < NO2 < GB ≈ SO2. Microbreakthrough capacity measurements on ZH showed a 7-fold increase in the sorption of NO2 vs SO2, which indicates differences in the surface reactivity of these species. GB decomposition was rapid on clean and CO2-dosed ZH and showed reduced decomposition on SO2- and NO2-predosed samples. Despite these findings, the total GB sorption capacity of clean and predosed ZH was consistent across all samples. These data provide insight into the real-world use of ZH as a reactive sorbent for chemical decontamination applications.
Collapse
Affiliation(s)
- Robert B Balow
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| | - Monica McEntee
- U.S. Army, Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Igor V Schweigert
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| | - Seokmin Jeon
- Former National Research Council (NRC) Research Associateship Program, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| | - Gregory W Peterson
- U.S. Army, Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Pehr Pehrsson
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
62
|
Mukhopadhyay S, Shimoni R, Liberman I, Ifraemov R, Rozenberg I, Hod I. Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular‐Level Control Over Heterogeneous CO
2
Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
63
|
Nam D, Kim Y, Kim M, Nam J, Kim S, Jin E, Lee CY, Choe W. Role of Zr 6 Metal Nodes in Zr-Based Metal-Organic Frameworks for Catalytic Detoxification of Pesticides. Inorg Chem 2021; 60:10249-10256. [PMID: 34037384 DOI: 10.1021/acs.inorgchem.1c00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pesticides are chemicals widely used for agricultural industry, despite their negative impact on health and environment. Although various methods have been developed for pesticide degradation to remedy such adverse effects, conventional materials often take hours to days for complete decomposition and are difficult to recycle. Here, we demonstrate the rapid degradation of organophosphate pesticides with a Zr-based metal-organic framework (MOF), showing complete degradation within 15 min. MOFs with different active site structures (Zr node connectivity and geometry) were compared, and a porphyrin-based MOF with six-connected Zr nodes showed remarkable degradation efficiency with half-lives of a few minutes. Such a high efficiency was further confirmed in a simple flow system for several cycles. This study reveals that MOFs can be highly potent heterogeneous catalysts for organophosphate pesticide degradation, suggesting that coordination geometry of the Zr node significantly influences the catalytic activity.
Collapse
Affiliation(s)
- Dongsik Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yeongjin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
64
|
Dong J, An HD, Yue ZK, Hou SL, Chen Y, Zhang ZJ, Cheng P, Peng Q, Zhao B. Dual-Selective Catalysis in Dephosphorylation Tuned by Hf 6-Containing Metal-Organic Frameworks Mimicking Phosphatase. ACS CENTRAL SCIENCE 2021; 7:831-840. [PMID: 34079899 PMCID: PMC8161481 DOI: 10.1021/acscentsci.0c01581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Selective dephosphorylation is full of great challenges in the field of biomimetic catalysis. To mimic the active sites of protein phosphatase, Hf-OH-Hf motif-containing metal-organic frameworks (MOFs) were obtained and structurally characterized, which are assembled from [Hf48Ni6] cubic nanocages and exhibit good stability in various solvents and acid/base solutions. Catalytic investigations suggest as-synthesized Hf-Ni and Hf-Ni-NH 2 display accurate type-selectivity (selectively catalyzed P-O rather than S-O or C-O bonds) and position-selectivity (selectively catalyzed phosphomonoesters over phosphodiesters) for the hydrolysis of phosphoesters. Reaction kinetic studies further revealed the high activity of the catalytic sites in these catalysts, and the unique catalytic selectivity and high activity are comparable to phosphatase. Additionally, these MOF catalysts possess good recursivity and hypotoxicity. Control experiments (including Hf- and Zr-based isomorphous MOFs) and theoretical calculations indicate that both triplet nickel and Hf6 clusters play significant roles in the unique binding site and favorable binding energy. To our knowledge, this is the first example of selective dephosphorylation through MOF catalysts as mimic enzymes, which paves a potential way for the development of specific therapeutic MOFs.
Collapse
Affiliation(s)
- Jie Dong
- Key
Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-De An
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ze-Kun Yue
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Key
Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Zhen-Jie Zhang
- Key
Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Key
Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Key
Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
65
|
Preparation of UiO-66-NH 2@PDA under Water System for Chemical Warfare Agents Degradation. MATERIALS 2021; 14:ma14092419. [PMID: 34066489 PMCID: PMC8125062 DOI: 10.3390/ma14092419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
There is an urgent need to develop catalytic degradation technologies for chemical warfare agents (CWAs) that are environmentally friendly and do not require secondary treatment. UiO-66-NH2 and other metal–organic frameworks (MOFs) based on zirconium have been shown to promote the catalytic degradation of CWAs. At the same time, MOFs have been studied, and they have shown interesting properties in CWA removal because of their ultrahigh surface area, tunable structures, and periodically distributed abundant catalytic sites. However, MOFs synthesized by conventional methods are mostly powdery crystals that are difficult to process and have poor mechanical stability, which largely limit the development of MOFs in practical applications. An emerging trend in MOF research is hybridization with flexible materials. Polymers possess a variety of unique attributes, such as flexibility, thermal and chemical stability, and process ability, and these properties can be combined with MOFs to make a low-cost and versatile material that also provides convenience for the subsequent integration of such MOFs into independent substrates or textiles. In this article, we used a green and simple method to coat the surface of UiO-66-NH2 with polydopamine (PDA), PDA can promote the catalytic hydrolysis of UiO-66-NH2 to DMNP (a simulant of chemical warfare agents). Additionally, it can adsorb the toxic hydrolysis product p-nitrophenol, avoiding the trouble of secondary treatment. The half-life of UiO-66-NH2 coated with polydopamine (UiO-66-NH2@PDA) for catalytic hydrolysis is 8.9 min, and that of pure UiO-66-NH2 is 20 min. We speculate that the surface coated with PDA can improve the diffusion of DMNP to the active sites of UiO-66-NH2.
Collapse
|
66
|
Jabbour CR, Parker LA, Hutter EM, Weckhuysen BM. Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nat Rev Chem 2021; 5:370-387. [PMID: 33969223 PMCID: PMC8097677 DOI: 10.1038/s41570-021-00275-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
The most recent global health and economic crisis caused by the SARS-CoV-2 outbreak has shown us that it is vital to be prepared for the next global threat, be it caused by pollutants, chemical toxins or biohazards. Therefore, we need to develop environments in which infectious diseases and dangerous chemicals cannot be spread or misused so easily. Especially, those who put themselves in situations of most exposure - doctors, nurses and those protecting and caring for the safety of others - should be adequately protected. In this Review, we explore how the development of coatings for surfaces and functionalized fabrics can help to accelerate the inactivation of biological and chemical toxins. We start by looking at recent advancements in the use of metal and metal-oxide-based catalysts for the inactivation of pathogenic threats, with a focus on identifying specific chemical bonds that can be targeted. We then discuss the use of metal-organic frameworks on textiles for the capture and degradation of various chemical warfare agents and their simulants, their long-term efficacy and the challenges they face.
Collapse
Affiliation(s)
- Christia R. Jabbour
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Luke A. Parker
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eline M. Hutter
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
67
|
Mukhopadhyay S, Shimoni R, Liberman I, Ifraemov R, Rozenberg I, Hod I. Assembly of a Metal-Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular-Level Control Over Heterogeneous CO 2 Reduction. Angew Chem Int Ed Engl 2021; 60:13423-13429. [PMID: 33755294 PMCID: PMC8251703 DOI: 10.1002/anie.202102320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Electrochemically active Metal‐Organic Frameworks (MOFs) have been progressively recognized for their use in solar fuel production schemes. Typically, they are utilized as platforms for heterogeneous tethering of exceptionally large concentration of molecular electrocatalysts onto electrodes. Yet so far, the potential influence of their extraordinary chemical modularity on electrocatalysis has been overlooked. Herein, we demonstrate that, when assembled on a solid Ag CO2 reduction electrocatalyst, a non‐catalytic UiO‐66 MOF acts as a porous membrane that systematically tunes the active site's immediate chemical environment, leading to a drastic enhancement of electrocatalytic activity and selectivity. Electrochemical analysis shows that the MOF membrane improves catalytic performance through physical and electrostatic regulation of reactants delivery towards the catalytic sites. The MOF also stabilizes catalytic intermediates via modulation of active site's secondary coordination sphere. This concept can be expanded to a wide range of proton‐coupled electrochemical reactions, providing new means for precise, molecular‐level manipulation of heterogeneous solar fuels systems.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
68
|
Lu Z, Wang R, Liao Y, Farha OK, Bi W, Sheridan TR, Zhang K, Duan J, Liu J, Hupp JT. Isomer of linker for NU-1000 yields a new she-type, catalytic, and hierarchically porous, Zr-based metal-organic framework. Chem Commun (Camb) 2021; 57:3571-3574. [PMID: 33704273 DOI: 10.1039/d0cc07974j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The well-known MOF (metal-organic framework) linker tetrakis(p-benzoate)pyrene (TBAPy4-) lacks steric hindrance between its benzoates. Changing the 1,3,6,8-siting of benzoates in TBAPy4- to 4,5,9,10-siting introduces substantial steric hindrance and, in turn, enables the synthesis of a new hierarchically porous, she-type MOF Zr6(μ3-O)4(μ3-OH)4(C6H5COO)3(COO)3(TBAPy-2)3/2 (NU-601), where TBAPy-24- is the 4,5,9,10 isomer of TBAPy4-. NU-601 shows high catalytic activity for degradative hydrolysis of a simulant for G-type fluoro-phosphorus nerve agents.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Balasubramanian S, Kulandaisamy AJ, Babu KJ, Das A, Balaguru Rayappan JB. Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | | | - K. Jayanth Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | - Apurba Das
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi New Delhi, 110 016, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
70
|
Devulapalli VSD, Richard M, Luo TY, De Souza ML, Rosi NL, Borguet E. Tuning the Lewis acidity of metal-organic frameworks for enhanced catalysis. Dalton Trans 2021; 50:3116-3120. [PMID: 33565539 DOI: 10.1039/d1dt00180a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinetics of hydrolysis of dimethyl nitrophenyl phosphate (DMNP), a simulant of the nerve agent Soman, was studied and revealed transition metal salts as catalysts. The relative rates of DMNP hydrolysis by zirconium and hafnium chlorides are in accordance with their Lewis acidity. In situ conversion of zirconium chloride to zirconium oxy-hydroxide was identified as the key step. We propose a precursor-MOF activity relationship.
Collapse
Affiliation(s)
| | - Mélissandre Richard
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Mattheus L De Souza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
71
|
Li Y, Luan P, Zhou L, Xue S, Liu Y, Liu Y, Jiang Y, Gao J. Purification and immobilization of His-tagged organophosphohydrolase on yolk−shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
72
|
Akbarian M, Sanchooli E, Oveisi AR, Daliran S. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
73
|
Luo HB, Castro AJ, Wasson MC, Flores W, Farha OK, Liu Y. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework. ACS Catal 2021; 11:1424-1429. [PMID: 33614195 DOI: 10.1021/acscatal.0c04565] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metal-organic frameworks (MOFs) are excellent catalytic materials for the hydrolytic degradation of nerve agents and their simulants. However, most of the MOF-based hydrolysis catalysts to date are reliant on liquid water media buffered by a volatile liquid base. To overcome this practical limitation, we developed a simple and feasible strategy to synthesize MOF composites that structurally mimic phosphotriesterase's active site as well as its ligated histidine residues. By incorporating imidazole and its derivative into the pores of MOF-808, the obtained MOF composites achieved rapid degradation of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) in pure water as well as in a humid environment without liquid base. Remarkably, one of the composites Im@MOF-808 displayed the highest catalytic activity for DMNP hydrolysis in unbuffered aqueous solutions among all reported MOF-based catalysts. Furthermore, solid-phase catalysis showed that Im@MOF-808 can also rapidly hydrolyze DMNP under high-humidity conditions without bulk water or external bases. This work provides a viable solution toward the implementation of MOF materials into protective equipment for practical nerve agent detoxification.
Collapse
Affiliation(s)
- Hong-Bin Luo
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Megan C. Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Willmer Flores
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| |
Collapse
|
74
|
Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:224. [PMID: 33467113 PMCID: PMC7830340 DOI: 10.3390/nano11010224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Unintended exposure to harmful reactive organophosphates (OP), which comprise a group of nerve agents and agricultural pesticides, continues to pose a serious threat to human health and ecosystems due to their toxicity and prolonged stability. This underscores an unmet need for developing technologies that will allow sensitive OP detection, rapid decontamination and effective treatment of OP intoxication. Here, this article aims to review the status and prospect of emerging nanotechnologies and multifunctional nanomaterials that have shown considerable potential in advancing detection methods and treatment modalities. It begins with a brief introduction to OP types and their biochemical basis of toxicity followed by nanomaterial applications in two topical areas of primary interest. One topic relates to nanomaterial-based sensors which are applicable for OP detection and quantitative analysis by electrochemical, fluorescent, luminescent and spectrophotometric methods. The other topic is directed on nanotherapeutic platforms developed as OP remedies, which comprise nanocarriers for antidote drug delivery and nanoscavengers for OP inactivation and decontamination. In summary, this article addresses OP-responsive nanomaterials, their design concepts and growing impact on advancing our capability in the development of OP sensors, decontaminants and therapies.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
75
|
Impact of defects on the decomposition of chemical warfare agent simulants in Zr‐based metal organic frameworks. AIChE J 2021. [DOI: 10.1002/aic.17156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
76
|
Jiao L, Yu H, Ning Z, Li Z. Research Progress in the Preparation of Aryl and Alkyl Mixed Phosphates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
77
|
Chen Z, Wasson MC, Drout RJ, Robison L, Idrees KB, Knapp JG, Son FA, Zhang X, Hierse W, Kühn C, Marx S, Hernandez B, Farha OK. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss 2021; 225:9-69. [DOI: 10.1039/d0fd00103a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We provide a brief overview of the state of the MOF field from their inception to their synthesis, potential applications, and finally, to their commercialization.
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Lee Robison
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Julia G. Knapp
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | | | | | | | | | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
- Department of Chemical & Biological Engineering
| |
Collapse
|
78
|
In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX. Toxicol Lett 2020; 339:32-38. [PMID: 33370593 DOI: 10.1016/j.toxlet.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) have shown promising properties for removal of chemical warfare agents, in particular for material decontamination and functionalized fabrics. The MOF-properties could also be beneficial for skin decontamination, especially when exposed to highly toxic and low volatile nerve agents. In such exposures, efficient decontamination is crucial for adequate medical management. In the present study, seven zirconium-based MOFs were evaluated for their ability to degrade VX and subsequently tested in vitro for decontamination of VX on human dermatomed skin. Of the MOFs evaluated, MOF-808 showed the greatest ability to degrade VX in an alkaline buffer with complete degradation of VX within 5 min. PCN-777, Zr-NDC and NU-1000 displayed degradation half-lives of approximately 10 min. When including MOF-808 in a skin friendly carrier with slightly acidic pH, a decreased agent degradation rate was observed, requiring over 24 h to reach complete degradation. In skin decontamination experiments, MOF-808 enhanced the efficacy compared to the carrier alone, essentially by improved agent absorption. Adding MOF-808 to Reactive Skin Decontamination Lotion (RSDL) did not improve the high effectiveness of RSDL alone. The present study showed that including MOF in skin decontamination lotions could be beneficial. Further studies should include optimizing the particulates and formulations.
Collapse
|
79
|
Ghasempour H, Morsali A. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs. Chemistry 2020; 26:17437-17444. [PMID: 32757398 DOI: 10.1002/chem.202002412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Indexed: 01/02/2023]
Abstract
Owing to their high surface area, high concentration of active metal sites, and water stability, zirconium(VI)-based metal-organic frameworks (Zr-MOFs) have shown excellent activity in the hydrolysis of organophosphorus nerve agents (OPNs). In this regard, for the first time, two topologically different Zr-MOFs (Zr-fcu-tmuc and Zr-bcu-tmuc, constructed from the same organic and inorganic building blocks; fcu=face-centered cubic, bcu=body-centered cubic) have been rationally chosen to investigate the effect of network topology on the catalytic hydrolysis of the nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP). A remarkable enhancement in the hydrolysis rate of DMNP was observed with Zr-bcu-tmuc, reducing the half-life more than three-fold compared with Zr-fcu-tmuc. Greater accessibility of the active ZrVI sites in the 8-connected bcu net compared with the 12-connected fcu leads to a faster hydrolysis of DMNP on Zr-bcu-tmuc. Interestingly, the higher activity of Zr-bcu-tmuc was also confirmed by its higher fluorescence sensitivity towards DMNP (limit of detection (LOD)=0.557 μm) compared with Zr-fcu-tmuc (LOD=1.09 μm). The results show that controlling the desired topology of Zr-MOFs is a useful strategy for improving their performance in the detection and catalytic detoxification of OPNs.
Collapse
Affiliation(s)
- Hosein Ghasempour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115175, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115175, Tehran, Iran
| |
Collapse
|
80
|
Bukowski BC, Snurr RQ. Topology-Dependent Alkane Diffusion in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56049-56059. [PMID: 33269907 DOI: 10.1021/acsami.0c17797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) can be designed for chemical applications by modulating the size and shape of intracrystalline pores through selection of their nodes and linkers. Zirconium nodes with variable connectivity to organic linkers allow for a broad range of topological nets that have diverse pore structures even for a consistent set of linkers. Identifying an optimal pore structure for a given application, however, is complicated by the large material space of possible MOFs. In this work, molecular dynamics simulations were used to determine how a MOF's topology affects the diffusion of propane and isobutane over the full range of loadings and to understand how MOFs can be tuned to reduce transport limitations for applications in separations and catalysis. High-throughput simulation techniques were employed to efficiently calculate loading-dependent diffusivities in 38 MOFs. The results show that topologies with higher node connectivity have reduced alkane diffusivities compared to topologies with lower node connectivity. Molecular siting techniques were used to elucidate how the pore structures in different topologies affect adsorbate diffusivities.
Collapse
Affiliation(s)
- Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
81
|
Recent Advances in the Application of Metal–Organic Frameworks for Polymerization and Oligomerization Reactions. Catalysts 2020. [DOI: 10.3390/catal10121441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polymers have become one of the major types of materials that are essential in our daily life. The controlled synthesis of value-added polymers with unique mechanical and chemical properties have attracted broad research interest. Metal–organic framework (MOF) is a class of porous material with immense structural diversity which offers unique advantages for catalyzing polymerization and oligomerization reactions including the uniformity of the catalytic active site, and the templating effect of the nano-sized channels. We summarized in this review the important recent progress in the field of MOF-catalyzed and MOF-templated polymerizations, to reveal the chemical principle and structural aspects of these systems and hope to inspire the future design of novel polymerization systems with improved activity and specificity.
Collapse
|
82
|
Castells-Gil J, M. Padial N, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira BC, Waerenborgh JC, Jagiello J, Navarro JA, Tatay S, Martí-Gastaldo C. Heterometallic Titanium-Organic Frameworks as Dual-Metal Catalysts for Synergistic Non-buffered Hydrolysis of Nerve Agent Simulants. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Yang J, Li K, Li C, Gu J. Intrinsic Apyrase-Like Activity of Cerium-Based Metal-Organic Frameworks (MOFs): Dephosphorylation of Adenosine Tri- and Diphosphate. Angew Chem Int Ed Engl 2020; 59:22952-22956. [PMID: 32902900 DOI: 10.1002/anie.202008259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Apyrase is an important family of extracellular enzymes that catalyse the hydrolysis of high-energy phosphate bonds (HEPBs) in ATP and ADP, thereby modulating many physiological processes and driving life activities. Herein, we report an unexpected discovery that cerium-based metal-organic frameworks (Ce-MOFs) of UiO-66(Ce) have intrinsic apyrase-like activity for ATP/ADP-related physiological processes. The abundant CeIII /CeIV couple sites of Ce-MOFs endow them with the ability to selectively catalyse the hydrolysis of HEPBs of ATP and ADP under physiological conditions. Compared to natural enzymes, they could resist extreme pH and temperature, and present a broad range of working conditions. Based on this finding, a significant inhibitory effect on ADP-induced platelet aggregation was observed upon exposing the platelet-rich plasma (PRP) to the biomimetic UiO-66(Ce) films, prefiguring their wide application potentials in medicine and biotechnology.
Collapse
Affiliation(s)
- Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
84
|
Yang J, Li K, Li C, Gu J. Intrinsic Apyrase‐Like Activity of Cerium‐Based Metal–Organic Frameworks (MOFs): Dephosphorylation of Adenosine Tri‐ and Diphosphate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ke Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
85
|
Zhang H, Li S, Qu A, Hao C, Sun M, Xu L, Xu C, Kuang H. Engineering of chiral nanomaterials for biomimetic catalysis. Chem Sci 2020; 11:12937-12954. [PMID: 34094483 PMCID: PMC8163208 DOI: 10.1039/d0sc03245j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chiral nanomaterial-based biomimetic catalysts can trigger a similar biological effect to natural catalysts and exhibit high performance in biological applications. Especially, their active center similarity and substrate selectivity promoted their superior biocatalytic activity. Here, modification of critical elements, such as size, morphology, nanocrystal facets, chiral surface and active sites, for controlling the catalytic efficiency of individual chiral nanoparticles (NPs) and chiral nanoassemblies has been demonstrated, which had a synergistic effect on overcoming the defects of pre-existing nanocatalysts. Noticeably, application of external forces (light or magnetism) has resulted in obvious enhancement in biocatalytic efficiency. Chiral nanomaterials served as preferable biomimetic nanocatalysts due to their special structural configuration and chemical constitution advantages. Furthermore, the current challenges and future research directions of the preparation of high-performance bioinspired chiral nanomaterials for biological applications are discussed. Chiral nanomaterial-based biomimetic catalysts can trigger a similar biological effect to natural catalysts and exhibit high performance in biological applications.![]()
Collapse
Affiliation(s)
- Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Si Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
86
|
Microwave-Assisted Solvothermal Synthesis of UiO-66-NH2 and Its Catalytic Performance toward the Hydrolysis of a Nerve Agent Simulant. Catalysts 2020. [DOI: 10.3390/catal10091086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Zr-containing metal-organic frameworks (MOFs) exhibit a good performance of catalyzing the hydrolysis of chemical warfare agents, which is closely related to the size of MOF particles and its defects, but these two factors are often intertwined. In this article, we synthesized UiO-66-NH2 nanoparticles using a microwave-assisted hydrothermal method. By using a new modulator 4-Fluoro-3-Formyl-Benzoic Acid (FFBA) in different proportions, MOF particles with the same defect degree but different scales and those with similar sizes but different defect degrees can be obtained. The performance of the obtained MOF particles to catalyze the hydrolysis of the nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was investigated, and the effects of single factors of size or defect were compared for the first time. As the size of the obtained MOF particles increased from 81 nm to 159 nm, the catalytic degradation efficiency toward DMNP gradually decreased, and the half-life increased from 3.9 min to 11.1 min. For MOFs that have similar crystal sizes, the catalytic degradation half-life of MOF3 is only 5 min, which is much smaller than that of MOF5 due to the defects increase from 1.2 to 1.8 per Zr6 cluster.
Collapse
|
87
|
Zhan SW, Tseng WB, Tseng WL. Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application. ENVIRONMENTAL RESEARCH 2020; 188:109653. [PMID: 32526493 DOI: 10.1016/j.envres.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/08/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
A series of nanomaterials have been demonstrated to be powerful for direct degradation of diethyl paraoxon (EP) to diethyl phosphate and 4-nitrophenol in aqueous solution. However, comparison of catalytic activity of different nanomaterials toward EP is rarely explored. In the present study, four different morphological nanoceria (cubes, rods, polyhedral, and spheres) were synthesized, characterized, and evaluated as a catalyst for the degradation of EP in comparison to other commercially available nanomaterials. Among the tested nanoceria, the cerium dioxide (CeO2) nanopolyhedra possess the best catalytic activity toward the hydrolysis of EP owing to their abundant oxygen vacancy sites, optimal ratio of Ce(III) to Ce(IV), and specific exposed facets. Under the conditions of 0.2 M NH3/NH4Cl buffer and 25 °C, the CeO2 nanopolyhedra catalyzed the reduction of EP to 4-nitrophenol with a >99% conversion at pH 8.0 for 50 h, at pH 10.0 for 12 h, and at pH 12.0 for 2.5 h. The catalytic degradation of nearly 100% EP in NH3/NH4Cl buffer (pH 10.0) at 25 °C is in the decreasing order of CeO2 nanopolyhedra > CeO2 nanorods > ZnO nanospheres (NSs) > CeO2 nanocubes > TiO2 NSs > CeO2 NSs > Fe3O4 NSs ~ Co3O4 NSs ~ control experiment. The mechanism for the degradation of EP was confirmed by monitoring catalytic kinetics of the CeO2 nanopolyhedra in the presence of EP, dimethyl paraoxon, 4-nitrophenyl phosphate, and parathion. The nanocomposites were simply fabricated by electrostatic self-assembly of the CeO2 nanopolyhedra and poly(diallyldimethylammonium chloride)-capped gold nanoparticles (PDDA-AuNPs). The resultant nanocomposites still efficiently catalyzed NaBH4-mediated reduction of 4-nitrophenol to 4-aminophenol with a normalized rate constant of 6.68 ± 0.72 s-1 g-1 and a chemoselectivity of >99%. In confirmation of the robustness and applicability of the as-prepared nanocomposites, they were further used to catalyze the degradation of EP to 4-amionphenol in river water and seawater.
Collapse
Affiliation(s)
- Shi-Wei Zhan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan; Department of College of Ecology and Resource Engineering, Wuyi University, Fujian, 354300, China
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
88
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
89
|
Mendonca ML, Ray D, Cramer CJ, Snurr RQ. Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35657-35675. [PMID: 32627522 DOI: 10.1021/acsami.0c08417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies have shown that metal-organic frameworks (MOFs) built from hexanuclear M(IV) oxide cluster nodes are effective catalysts for nerve agent hydrolysis, where the properties of the active sites on the nodes can strongly influence the reaction energetics. The connectivity and metal identity of these M6 nodes can be easily tuned, offering extensive opportunities for computational screening to predict promising new materials. Thus, we used density functional theory (DFT) to examine the effects of node topology, connectivity, and metal identity on the binding energies of multiple nerve agents and their corresponding hydrolysis products. By computing an optimization metric based on the relative binding strengths of key hydrolysis reaction species (water, agent, and bidentate-bound products), we predicted optimal M6 nodes for hydrolyzing specific nerve agent and simulant molecules, where our results are in qualitative agreement with observed experimental trends. This analysis highlighted the notion that no single metal or node topology is optimal for all possible organophosphates, suggesting that MOFs should be selected based on the agent of interest. Using the large amount of data generated from our DFT calculations, we then derived quantitative structure-activity relationship (QSAR) models to help explain the complex trends observed in the binding energies. Through linear regression, we identified the most important descriptors for describing the binding of nerve agents and their hydrolysis products to M6 nodes. These results suggested that both molecular and node properties, including both structural and chemical features, collectively contribute to the binding energetics. By performing a thorough statistical analysis, we showed that our QSAR models are capable of making quantitatively accurate binding energy predictions for nerve agents and their hydrolysis products in a wide variety of M(IV)-MOFs. The insights gained herein can be used to guide future experiments for the synthesis of MOFs with enhanced catalytic activity for organophosphate hydrolysis.
Collapse
Affiliation(s)
- Matthew L Mendonca
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
90
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
91
|
Zhou Y, Gao Q, Zhang L, Zhou Y, Zhong Y, Yu J, Liu J, Huang C, Wang Y. Combining Two into One: A Dual-Function H5PV2Mo10O40@MOF-808 Composite as a Versatile Decontaminant for Sulfur Mustard and Soman. Inorg Chem 2020; 59:11595-11605. [DOI: 10.1021/acs.inorgchem.0c01392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanyuan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Qi Gao
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Sciences PLA China, Beijing 100850, People’s Republic of China
| | - Jialin Yu
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yong’An Wang
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Sciences PLA China, Beijing 100850, People’s Republic of China
| |
Collapse
|
92
|
Seo JY, Cho KY, Lee JH, Lee MW, Baek KY. Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32778-32787. [PMID: 32589390 DOI: 10.1021/acsami.0c08276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continuous and safe decomposition of chemical warfare agents (CWAs) is a critical requirement to protect both soldiers and citizens and to eliminate the stockpiles after the cold war. The Zr-based metal-organic framework (Zr-MOF) has been known as the most effective catalyst for decomposing CWAs, especially the most fatal nerve agents, however, its low processability due to the powder form limits its expansion to actual military applications. To this end, the composite membrane catalysts (CMCs) comprising the Zr-MOF (UiO-66 catalyst) and nylon 6 nanofiber (porous supporter) are developed by the simple integration of electrospray and electrospinning, resulting in selective immobilization of UiO-66 on the surface of the nylon 6 nanofibers. These strategical benefits of CMCs gave super catalytic durability including recyclability over five times without decreasing the catalytic activity for the decomposition of methyl paraoxon (MPO), a simulant of the nerve agent, in the presence of N-ethylmorpholine (N-EM), which was not achieved in the original particulate UiO-66. Because of the excellent physical and chemical stabilities of CMCs, the CMC with 56 wt % of UiO-66 (CMC56) decomposed 198 g of MPO within an hour in the continuous flow system with a flow rate of 21.6 mL h-1. This study highlights the important strategies in designing the feasible membrane-type catalysts with superior catalytic activity and robust durability for decomposing CWAs in the continuous flow system.
Collapse
Affiliation(s)
- Jin Young Seo
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Kie Yong Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Industrial Chemistry, Pukyong National University, Pusan 48547, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Min Wook Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 55324, Republic of Korea
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- Center for Convergent Chemical Process, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
93
|
Gold J, Szilvási T, Abbott NL, Mavrikakis M. Binding of Organophosphorus Nerve Agents and Their Simulants to Metal Salts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30941-30953. [PMID: 32506901 DOI: 10.1021/acsami.0c05777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nerve agents (NAs) pose a great threat to society because they are easy to produce and are deadly in nature, which makes developing methods to detect, adsorb, and destroy them crucial. To enable the development of these methods, we report the use of first principles electronic structure calculations to understand the binding properties of NAs and NA simulants on metal salt surfaces. We report calculated Gibbs free binding energies (GBE) for four NAs (tabun (GA), sarin (GB), soman (GD), and venomous X (VX)) and five NA simulants (dimethyl methylphosphonate (DMMP), dimethyl chlorophosphate (DMCP), trimethyl phosphate (TMP), methyl dichlorophosphate (MDCP), and di-isopropyl methylphosphonate (DIMP)) on metal perchlorate and metal nitrate salts using density functional theory. Our results indicate a general trend in the binding strength of NAs and NA simulants to metal salt surfaces: MDCP < DMCP < GA < GD ≈ GB < TMP < VX ≈ DMMP < DIMP. Based on their binding properties on salt surfaces, we identify the most effective simulant for each of the studied NAs as follows: DMCP for GA, TMP for GB and GD, and DMMP for VX. To illustrate the utility of the binding energies calculated in our study, we address the design of NA sensors based on the competitive binding of NAs and liquid crystalline compounds on metal salts. We compare our results with previous experimental findings and provide a list of promising combinations of liquid crystal and metal salt systems to selectively and sensitively detect NAs. Our study highlights the great value of computational chemistry for designing selective and sensitive NA sensors while minimizing the number of very dangerous experiments involving NAs.
Collapse
Affiliation(s)
- Jake Gold
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
94
|
Zhang D, Zhang W, Lin Z, Dong J, Zhen N, Chi Y, Hu C. Mono- and Di-Sc-Substituted Keggin Polyoxometalates: Effective Lewis Acid Catalysts for Nerve Agent Simulant Hydrolysis and Mechanistic Insights. Inorg Chem 2020; 59:9756-9764. [PMID: 32628500 DOI: 10.1021/acs.inorgchem.0c00976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, the hydrolysis of nerve agents by Lewis acid catalysts has attracted considerable attention. The development of molecular catalysts, such as polyoxometalates (POMs) with Lewis acidic sites, is helpful to improve degradation efficiency and understand the catalytic mechanism at a molecular level. Herein, two novel Keggin-type POMs, namely, mono-Sc-substituted K4[Sc(H2O)PW11O39]·22H2O·2(CH3COOK) (1) and di-Sc-substituted Na7[Sc2(CH3COO)2PW10O38]·10H2O·2CH3COONa (2), have been successfully synthesized and thoroughly characterized by routine techniques. To our knowledge, 1 and 2 represent the first example of discrete Sc-substituted Keggin clusters. Compared with the reported Sc-containing POMs, 1 and 2 exhibit relatively good solubility and stability in aqueous solution, as evidenced by 31P nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. The two Sc-substituted POMs can effectively catalyze the hydrolytic decontamination of dimethyl 4-nitrophenyl phosphate (DMNP), a nerve agent simulant, at near-neutral pH. Notably, the catalytic performance of 2 (conversion: 97%) is much better than that of 1 (conversion: 28%). It is found that the different coordination environment of Sc is the key factor to impact their activity. Mechanistic studies including the control experiments and spectroscopy analysis (13C nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry) show that under the turnover conditions the coordinated acetate dissociates from 2 and the exposed coordinatively unsaturated Sc center is more active than the water-coordinated Sc in 1 for binding with DMNP.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenqi Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhengguo Lin
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ni Zhen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
95
|
Song L, Zhao T, Yang D, Wang X, Hao X, Liu Y, Zhang S, Yu ZZ. Photothermal graphene/UiO-66-NH 2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122332. [PMID: 32120207 DOI: 10.1016/j.jhazmat.2020.122332] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Lightweight and wearable fabrics with rapid self-detoxification functions are highly desired to resist chemical warfare agents (CWAs). Metal organic frameworks (MOFs) with high specific surface area and customizability are singularly attractive because of their ability to effectively capture and catalytically degrade CWAs. Herein, photothermal graphene-based nanocomposite fabrics are designed by wet-spinning and chemical reduction of graphene oxide fibers followed by in situ growth of UiO-66-NH2. The flexible graphene fabrics decorated with UiO-66-NH2 nanoparticles exhibit an ultrafast photothermal catalytic decontamination of dimethyl 4-nitrophenyl phosphate (DMNP), a typical simulant of CWAs. The half-life of the degradation reaction decreases from 3.4 to 1.6 min under simulated solar light irradiation, a significant gain over the values reported in the literature. Furthermore, DMNP can be degraded in 20 min by the graphene/UiO-66-NH2 fabric, and even after 5 cycles the degradation efficiency still retains more than 92 %. More importantly, the photothermal conversion of graphene and its instantaneous heat transfer to the UiO-66-NH2 catalyst effectively accelerate the catalytic reaction kinetics, achieving the fast detoxification of DMNP. The combination of catalytic degradation of MOFs with photothermal conversion effect of graphene makes the lightweight and flexible fabrics promising for protection against CWAs and other pollutants.
Collapse
Affiliation(s)
- Linna Song
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xuejiao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinmin Hao
- China Hemp Research Center, 28 Xizhimen North Avenue, Haidian District, Beijing 100082, China
| | - Yaxin Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiyi Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
96
|
Thompson Z, Cowan JA. Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000392. [PMID: 32372559 DOI: 10.1002/smll.202000392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.
Collapse
Affiliation(s)
- Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - James Allan Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
97
|
Ebrahimi A, Nassireslami E, Zibaseresht R, Mohammadsalehi M. Ultra-fast catalytic detoxification of organophosphates by nano-zeolitic imidazolate frameworks. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
98
|
Affiliation(s)
- Luca Gabrielli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Federico Rastrelli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
99
|
Lee J, Kim EY, Chang BJ, Han M, Lee PS, Moon SY. Mixed-matrix membrane reactors for the destruction of toxic chemicals. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
100
|
Yao A, Jiao X, Chen D, Li C. Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18437-18445. [PMID: 32202409 DOI: 10.1021/acsami.9b22242] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-detoxifying fabrics are desirable forms for protection against chemical warfare agents (CWAs). Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the fastest catalysts for nerve-agent hydrolysis, but there is still a lack of reliable methods to integrate them onto fibrous supports, and instantaneous detoxification remains challenging for MOF/fiber composites. Herein, we report a bio-inspired polydopamine (PDA)-mediated strategy for the preparation of Zr-MOF (UiO-66-NH2)-coated nanofiber membranes, which are capable of photothermally catalyzing the degradation of CWA simulants. UiO-66-NH2 nanocrystalline coating with high mass loading, perfect coverage, and good adhesion is readily formed on polyamide (PA)-6 nanofibers with the precoated PDA layer. The prepared PA-6@PDA@UiO-66-NH2 nanofibers display almost an order of magnitude higher turnover frequency (TOF) for the hydrolysis of the nerve agent simulant dimethyl 4-nitrophenylphosphate (DMNP) when irradiated under simulated solar light, with a half-life of only 0.5 min. Such a hydrolysis rate is significantly higher compared to that of the corresponding UiO-66-NH2 powder and UiO-66-NH2/fiber composites reported so far. This strategy may be easily generalized to other MOF/fiber pairs to achieve even higher performance and opens up new opportunities for solar photothermal catalysis in CWA protection.
Collapse
Affiliation(s)
- Aonan Yao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|