51
|
Long K, Han H, Kang W, Lv W, Wang L, Wang Y, Ge L, Wang W. One-photon red light-triggered disassembly of small-molecule nanoparticles for drug delivery. J Nanobiotechnology 2021; 19:357. [PMID: 34736466 PMCID: PMC8567723 DOI: 10.1186/s12951-021-01103-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photoresponsive drug delivery can achieve spatiotemporal control of drug accumulation at desired sites. Long-wavelength light is preferable owing to its deep tissue penetration and low toxicity. One-photon upconversion-like photolysis via triplet-triplet energy transfer (TTET) between photosensitizer and photoresponsive group enables the use of long-wavelength light to activate short-wavelength light-responsive groups. However, such process requires oxygen-free environment to achieve efficient photolysis due to the oxygen quenching of triplet excited states. RESULTS Herein, we report a strategy that uses red light to trigger disassembly of small-molecule nanoparticles by one-photon upconversion-like photolysis for cancer therapy. A photocleavable trigonal molecule, BTAEA, self-assembled into nanoparticles and enclosed photosensitizer, PtTPBP. Such nanoparticles protected TTET-based photolysis from oxygen quenching in normoxia aqueous solutions, resulting in efficient red light-triggered BTAEA cleavage, dissociation of nanoparticles and subsequent cargo release. With paclitaxel as the model drug, the red light-triggered drug release system demonstrated promising anti-tumor efficacy both in vitro and in vivo. CONCLUSIONS This study provides a practical reference for constructing photoresponsive nanocarriers based on the one-photon upconversion-like photolysis.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Han Han
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lang Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Liang Ge
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
52
|
Müller P, Sahlbach M, Gasper S, Mayer G, Müller J, Pötzsch B, Heckel A. Controlling Coagulation in Blood with Red Light. Angew Chem Int Ed Engl 2021; 60:22441-22446. [PMID: 34293228 PMCID: PMC8518524 DOI: 10.1002/anie.202108468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Precise control of blood clotting and rapid reversal of anticoagulation are essential in many clinical situations. We were successful in modifying a thrombin-binding aptamer with a red-light photocleavable linker derived from Cy7 by Cu-catalyzed Click chemistry. We were able to show that we can successfully deactivate the modified aptamer with red light (660 nm) even in human blood-restoring the blood's natural coagulation capability.
Collapse
Affiliation(s)
- Patricia Müller
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| | - Marlen Sahlbach
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| | - Simone Gasper
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Günter Mayer
- University of BonnLife and Medical Sciences InstituteCenter of Aptamer Research & DevelopmentGerhard-Domagk-Str. 153121BonnGermany
| | - Jens Müller
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Bernd Pötzsch
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Alexander Heckel
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| |
Collapse
|
53
|
Abstract
Stimuli-responsive, on-demand release of drugs from drug-eluting depots could transform the treatment of many local diseases, providing intricate control over local dosing. However, conventional on-demand drug release approaches rely on locally implanted drug depots, which become spent over time and cannot be refilled or reused without invasive procedures. New strategies to noninvasively refill drug-eluting depots followed by on-demand release could transform clinical therapy. Here we report an on-demand drug delivery paradigm that combines bioorthogonal click chemistry to locally enrich protodrugs at a prelabeled site and light-triggered drug release at the target tissue. This approach begins with introduction of the targetable depot through local injection of chemically reactive azide groups that anchor to the extracellular matrix. The anchored azide groups then capture blood-circulating protodrugs through bioorthogonal click chemistry. After local capture and retention, active drugs can be released through external light irradiation. In this report, a photoresponsive protodrug was constructed consisting of the chemotherapeutic doxorubicin (Dox), conjugated to dibenzocyclooctyne (DBCO) through a photocleavable ortho-nitrobenzyl linker. The protodrug exhibited excellent on-demand light-triggered Dox release properties and light-mediated in vitro cytotoxicity in U87 glioblastoma cell lines. Furthermore, in a live animal setting, azide depots formed in mice through intradermal injection of activated azide-NHS esters. After i.v. administration, the protodrug was captured by the azide depots with intricate local specificity, which could be increased with multiple refills. Finally, doxorubicin could be released from the depot upon light irradiation. Multiple rounds of depot refilling and light-mediated release of active drug were accomplished, indicating that this system has the potential for multiple rounds of treatment. Taken together, these in vitro and in vivo proof of concept studies establish a novel method for in vivo targeting and on-demand delivery of cytotoxic drugs at target tissues.
Collapse
Affiliation(s)
- Sandeep Palvai
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Christopher T Moody
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27607, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27607, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27607, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
54
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
55
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
56
|
Müller P, Sahlbach M, Gasper S, Mayer G, Müller J, Pötzsch B, Heckel A. Controlling Coagulation in Blood with Red Light. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Patricia Müller
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| | - Marlen Sahlbach
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| | - Simone Gasper
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Günter Mayer
- University of Bonn Life and Medical Sciences Institute Center of Aptamer Research & Development Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Jens Müller
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Bernd Pötzsch
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Alexander Heckel
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
57
|
Targeted Cancer Therapy Using Compounds Activated by Light. Cancers (Basel) 2021; 13:cancers13133237. [PMID: 34209493 PMCID: PMC8269035 DOI: 10.3390/cancers13133237] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer chemotherapy is affected by a modest selectivity and toxic side effects of pharmacological interventions. Among novel approaches to overcome this limitation and to bring to therapy more potent and selective agents is the use of light for selective activation of anticancer compounds. In this review, we focus on the anticancer applications of two light-activated approaches still in the experimental phase: photoremovable protecting groups ("photocages") and photoswitches. We describe the structural considerations behind the development of novel compounds and the plethora of assays used to confirm whether the photochemical and pharmacological properties are meeting the stringent criteria for an efficient in vivo light-dependent activation. Despite its immense potential, light activation brings many challenges, and the complexity of the task is very demanding. Currently, we are still deeply in the phase of pharmacological tools, but the vivid research and rapid development bring the light of hope for potential clinical use.
Collapse
|
58
|
Smart Nucleic Acids as Future Therapeutics. Trends Biotechnol 2021; 39:1289-1307. [PMID: 33980422 DOI: 10.1016/j.tibtech.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Nucleic acid therapeutics (NATs) hold promise in treating undruggable diseases and are recognized as the third major category of therapeutics in addition to small molecules and antibodies. Despite the milestones that NATs have made in clinical translation over the past decade, one important challenge pertains to increasing the specificity of this class of drugs. Activating NATs exclusively in disease-causing cells is highly desirable because it will safely broaden the application of NATs to a wider range of clinical indications. Smart NATs are triggered through a photo-uncaging reaction or a specific molecular input such as a transcript, protein, or small molecule, thus complementing the current strategy of targeting cells and tissues with receptor-specific ligands to enhance specificity. This review summarizes the programmable modalities that have been incorporated into NATs to build in responsive behaviors. We discuss the various inputs, transduction mechanisms, and output response functions that have been demonstrated to date.
Collapse
|
59
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
60
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
61
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
62
|
Guarin CA, Mendoza-Luna LG, Haro-Poniatowski E, Hernández-Pozos JL. Two-photon absorption spectrum and characterization of the upper electronic states of the dye IR780. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119291. [PMID: 33360055 DOI: 10.1016/j.saa.2020.119291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In this work, the full two-photon absorption (2PA) spectrum of cyanine dye IR780 in methanol was measured and some important properties of the upper excited electronic states were investigated. Specifically, two IR780 2PA bands of intensities nearing 140 and 2800 Goeppert-Mayer (GM) were found. In order to determine the optical properties of the upper electronic singlet states, a deconvolution of the absorption peaks in the UV region of the spectrum was made. Based on this, properties such as transition dipole moments, oscillator strengths, absorption maxima in the UV-vis spectra, S2-S1 vibrational couplings and predictions of the lifetime of the second excited state were calculated. Moreover, by combining experimental and computational results, the 2PA transitions were assigned to the upper excited states S2 and S4. Cross-section magnitudes, positions and shapes of the 2PA bands have been satisfactorily explained with a four-state model that comprises the singlet states S1, S2 and S4. From these results, the cyanine investigated in the present work could be used as a novel and interesting moiety for more complex systems that respond to two-photon excitation.
Collapse
Affiliation(s)
- Cesar A Guarin
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México; Cátedras CONACYT - Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México.
| | - Luis Guillermo Mendoza-Luna
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México; Cátedras CONACYT - Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México.
| | - Emmanuel Haro-Poniatowski
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México
| | - José Luis Hernández-Pozos
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F., México
| |
Collapse
|
63
|
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity. CHEMPHOTOCHEM 2021; 5:611-618. [DOI: 10.1002/cptc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Huang R, Sheng Y, Xu Z, Wei D, Song X, Jiang B, Chen H. Combretastatin A4-derived payloads for antibody-drug conjugates. Eur J Med Chem 2021; 216:113355. [PMID: 33721668 DOI: 10.1016/j.ejmech.2021.113355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
We describe the use of natural product combretastatin A4 (CA4) as a versatile new payload for the construction of antibody-drug conjugates (ADCs). Cetuximab conjugates consisting of CA4 derivatives were site-specially prepared by disulfide re-bridging approach using cleavable and non-cleavable linkers. These ADCs retained antigen binding and internalization efficiency and exhibited high potencies against cancer cell lines in vitro. The conjugates also demonstrated significant antitumor activities in EGFR-positive xenograft models without observed toxicities. CA4 appears to be a viable payload option for ADCs research and development.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
65
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
66
|
Buguis FL, Maar RR, Staroverov VN, Gilroy JB. Near‐Infrared Boron Difluoride Formazanate Dyes. Chemistry 2021; 27:2854-2860. [DOI: 10.1002/chem.202004793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Francis L. Buguis
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
67
|
Abstract
More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules. These inherent attributes of light have been advocated as advantageous for the delivery and/or activation of drugs at diseased sites for a variety of indications. However, the tissue penetrance of light is profoundly wavelength-dependent. Only recently have phototherapeutics that are photoresponsive in the optical window of tissue (600-900 nm) been described. This Review highlights these recent discoveries, along with their limitations and clinical opportunities. In addition, we describe preliminary in vivo studies of prospective phototherapeutics, with an emphasis on the path that remains to be navigated in order to translate light-activated drugs into clinically useful therapeutics. Finally, the unique attributes of phototherapeutics is highlighted by discussing several potential disease applications.
Collapse
|
68
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
69
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
70
|
López-Corrales M, Rovira A, Gandioso A, Bosch M, Nonell S, Marchán V. Transformation of COUPY Fluorophores into a Novel Class of Visible-Light-Cleavable Photolabile Protecting Groups. Chemistry 2020; 26:16222-16227. [PMID: 32530072 DOI: 10.1002/chem.202002314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Although photolabile protecting groups (PPGs) have found widespread applications in several fields of chemistry, biology and materials science, there is a growing interest in expanding the photochemical toolbox to overcome some of the limitations of classical caging groups. In this work, the synthesis of a new class of visible-light-sensitive PPGs based on low-molecular weight COUPY fluorophores with several attractive properties, including long-wavelength absorption, is reported. Besides being stable to spontaneous hydrolysis in the dark, COUPY-based PPGs can be efficiently photoactivated with yellow (560 nm) and red light (620 nm) under physiological-like conditions, thereby offering the possibility of unmasking functional groups from COUPY photocages under irradiation conditions in which other PPGs remain stable. Additionally, COUPY photocages exhibit excellent cellular uptake and accumulate selectively in mitochondria, opening the door to the delivery of caged analogues of biologically active compounds into these organelles.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017, Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
71
|
Black CE, Zhou E, DeAngelo C, Asante I, Yang R, Petasis NA, Louie SG, Humayun M. Cyanine Nanocage Activated by Near-IR Light for the Targeted Delivery of Cyclosporine A to Traumatic Brain Injury Sites. Mol Pharm 2020; 17:4499-4509. [PMID: 32813533 DOI: 10.1021/acs.molpharmaceut.0c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 2.8 million annually in the United States are afflicted with some form of traumatic brain injury (TBI), where 75% of victims have a mild form of TBI (MTBI). TBI risk is higher for individuals engaging in physical activities or involved in accidents. Although MTBI may not be initially life-threatening, a large number of these victims can develop cognitive and physical dysfunctions. These late clinical sequelae have been attributed to the development of secondary injuries that can occur minutes to days after the initial impact. To minimize brain damage from TBI, it is critical to diagnose and treat patients within the first or "golden" hour after TBI. Although it would be very helpful to quickly determine the TBI locations in the brain and direct the treatment selectively to the affected sites, this remains a challenge. Herein, we disclose our novel strategy to target cyclosporine A (CsA) into TBI sites, without the need to locate the exact location of the TBI lesion. Our approach is based on TBI treatment with a cyanine dye nanocage attached to CsA, a known therapeutic agent for TBI that is associated with unacceptable toxicities. In its caged form, CsA remains inactive, while after near-IR light photoactivation, the resulting fragmentation of the cyanine nanocage leads to the selective release of CsA at the TBI sites.
Collapse
Affiliation(s)
- Caroline E Black
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Eugene Zhou
- USC School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Caitlin DeAngelo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Isaac Asante
- USC School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Rong Yang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.,USC School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G Louie
- USC School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90089, United States
| | - Mark Humayun
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90089, United States.,Keck School of Medicine, Viterbi School of Engineering, and Roski Eye Institute, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
72
|
Sun C, Du W, Wang B, Dong B, Wang B. Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro. BMC Chem 2020; 14:21. [PMID: 32259133 PMCID: PMC7106836 DOI: 10.1186/s13065-020-00677-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Near-infrared (NIR) fluorescence imaging is a noninvasive technique that provides numerous advantages for the real-time in vivo monitoring of biological information in living subjects without the use of ionizing radiation. Near-infrared fluorescent (NIRF) dyes are widely used as fluorescent imaging probes. These fluorescent dyes remarkably decrease the interference caused by the self-absorption of substances and autofluorescence, increase detection selectivity and sensitivity, and reduce damage to the human body. Thus, they are beneficial for bioassays. Indole heptamethine cyanine dyes are widely investigated in the field of near-infrared fluorescence imaging. They are mainly composed of indole heterocyclics, heptamethine chains, and N-substituent side chains. With indole heptamethine cyanine dyes as the parent, introducing reactive groups to the parent compounds or changing their structures can make fluorescent probes have different functions like labeling protein and tumor, detecting intracellular metal cations, which has become the hotspot in the field of fluorescence imaging of biological research. Therefore, this study reviewed the applications of indole heptamethine cyanine fluorescent probes to metal cation detection, pH, molecules, tumor imaging, and protein in vivo. The distribution, imaging results, and metabolism of the probes in vivo and in vitro were described. The biological application trends and existing problems of fluorescent probes were discussed.
Collapse
Affiliation(s)
- Chunlong Sun
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Wen Du
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Baoqin Wang
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Bin Dong
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| | - Baogui Wang
- College of Biological and Environmental Engineering & Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta & Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Binzhou University, Binzhou, 256603 China
| |
Collapse
|
73
|
Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release. Bioorg Chem 2020; 111:104475. [PMID: 33798843 DOI: 10.1016/j.bioorg.2020.104475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Antibody-drug conjugates (ADCs) are being developed worldwide with the potential to revolutionize current cancer treatment strategies. However, off-target toxicity caused by the instability of linkers remains one of the main issues to be resolved. Developing a novel photocontrol-ADC with good stability and photocontrolled release seemed to be an attractive and practical solution. In this study, we designed, for the first time, a novel ultraviolet (UV) light-controlled ADC by carefully integrating the UV-cleavable o-nitro-benzyl structure into the linker. Our preliminary work indicated that the ADC exhibited good stability and photocontrollability while maintaining a targeting effect similar to that of the naked antibody. Upon irradiation with UV light, the ADC rapidly released free cytotoxins and exerted significant cytotoxicity toward drug-resistant tumor cells. Compared to those of the unirradiated cells, the EC50 values of ADCs increased by up to 50-fold. Furthermore, our research confirmed that the degradation products of unirradiated ADC, Cys-1a, were relatively less toxic, thus potentially reducing the off-target toxicity caused by nonspecific uptake of ADCs. The novel design strategy of UV light-controlled ADCs may provide new perspectives for future research on ADCs and promote the development of photocontrol systems.
Collapse
|
74
|
Black CE, Zhou E, DeAngelo CM, Asante I, Louie SG, Petasis NA, Humayun MS. Cyanine Nanocages Activated by Near-Infrared Light for the Targeted Treatment of Traumatic Brain Injury. Front Chem 2020; 8:769. [PMID: 33062635 PMCID: PMC7489144 DOI: 10.3389/fchem.2020.00769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and prevalent condition that affects large numbers of people across a range of ages. Individuals engaging in physical activities and victims of accidents are at a higher risk for TBI. There is a lack of available treatment specifically for TBI. Given the difficulty to determine its precise location in the brain, TBI remains difficult to fully diagnose or treat. Herein, we disclose a novel strategy for directing therapeutic agents to TBI sites, without the need to determine the precise location of the TBI activity in the brain. This novel approach is based on the use of a cyanine dye nanocage carrying Gabapentin, a known TBI therapeutic agent. Upon exposure of the cyanine nanocage to near-infrared light, the local release of Gabapentin is triggered, selectively at the TBI-affected site.
Collapse
Affiliation(s)
- Caroline E Black
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Eugene Zhou
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Caitlin M DeAngelo
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Isaac Asante
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Stan G Louie
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States.,School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Mark S Humayun
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States.,Keck School of Medicine, Viterbi School of Engineering, and Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
75
|
Dcona MM, Mitra K, Hartman MCT. Photocontrolled activation of small molecule cancer therapeutics. RSC Med Chem 2020; 11:982-1002. [PMID: 33479692 PMCID: PMC7513389 DOI: 10.1039/d0md00107d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional treatment of the disease is comprised of chemotherapy, radiation and surgery among other treatment approaches. Chemotherapy is plagued by multiple side-effects caused due to non-specific drug action. Light-based therapies offer an alternative treatment approach that can be fine tuned to achieve the desired effect to treat the disease and address challenges posed by chemotherapeutic side-effects. Photodynamic therapy (PDT) is one of the light mediated treatment modalities that has been successfully applied to treat superficial malignancies with high-efficiency, although its dependence on normoxic conditions limits its efficiency to treat deep-seated tumors. On the other hand, light-sensitive drug-mimetics and drug-release platforms have been deemed efficient in preclinical settings to induce cancer cell death with minimal collateral damage. Drawing from about a decade's worth of examples, we highlight the application of photosensitive molecules as an alternative therapeutic option to PDT and describe their designs that influence the biology of the cancer cells, in turn affecting their viability with high spatio-temporal control.
Collapse
Affiliation(s)
- M Michael Dcona
- Department of Internal Medicine , Virginia Commonwealth University , 1201 East Marshall Street , Richmond , 23298 , Virginia , USA .
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
| | - Koushambi Mitra
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| | - Matthew C T Hartman
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| |
Collapse
|
76
|
Bojtár M, Németh K, Domahidy F, Knorr G, Verkman A, Kállay M, Kele P. Conditionally Activatable Visible-Light Photocages. J Am Chem Soc 2020; 142:15164-15171. [PMID: 32786783 PMCID: PMC7472520 DOI: 10.1021/jacs.0c07508] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The proof of concept for conditionally
activatable photocages is
demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine
form is disabled in terms of light-induced cargo release, however,
bioorthogonal transformation of the modulating tetrazine moiety results
in fully restored photoresponsivity. Irradiation of such a “click-armed”
photocage with blue light leads to fast and efficient release of a
set of caged model species, conjugated via various linkages. Live-cell
applicability of the concept was also demonstrated by the conditional
release of a fluorogenic probe using mitochondrial pretargeting.
Collapse
Affiliation(s)
- Márton Bojtár
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Farkas Domahidy
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Knorr
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary.,Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - András Verkman
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
77
|
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020; 18:108. [PMID: 32746846 PMCID: PMC7397640 DOI: 10.1186/s12951-020-00668-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Drug delivery systems (DDSs) based on nanomaterials have shown a promise for cancer chemotherapy; however, it remains a great challenge to localize on-demand release of anticancer drugs in tumor tissues to improve therapeutic effects and minimize the side effects. In this regard, photoresponsive DDSs that employ light as an external stimulus can offer a precise spatiotemporal control of drug release at desired sites of interest. Most photoresponsive DDSs are only responsive to ultraviolet-visible light that shows phototoxicity and/or shallow tissue penetration depth, and thereby their applications are greatly restricted. To address these issues, near-infrared (NIR) photoresponsive DDSs have been developed. In this review, the development of NIR photoresponsive DDSs in last several years for cancer photo-chemotherapy are summarized. They can achieve on-demand release of drugs into tumors of living animals through photothermal, photodynamic, and photoconversion mechanisms, affording obviously amplified therapeutic effects in synergy with phototherapy. Finally, the existing challenges and further perspectives on the development of NIR photoresponsive DDSs and their clinical translation are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Zeliang Xuan
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Xiaofeng Zhu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
78
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
79
|
Watanabe K, Terao N, Kii I, Nakagawa R, Niwa T, Hosoya T. Indolizines Enabling Rapid Uncaging of Alcohols and Carboxylic Acids by Red Light-Induced Photooxidation. Org Lett 2020; 22:5434-5438. [DOI: 10.1021/acs.orglett.0c01799] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Nodoka Terao
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory for Drug Target Research, Integrated Bioscience Division, Institute of Agriculture, Shinshu University, 8304 minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
80
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
81
|
Oliveira BL, Stenton BJ, Unnikrishnan VB, de Almeida CR, Conde J, Negrão M, Schneider FSS, Cordeiro C, Ferreira MG, Caramori GF, Domingos JB, Fior R, Bernardes GJL. Platinum-Triggered Bond-Cleavage of Pentynoyl Amide and N-Propargyl Handles for Drug-Activation. J Am Chem Soc 2020; 142:10869-10880. [PMID: 32456416 PMCID: PMC7304066 DOI: 10.1021/jacs.0c01622] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
ability to create ways to control drug activation at specific
tissues while sparing healthy tissues remains a major challenge. The
administration of exogenous target-specific triggers offers the potential
for traceless release of active drugs on tumor sites from antibody–drug
conjugates (ADCs) and caged prodrugs. We have developed a metal-mediated
bond-cleavage reaction that uses platinum complexes [K2PtCl4 or Cisplatin (CisPt)] for drug activation. Key to
the success of the reaction is a water-promoted activation process
that triggers the reactivity of the platinum complexes. Under these
conditions, the decaging of pentynoyl tertiary amides and N-propargyls occurs rapidly in aqueous systems. In cells,
the protected analogues of cytotoxic drugs 5-fluorouracil (5-FU) and
monomethyl auristatin E (MMAE) are partially activated by nontoxic
amounts of platinum salts. Additionally, a noninternalizing ADC built
with a pentynoyl traceless linker that features a tertiary amide protected
MMAE was also decaged in the presence of platinum salts for extracellular
drug release in cancer cells. Finally, CisPt-mediated prodrug activation
of a propargyl derivative of 5-FU was shown in a colorectal zebrafish
xenograft model that led to significant reductions in tumor size.
Overall, our results reveal a new metal-based cleavable reaction that
expands the application of platinum complexes beyond those in catalysis
and cancer therapy.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Benjamin J Stenton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - V B Unnikrishnan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Cátia Rebelo de Almeida
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisboa, Portugal
| | - João Conde
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Magda Negrão
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisboa, Portugal
| | - Felipe S S Schneider
- Department of Chemistry, Federal University of Santa Catarina-UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | - Miguel Godinho Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisboa, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, UMR7284 U1081 UNS, 06107 Nice, France
| | - Giovanni F Caramori
- Department of Chemistry, Federal University of Santa Catarina-UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Josiel B Domingos
- Department of Chemistry, Federal University of Santa Catarina-UFSC, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisboa, Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
82
|
Loredo A, Tang J, Wang L, Wu KL, Peng Z, Xiao H. Tetrazine as a general phototrigger to turn on fluorophores. Chem Sci 2020; 11:4410-4415. [PMID: 33384859 PMCID: PMC7690217 DOI: 10.1039/d0sc01009j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Light-activated fluorescence affords a powerful tool for monitoring subcellular structures and dynamics with enhanced temporal and spatial control of the fluorescence signal. Here, we demonstrate a general and straightforward strategy for using a tetrazine phototrigger to design photoactivatable fluorophores that emit across the visible spectrum. Tetrazine is known to efficiently quench the fluorescence of various fluorophores via a mechanism referred to as through-bond energy transfer. Upon light irradiation, restricted tetrazine moieties undergo a photolysis reaction that generates two nitriles and molecular nitrogen, thus restoring the fluorescence of fluorophores. Significantly, we find that this strategy can be successfully translated and generalized to a wide range of fluorophore scaffolds. Based on these results, we have used this mechanism to design photoactivatable fluorophores targeting cellular organelles and proteins. Compared to widely used phototriggers (e.g., o-nitrobenzyl and nitrophenethyl groups), this study affords a new photoactivation mechanism, in which the quencher is photodecomposed to restore the fluorescence upon light irradiation. Because of the exclusive use of tetrazine as a photoquencher in the design of fluorogenic probes, we anticipate that our current study will significantly facilitate the development of novel photoactivatable fluorophores.
Collapse
Affiliation(s)
- Axel Loredo
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Juan Tang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Lushun Wang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Kuan-Lin Wu
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Zane Peng
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| | - Han Xiao
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
- Department of Bioengineering , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| |
Collapse
|
83
|
Russo M, Štacko P, Nachtigallová D, Klán P. Mechanisms of Orthogonal Photodecarbonylation Reactions of 3-Hydroxyflavone-Based Acid–Base Forms. J Org Chem 2020; 85:3527-3537. [DOI: 10.1021/acs.joc.9b03248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Russo
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
84
|
Paul A, Mengji R, Bera M, Ojha M, Jana A, Singh NDP. Mitochondria-localized in situ generation of rhodamine photocage with fluorescence turn-on enabling cancer cell-specific drug delivery triggered by green light. Chem Commun (Camb) 2020; 56:8412-8415. [DOI: 10.1039/d0cc03524f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a new multi-tasking water-soluble photocage based on a well-known rhodamine dye for cancer cell selective anticancer drug delivery triggered by green light.
Collapse
Affiliation(s)
- Amrita Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Rakesh Mengji
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology Hyderabad
- Hyderabad 500007
- India
- Department of Organic Synthesis and Process Chemistry
| | - Manoranjan Bera
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Mamata Ojha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Avijit Jana
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology Hyderabad
- Hyderabad 500007
- India
- Department of Organic Synthesis and Process Chemistry
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
85
|
Vorobev AY, Moskalensky AE. Long-wavelength photoremovable protecting groups: On the way to in vivo application. Comput Struct Biotechnol J 2019; 18:27-34. [PMID: 31890141 PMCID: PMC6920508 DOI: 10.1016/j.csbj.2019.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Photoremovable protective groups (PPGs) and related "caged" compounds have been recognized as a powerful tool in an arsenal of life science methods. The present review is focused on recent advances in design of "caged" compounds which function in red or near-infrared region. The naive comparison of photon energy with that of organic bond leads to the illusion that long-wavelength activation is possible only for weak chemical bonds like N-N. However, there are different means to overcome this threshold and shift the uncaging functionality into red or near-infrared regions for general organic bonds. We overview these strategies, including the novel photochemical and photophysical mechanisms used in newly developed PPGs, singlet-oxygen-mediated photolysis, and two-photon absorption. Recent advances in science places the infrared-sensitive PPGs to the same usability level as traditional ones, facilitating in vivo application of caged compounds.
Collapse
Affiliation(s)
- Aleksey Yu. Vorobev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexander E. Moskalensky
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya str. 3, Novosibirsk 630090, Russia
| |
Collapse
|
86
|
Yan C, Shi L, Guo Z, Zhu W. Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
87
|
Tang J, Robichaux MA, Wu KL, Pei J, Nguyen NT, Zhou Y, Wensel TG, Xiao H. Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging. J Am Chem Soc 2019; 141:14699-14706. [PMID: 31450884 DOI: 10.1021/jacs.9b06237] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations. Significantly, upon exposure to air and visible light residing in their absorption regime (365-630 nm), thio-caged fluorophores can be efficiently desulfurized to their oxo derivatives, thus restoring strong emission of the fluorophores. The effective photoactivation makes thio-caged fluorophores promising candidates for super-resolution imaging, which was realized by photoactivated localization microscopy (PALM) with low-power activation light under physiological conditions in the absence of cytotoxic additives (e.g., thiols, oxygen scavengers), a feature superior to traditional PALM probes. The versatility of this thio-caging strategy was further demonstrated by multicolor super-resolution imaging of lipid droplets and proteins of interest.
Collapse
Affiliation(s)
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | | | | | - Nhung T Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine , Texas A&M University , Houston , Texas 77030 , United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine , Texas A&M University , Houston , Texas 77030 , United States
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | | |
Collapse
|
88
|
Zang C, Wang H, Li T, Zhang Y, Li J, Shang M, Du J, Xi Z, Zhou C. A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates. Chem Sci 2019; 10:8973-8980. [PMID: 31762977 PMCID: PMC6857671 DOI: 10.1039/c9sc03016f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Photoirradiation of the PC4AP linker generates an active intermediate that reacts intramolecularly with a primary amine on the carrier peptide/protein, leading to rapid release of the drug without generating any toxic side products.
When designing prodrugs, choosing an appropriate linker is the key to achieving efficient, controlled drug delivery. Herein, we report the use of a photocaged C4′-oxidized abasic site (PC4AP) as a light-responsive, self-immolative linker. Any amine- or hydroxyl-bearing drug can be loaded onto the linker via a carbamate or carbonate bond, and the linker is then conjugated to a carrier peptide or protein via an alkyl chain. The PC4AP linker is stable under physiologically relevant conditions. However, photodecaging of the linker generates an active intermediate that reacts intramolecularly with a primary amine (the ε-amine of a lysine residue and the N-terminal amine) on the carrier, leading to rapid and efficient release of the drug via an addition–elimination cascade, without generating any toxic side products. We demonstrated that the use of this self-immolative linker to conjugate the anticancer drug doxorubicin to a cell-penetrating peptide or an antibody enabled targeted, controlled delivery of the drug to cells. Our results suggest that the linker can be used with a broad range of carriers, such as cell-penetrating peptides, proteins, antibodies, and amine-functionalized polymers, and thus will find a wide range of practical applications.
Collapse
Affiliation(s)
- Chuanlong Zang
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Huawei Wang
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Tiantian Li
- School of Pharmaceutical Sciences , Tsinghua University , 30 Shuangqing Rd. , Beijing 100084 , China
| | - Yingqian Zhang
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Juanjuan Du
- School of Pharmaceutical Sciences , Tsinghua University , 30 Shuangqing Rd. , Beijing 100084 , China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry , Department of Chemical Biology , College of Chemistry , Nankai University , Tianjin 300071 , China .
| |
Collapse
|
89
|
Development of photolabile protecting groups and their application to the optochemical control of cell signaling. Curr Opin Struct Biol 2019; 57:164-175. [PMID: 31132552 DOI: 10.1016/j.sbi.2019.03.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Many biological processes are naturally regulated with spatiotemporal control. In order to perturb and investigate them, optochemical tools have been developed that convey similar spatiotemporal precision. Pivotal to optochemical probes are photolabile protecting groups, so called caging groups, and recent developments have enabled new applications to cellular processes, including cell signaling. This review focuses on the advances made in the field of caging groups and their application in cell signaling through caged molecules such as neurotransmitters, lipids, secondary messengers, and proteins.
Collapse
|
90
|
Paul A, Biswas A, Sinha S, Shah SS, Bera M, Mandal M, Singh NDP. Push-Pull Stilbene: Visible Light Activated Photoremovable Protecting Group for Alcohols and Carboxylic Acids with Fluorescence Reporting Employed for Drug Delivery. Org Lett 2019; 21:2968-2972. [PMID: 31013105 DOI: 10.1021/acs.orglett.9b00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time we have utilized push-pull stilbene as a visible light activated photoremovable protecting group (PRPG) for the uncaging of alcohols and carboxylic acids. The PRPG efficiently release caged molecules with good photochemical quantum yield. It is capable of monitoring the release in real time owing to its fluorescence "turn on" phenomenon upon photorelease in polar medium. The efficient photorelease and real time monitoring abilities of push-pull stilbene were employed for in vitro drug delivery.
Collapse
|
91
|
Kand D, Pizarro L, Angel I, Avni A, Friedmann‐Morvinski D, Weinstain R. Organelle-Targeted BODIPY Photocages: Visible-Light-Mediated Subcellular Photorelease. Angew Chem Int Ed Engl 2019; 58:4659-4663. [PMID: 30731033 PMCID: PMC6519146 DOI: 10.1002/anie.201900850] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Photocaging facilitates non-invasive and precise spatio-temporal control over the release of biologically relevant small- and macro-molecules using light. However, sub-cellular organelles are dispersed in cells in a manner that renders selective light-irradiation of a complete organelle impractical. Organelle-specific photocages could provide a powerful method for releasing bioactive molecules in sub-cellular locations. Herein, we report a general post-synthetic method for the chemical functionalization and further conjugation of meso-methyl BODIPY photocages and the synthesis of endoplasmic reticulum (ER)-, lysosome-, and mitochondria-targeted derivatives. We also demonstrate that 2,4-dinitrophenol, a mitochondrial uncoupler, and puromycin, a protein biosynthesis inhibitor, can be selectively photoreleased in mitochondria and ER, respectively, in live cells by using visible light. Additionally, photocaging is shown to lead to higher efficacy of the released molecules, probably owing to a localized and abrupt release.
Collapse
Affiliation(s)
- Dnyaneshwar Kand
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Lorena Pizarro
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Inbar Angel
- School of Neurobiology, Biochemistry and BiophysicsLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Adi Avni
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Dinorah Friedmann‐Morvinski
- School of Neurobiology, Biochemistry and BiophysicsLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Roy Weinstain
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| |
Collapse
|
92
|
Yamamoto T, Caldwell DR, Gandioso A, Schnermann MJ. A Cyanine Photooxidation/β-Elimination Sequence Enables Near-infrared Uncaging of Aryl Amine Payloads. Photochem Photobiol 2019; 95:951-958. [PMID: 30701558 DOI: 10.1111/php.13090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Uncaging strategies that use near-infrared wavelengths can enable the highly targeted delivery of biomolecules in complex settings. Many methods, including an approach we developed using cyanine photooxidation, are limited to phenol-containing payloads. Given the critical role of amines in diverse biological processes, we sought to use cyanine photooxidation to initiate the release of aryl amines. Heptamethine cyanines substituted with an aryl amine at the C4' position undergo only inefficient release, likely due electronic factors. We then pursued the hypothesis that the carbonyl products derived from cyanine photooxidation could undergo efficient β-elimination. After examining both symmetrical and unsymmetrical scaffolds, we identify a merocyanine substituted with indolenine and coumarin heterocycles that undergoes efficient photooxidation and aniline uncaging. In total, these studies provide a new scheme-cyanine photooxidation followed by β-elimination-through which to design photocages with efficient uncaging properties.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Albert Gandioso
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD.,Seccio de Química Orgànica, Departament de Química Inorganica i Organica, Universitat de Barcelona, Barcelona, Spain
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
93
|
Kand D, Pizarro L, Angel I, Avni A, Friedmann‐Morvinski D, Weinstain R. Organelle‐Targeted BODIPY Photocages: Visible‐Light‐Mediated Subcellular Photorelease. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dnyaneshwar Kand
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Lorena Pizarro
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Inbar Angel
- School of Neurobiology, Biochemistry and Biophysics Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Adi Avni
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Dinorah Friedmann‐Morvinski
- School of Neurobiology, Biochemistry and Biophysics Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| |
Collapse
|
94
|
Alabugin A. Near-IR Photochemistry for Biology: Exploiting the Optical Window of Tissue. Photochem Photobiol 2019; 95:722-732. [PMID: 30536737 DOI: 10.1111/php.13068] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/02/2018] [Indexed: 01/04/2023]
Abstract
Photoactive molecules enable much of modern biology and biochemistry-a vast library of fluorescent chromophores is used to track and label cellular structures and macromolecules. However, photochemistry is better known to the synthetic or physical organic chemist as a "light switch" that turns on unusual excited-state reactivity, isomerization, or dynamic adjustment of structure. This review details a rapidly growing approach to biophotochemistry that uses low-energy near-IR wavelengths not only for imaging, but also for close spatial control over chemical switching events in biosystems. Emphasis is placed on topics of biomedical interest: release of gaseous biological messengers, uncaging of drugs, nano-therapeutics, and modification of biomaterials.
Collapse
Affiliation(s)
- Alexander Alabugin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
95
|
Walton DP, Dougherty DA. A general strategy for visible-light decaging based on the quinone cis-alkenyl lock. Chem Commun (Camb) 2019; 55:4965-4968. [DOI: 10.1039/c9cc01073d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combining the fast thermal cyclization of o-coumaric acid derivatives with the intramolecular photoreduction of quinones gives new visible-light photoremovable protecting groups absorbing well above 450 nm.
Collapse
Affiliation(s)
- David P. Walton
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| |
Collapse
|
96
|
Sõrmus T, Lavogina D, Enkvist E, Uri A, Viht K. Efficient photocaging of a tight-binding bisubstrate inhibitor of cAMP-dependent protein kinase. Chem Commun (Camb) 2019; 55:11147-11150. [DOI: 10.1039/c9cc04978a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PKA bisubstrate inhibitor photocaging resulted in an over 5 orders of magnitude affinity difference between the photocaged and the active inhibitor.
Collapse
Affiliation(s)
- Tanel Sõrmus
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - Darja Lavogina
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - Erki Enkvist
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - Asko Uri
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | - Kaido Viht
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| |
Collapse
|
97
|
Gorka AP, Nani RR, Schnermann MJ. Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery. Acc Chem Res 2018; 51:3226-3235. [PMID: 30418020 DOI: 10.1021/acs.accounts.8b00384] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical approaches that visualize and manipulate biological processes have transformed modern biomedical research. An enduring challenge is to translate these powerful methods into increasingly complex physiological settings. Longer wavelengths, typically in the near-infrared (NIR) range (∼650-900 nm), can enable advances in both fundamental and clinical settings; however, suitable probe molecules are needed. The pentamethine and heptamethine cyanines, led by prototypes Cy5 and Cy7, are among the most useful compounds for fluorescence-based applications, finding broad use in a range of contexts. The defining chemical feature of these molecules, and the key chromophoric element, is an odd-numbered polymethine that links two nitrogen atoms. Not only a light-harvesting functional group, the cyanine chromophore is subject to thermal and photochemical reactions that dramatically alter many properties of these molecules. This Account describes our recent studies to define and use intrinsic cyanine chromophore reactivity. The hypothesis driving this research is that novel chemistries that manipulate the cyanine chromophore can be used to address challenging problems in the areas of imaging and drug delivery. We first review reaction discovery efforts that seek to address two limitations of long-wavelength fluorophores: undesired thiol reactivity and modest fluorescence quantum yield. Heptamethine cyanines with an O-alkyl substituent at the central C4' carbon were prepared through a novel N- to O-transposition reaction. Unlike commonly used C4'-phenol variants, this new class of fluorophores is resistant to thiol modification and exhibits improved in vivo imaging properties when used as antibody tags. We have also developed a chemical strategy to enhance the quantum yield of far-red pentamethine cyanines. Using a synthetic strategy involving a cross metathesis/tetracyclization sequence, this approach conformationally restrains the pentamethine cyanine scaffold. The resulting molecules exhibit enhanced quantum yield (ΦF = 0.69 vs ΦF = 0.15). Furthermore, conformational restraint improves interconversion between reduced hydrocyanine and intact cyanine forms, which enables super resolution microscopy. This Account then highlights efforts to use cyanine photochemical reactivity for NIR photocaging. Our approach involves the deliberate use of cyanine photooxidation, a reaction previously only associated with photodegradation. The uncaging reaction sequence is initiated by photooxidative chromophore cleavage (using wavelengths of up to 780 nm), which prompts a C-N bond hydrolysis/cyclization sequence resulting in phenol liberation. This approach has been applied to generate the first NIR-activated antibody-drug conjugates. Tumor uptake can be monitored in vivo using NIR fluorescence, prior to uncaging with an external irradiation source. This NIR uncaging strategy can slow tumor progression and increase survival in a MDA-MB-468- luc mouse model. Broadly, the vantage point of cyanine reactivity is providing novel probe molecules with auspicious features for use in complex imaging and drug delivery settings.
Collapse
Affiliation(s)
- Alexander P. Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| |
Collapse
|
98
|
Lin CM, Usama SM, Burgess K. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes. Molecules 2018; 23:E2900. [PMID: 30405016 PMCID: PMC6278338 DOI: 10.3390/molecules23112900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022] Open
Abstract
Convenient labeling of proteins is important for observing its function under physiological conditions. In tissues particularly, heptamethine cyanine dyes (Cy-7) are valuable because they absorb in the near-infrared (NIR) region (750⁻900 nm) where light penetration is maximal. In this work, we found Cy-7 dyes with a meso-Cl functionality covalently binding to proteins with free Cys residues under physiological conditions (aqueous environments, at near neutral pH, and 37 °C). It transpired that the meso-Cl of the dye was displaced by free thiols in protein, while nucleophilic side-chains from amino acids like Tyr, Lys, and Ser did not react. This finding shows a new possibility for convenient and selective labeling of proteins with NIR fluorescent probes.
Collapse
Affiliation(s)
- Chen-Ming Lin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | - Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| |
Collapse
|
99
|
Ghosh G, Belh SJ, Chiemezie C, Walalawela N, Ghogare AA, Vignoni M, Thomas AH, McFarland SA, Greer EM, Greer A. S,S-Chiral Linker Induced U Shape with a Syn-facial Sensitizer and Photocleavable Ethene Group. Photochem Photobiol 2018; 95:293-305. [PMID: 30113068 DOI: 10.1111/php.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
There is a major need for light-activated materials for the release of sensitizers and drugs. Considering the success of chiral columns for the separation of enantiomer drugs, we synthesized an S,S-chiral linker system covalently attached to silica with a sensitizer ethene near the silica surface. First, the silica surface was modified to be aromatic rich, by replacing 70% of the surface groups with (3-phenoxypropyl)silane. We then synthesized a 3-component conjugate [chlorin sensitizer, S,S-chiral cyclohexane and ethene building blocks] in 5 steps with a 13% yield, and covalently bound the conjugate to the (3-phenoxypropyl)silane-coated silica surface. We hypothesized that the chiral linker would increase exposure of the ethene site for enhanced 1 O2 -based sensitizer release. However, the chiral linker caused the sensitizer conjugate to adopt a U shape due to favored 1,2-diaxial substituent orientation; resulting in a reduced efficiency of surface loading. Further accentuating the U shape was π-π stacking between the (3-phenoxypropyl)silane and sensitizer. Semiempirical calculations and singlet oxygen luminescence data provided deeper insight into the sensitizer's orientation and release. This study has lead to insight on modifications of surfaces for drug photorelease and can help lead to the development of miniaturized photodynamic devices.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Sarah J Belh
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Callistus Chiemezie
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ashwini A Ghogare
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Mariana Vignoni
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC
| | - Edyta M Greer
- Department of Natural Sciences, Baruch College of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
100
|
Zhou EY, Knox HJ, Reinhardt CJ, Partipilo G, Nilges MJ, Chan J. Near-Infrared Photoactivatable Nitric Oxide Donors with Integrated Photoacoustic Monitoring. J Am Chem Soc 2018; 140:11686-11697. [PMID: 30198716 PMCID: PMC7331458 DOI: 10.1021/jacs.8b05514] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoacoustic (PA) tomography is a noninvasive technology that utilizes near-infrared (NIR) excitation and ultrasonic detection to image biological tissue at centimeter depths. While several activatable small-molecule PA sensors have been developed for various analytes, the use of PA molecules for deep-tissue analyte delivery and monitoring remains an underexplored area of research. Herein, we describe the synthesis, characterization, and in vivo validation of photoNOD-1 and photoNOD-2, the first organic, NIR-photocontrolled nitric oxide (NO) donors that incorporate a PA readout of analyte release. These molecules consist of an aza-BODIPY dye appended with an aryl N-nitrosamine NO-donating moiety. The photoNODs exhibit chemostability to various biological stimuli, including redox-active metals and CYP450 enzymes, and demonstrate negligible cytotoxicity in the absence of irradiation. Upon single-photon NIR irradiation, photoNOD-1 and photoNOD-2 release NO as well as rNOD-1 or rNOD-2, PA-active products that enable ratiometric monitoring of NO release. Our in vitro studies show that, upon irradiation, photoNOD-1 and photoNOD-2 exhibit 46.6-fold and 21.5-fold ratiometric turn-ons, respectively. Moreover, unlike existing NIR NO donors, the photoNODs do not require encapsulation or multiphoton activation for use in live animals. In this study, we use PA tomography to monitor the local, irradiation-dependent release of NO from photoNOD-1 and photoNOD-2 in mice after subcutaneous treatment. In addition, we use a murine model for breast cancer to show that photoNOD-1 can selectively affect tumor growth rates in the presence of NIR light stimulation following systemic administration.
Collapse
Affiliation(s)
- Effie Y. Zhou
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Hailey J. Knox
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Christopher J. Reinhardt
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Gina Partipilo
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Mark J. Nilges
- Illinois EPR Research Center, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| |
Collapse
|