51
|
Bononi G, Iacopini D, Cicio G, Di Pietro S, Granchi C, Di Bussolo V, Minutolo F. Glycoconjugated Metal Complexes as Cancer Diagnostic and Therapeutic Agents. ChemMedChem 2020; 16:30-64. [PMID: 32735702 DOI: 10.1002/cmdc.202000456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/15/2022]
Abstract
The possibility of selectively delivering metal complexes to a defined cohort of cells on the basis of their metabolic features is a highly challenging goal, which may be extremely useful for a series of purposes, including diagnosis and therapy of pathological states, such as cancer. Tumor cells display augmented requests for carbohydrates and, in particular, for glucose in order to sustain their high proliferation rate, which causes an increased glycolytic process (Warburg effect). Since several metal complexes display diagnostic and/or therapeutic properties, their conjugation to carbohydrate portions often induce their preferential accumulation in cancer cells, similarly to what is observed with fluorodeoxyglucose (FDG). In this review we have considered the latest developments of glycoconjugates containing metal complexes in their structures. These compounds are classified as diagnostic or therapeutic agents and are further systematically discussed on the basis of the metal atom they contain. Several diagnostic techniques are possible with these probes, since, depending on the metal species included in their structures, they may be employed in nuclear medicine (PET, SPECT), magnetic resonance imaging, luminescence and phosphorescence. At the same time, the lack of selective cytotoxicity displayed by several metal-based chemotherapeutic agents, may also be solved by the conjugation of these agents to carbohydrate portions. Overall, data so far available reveal the great potential of this chemical class in the early detection and in the cure of severe neoplastic diseases, which still needs to be fully explored in the clinic.
Collapse
Affiliation(s)
- Giulia Bononi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Dalila Iacopini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gaspare Cicio
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy.,Current address: Menarini Ricerche S.p.A. -, Laboratori di Pisa, Via Livornese 897, 56122, Pisa, Italy
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| |
Collapse
|
52
|
Zuo W, Chen D, Fan Z, Chen L, Zhu Z, Zhu Q, Zhu X. Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomater 2020; 111:327-340. [PMID: 32434075 DOI: 10.1016/j.actbio.2020.04.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Carrier-free nanotheranostics with high drug loading and no carrier-related toxicity are highly promising cancer therapy agents. However, the limited tumor accumulation and poorly controlled drug release of these nanotheranostics continue to be major challenges that restrict clinical applications. In this study, we develop a tumor-recognizing carrier-free nanotheranostic with light/reactive oxygen species (ROS) cascade-responsiveness for spatiotemporally selective photo-chemotherapy. The nanotheranostic is constructed by co-assembly of the indocyanine green (ICG) photosensitizer and the mannose-thioketal-doxorubicin conjugate (MAN-TK-DOX) (abbreviated as IMTD), efficiently preventing premature DOX leakage during blood circulation while reducing nonspecific damage to normal tissues/cells. Once accumulated in tumor tissues, IMTD rapidly diffuses into cancer cells via lectin receptors-mediated endocytosis. Photoacoustic/fluorescence-imaging-guided laser irradiation induces local hyperthermia and ROS generation in tumor cells, thereby promoting apoptosis. Together, the ICG-generated ROS and the endogenous ROS in cancer cells synergistically enhance DOX release, resulting in more efficient chemotherapeutic effects. The in vitro and in vivo results consistently demonstrate that IMTD achieves superior tumor accumulation, highly controllable drug release, and synergetic photo-chemotherapy. Therefore, the co-assembly of an ROS-sensitive targeting ligand-chemodrug conjugate and a photosensitizer could be used to develop spatiotemporally light-activatable nanotheranostics for precision cancer therapy. STATEMENT OF SIGNIFICANCE: Synergistic phototherapy and chemotherapy have been considered as a promising cancer treatment modality to maximize the therapeutic efficacy. Unfortunately, most nanodrugs consisting of chemotherapeutic drug and photosensitizer suffer from suboptimal tumor accumulation and poorly controlled drug release, which results in reduced therapeutic outcome. In this study, Mannose (MAN) was conjugated to the anticancer drug doxorubicin (DOX) by a ROS-sensitive thioketal linker (TK), the obtained amphiphilic MAN-TK-DOX could serve as an ideal self-carrier material to deliver photosensitizer, thus to achieve high-efficient tumor-targeting, spatiotemporal controlled drug release, and superior antitumor effect. We believe that the ROS-sensitive amphiphilic targeting ligand-chemodrug conjugate could be developed as a universal approach for designing tumor-targeted nanodrugs with precisely controlled drug release.
Collapse
Affiliation(s)
- Wenbao Zuo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Luping Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhaoyuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qixin Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
53
|
Yu N, Liu T, Zhang X, Gong N, Ji T, Chen J, Liang XJ, Kohane DS, Guo S. Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. NANO LETTERS 2020; 20:5465-5472. [PMID: 32573235 DOI: 10.1021/acs.nanolett.0c01973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of glycoside prodrugs is a promising strategy for developing new targeted medicines for chemotherapy. However, the in vivo utility of such prodrugs is hindered by insufficient activation and the lack of convenient synthetic methods. We have developed an innovative strategy for synthesizing ketal glycoside prodrugs that are unique in being activated by a dual enzyme- and acid-triggered self-immolative mechanism. Amphiphilic glucosyl acetone-based ketal-linked etoposide glycoside prodrug isomers were synthesized and fabricated into excipient-free nanoparticles for effective cancer prodrug monotherapy. Hydrolysis of the glycosidic linkage or the ketal linkage triggered hydrolysis of the other linkage, which resulted in spontaneous self-immolative hydrolysis of the prodrugs. Nanoparticles of the prodrug isomer that was the most labile in a lysosome-mimicking environment displayed high intratumoral accumulation and strong antitumor activity in an A549 xenograft mouse model. Our strategy may be useful for the development of stimulus-responsive self-immolative prodrugs and their nanomedicines.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ningqiang Gong
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jing Chen
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
54
|
Bennai N, Chabrier A, Fatthalla MI, Tran C, Yen-Pon E, Belkadi M, Alami M, Grimaud L, Messaoudi S. Reversing Reactivity: Stereoselective Desulfurative 1,2- trans- O-Glycosylation of Anomeric Thiosugars with Carboxylic Acids under Copper or Cobalt Catalysis. J Org Chem 2020; 85:8893-8909. [PMID: 32524820 DOI: 10.1021/acs.joc.0c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have discovered a new mode of reactivity of 1-thiosugars in the presence of Cu(II) or Co(II) for a stereoselective O-glycosylation reaction. The process involves the use of a catalytic amount of Cu(acac)2 or Co(acac)2 and Ag2CO3 as an oxidant in α,α,α-trifluorotoluene. Moreover, this protocol turned out to have a broad scope, allowing the preparation of a wide range of complex substituted O-glycoside esters in good to excellent yields with an exclusive 1,2-trans-selectivity. The late-stage modification of pharmaceuticals by this method was also demonstrated. To obtain a closer insight into the reaction mechanism, cyclic voltammetry was performed.
Collapse
Affiliation(s)
- Nedjwa Bennai
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Amélie Chabrier
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Maha I Fatthalla
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Department of Chemistry, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Expédite Yen-Pon
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Mohamed Belkadi
- Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Mouâd Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université - Ecole Normale Supérieure - CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
55
|
Arévalo-Ruiz M, Amrane S, Rosu F, Belmonte-Reche E, Peñalver P, Mergny JL, Morales JC. Symmetric and dissymmetric carbohydrate-phenyl ditriazole derivatives as DNA G-quadruplex ligands: Synthesis, biophysical studies and antiproliferative activity. Bioorg Chem 2020; 99:103786. [DOI: 10.1016/j.bioorg.2020.103786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 02/04/2023]
|
56
|
Kumar P, Butcher RJ, Patra AK. Ternary Co(II), Ni(II) and Cu(II) complexes containing dipyridophenazine and saccharin: Structures, reactivity, binding interactions with biomolecules and DNA damage activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
57
|
Upadhyay A, Gautam S, Ramu V, Kondaiah P, Chakravarty AR. Photocytotoxic cancer cell-targeting platinum(ii) complexes of glucose-appended curcumin and biotinylated 1,10-phenanthroline. Dalton Trans 2020; 48:17556-17565. [PMID: 31748772 DOI: 10.1039/c9dt03490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mixed-ligand platinum(ii) complexes, [Pt(phen)(pacac)](NO3) (1), [Pt(phen)(cur)](NO3) (2), [Pt(bt-phen)(cur)](NO3) (3) and [Pt(phen)(scur)](NO3) (4), where phen is 1,10-phenanthroline, bt-phen is 5-biotin-1,10-phenanthroline, pacac is 1,3-diphenyl-1,3-propanedioate anion, Hcur is curcumin and Hscur is diglucosylcurcumin, were prepared, characterized and their anticancer activity studied. Complexes 2-4 showed absorption bands within 410-430 nm (ε, 2.1 × 104 to 2.8 × 104 M-1 cm-1) in 10% DMSO-DPBS (Dulbecco's phosphate-buffered saline) and emission bands near 530 nm (λex = 410-430 nm) with a fluorescence quantum yield (ΦF) value of ∼0.02. The curcumin complexes showed stability over a study period of 48 h. The photocytotoxicity was studied using human cervical HeLa, human liver HepG2, human breast cancer MDA-MB 231 and human lung adenocarcinoma A549 cancer cells along with human immortalized lung epithelial HPL1D as normal cells. Complexes 2-4 showed apoptotic photo-induced cell death in light of wavelength 400-700 nm (IC50, half maximal inhibitory concentration: 6-28 μM) by reactive oxygen species (ROS), while remaining inactive in the dark (IC50: 43-95 μM). The selectivity of the complexes 3 and 4 was enhanced significantly towards the cancer cells than towards the normal cells, thus making them targeted photochemotherapeutic agents. The ROS formation and mode of cell death were studied from 2',7'-dichlorofluorescein diacetate (DCFDA) and annexin-V/FITC (fluorescein isothiocyanate)-PI assays, respectively. Preferential nuclear and mitochondrial localization was evidenced from inductively coupled plasma mass spectrometry (ICP-MS) studies.
Collapse
Affiliation(s)
- Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
58
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
59
|
Makuch S, Woźniak M, Krawczyk M, Pastuch-Gawołek G, Szeja W, Agrawal S. Glycoconjugation as a Promising Treatment Strategy for Psoriasis. J Pharmacol Exp Ther 2020; 373:204-212. [PMID: 32156758 DOI: 10.1124/jpet.119.263657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the progress in the development of novel treatment modalities, a significant portion of patients with psoriasis remains undertreated relative to the severity of their disease. Recent evidence points to targeting the glucose transporter 1 and sugar metabolism as a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. In this review, we discuss glycoconjugation, an approach that facilitates the pharmacokinetics of cytotoxic molecules and ensures their preferential influx through glucose transporters. We propose pathways of glycoconjugate synthesis to increase effectiveness, cellular selectivity, and tolerability of widely used antipsoriatic drugs. The presented approach exploiting the heightened glucose requirement of proliferating keratinocytes bears the potential to revolutionize the management of psoriasis. SIGNIFICANCE STATEMENT: Recent findings concerning the fundamental role of enhanced glucose metabolism and glucose transporter 1 overexpression in the pathogenesis of psoriasis brought to light approaches that proved successful in cancer treatment. Substantial advances in the emerging field of glycoconjugation highlight the rationale for the development of glucose-conjugated antipsoriatic drugs to increase their effectiveness, cellular selectivity, and tolerability. The presented approach offers a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| | - Marta Woźniak
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| | - Monika Krawczyk
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| | - Wiesław Szeja
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| | - Siddarth Agrawal
- Department of Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland (S.M., M.W., S.A.); Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland (S.A.); and Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry (M.K., G.P.-G., W.S.) and Biotechnology Centre (M.K., G.P.-G., W.S.), Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
60
|
Quan L, Lin Z, Lin Y, Wei Y, Lei L, Li Y, Tan G, Xiao M, Wu T. Glucose-modification of cisplatin to facilitate cellular uptake, mitigate toxicity to normal cells, and improve anti-cancer effect in cancer cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
Maji M, Karmakar S, Ruturaj, Gupta A, Mukherjee A. Oxamusplatin: a cytotoxic Pt(ii) complex of a nitrogen mustard with resistance to thiol based sequestration displays enhanced selectivity towards cancer. Dalton Trans 2020; 49:2547-2558. [PMID: 32022814 PMCID: PMC7174022 DOI: 10.1039/c9dt04269e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pt(ii) drugs and nitrogen mustards show severe side effects, poor tumour selectivity and face growing resistance by cancer cells due to sequestration by thiol-containing molecules (viz. glutathione (GSH) and copper ATPases like ATP7A/7B). ATP7A and ATP7B-sequestered Pt(ii) complexes show dose inefficacy and resistance. The incorporation of bulky ligands and chelating leaving groups may prevent deactivation by thiols. In this work, we have synthesised four new Pt(ii) complexes (3-6) of two carrier ligands, bis(2-hydroxyethyl)pyridylmethylamine (L1) and bis(2-chloroethyl)pyridylmethylamine (L2) with oxalato and cyclobutanedicarboxylato leaving groups. Among these four new complexes, the Pt(ii) complex of L2 with the oxalato leaving group (5, termed "oxamusplatin") is cytotoxic. Oxamusplatin is more resistant than cisplatin or oxaliplatin towards hydrolysis, thiol binding and sequestration by ATP7B. It targets cellular DNA and is capable of disrupting the microtubule network in the cytoskeleton. Oxamusplatin demonstrates better selectivity than oxaliplatin towards cancerous cells. It is ca. 4-10 times more cytotoxic towards metastatic prostate carcinoma (DU-145, IC50 = 21 ± 1 μM) and ca. 10-24 times more cytotoxic towards breast adenocarcinoma (MCF-7, IC50 = 8.1 ± 0.8 μM) compared to the three noncancerous cells investigated.
Collapse
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Subhendu Karmakar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
62
|
Li Y, Hong W, Zhang H, Zhang TT, Chen Z, Yuan S, Peng P, Xiao M, Xu L. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J Control Release 2020; 317:232-245. [DOI: 10.1016/j.jconrel.2019.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
|
63
|
|
64
|
Demontoux L, Derangère V, Pilot T, Thinselin C, Chevriaux A, Chalmin F, Bouyer F, Ghiringhelli F, Rébé C. Hypotonic stress enhances colon cancer cell death induced by platinum derivatives and immunologically improves antitumor efficacy of intraperitoneal chemotherapy. Int J Cancer 2019; 145:3101-3111. [PMID: 31344262 DOI: 10.1002/ijc.32590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is a highly metastatic disease that could invade various distal organs and also the peritoneal cavity leading to peritoneal carcinomatosis. This is a terminal condition with poor prognosis and only palliative treatments such as cytoreductive surgery and intraperitoneal chemotherapy are proposed to some patients. However, clinicians use different parameters of treatments without any consensus. Here we decided to evaluate the effect of osmolarity in the efficacy of this procedure to kill colon cancer cells. We first show that a short exposure of platinum derivatives in hypotonic conditions is more efficient to decrease cell viability of human and murine colon cancer cells in vitro as compared to isotonic conditions. This is related to more important incorporation of platinum and the capacity of hypotonic stress to induce the copper transporter CTR1 oligomerization. Oxaliplatin in hypotonic conditions induces caspase-dependent cell death of colon cancer cells. Moreover, hypotonic conditions also modulate the capacity of oxaliplatin and cisplatin (but not carboplatin) to induce immunogenic cell death (ICD). In vivo, oxaliplatin in hypotonic conditions increases CD8+ T cell tumor infiltration and activation. Finally, in a murine peritoneal carcinomatosis model, oxaliplatin in hypotonic conditions is the only tested protocol which is able to slow down the appearance of tumor nodules and increase mice survival, while showing no effect in CD8+ T cells depleted mice or in immunodeficient mice. Altogether, our study provides new information both in vitro and in a preclinical model of peritoneal carcinomatosis, which highlights the importance of hypoosmolarity in intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Lucie Demontoux
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | - Valentin Derangère
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Thomas Pilot
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | | | - Angélique Chevriaux
- INSERM LNC-UMR1231, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Fanny Chalmin
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France
| | | | - François Ghiringhelli
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | - Cédric Rébé
- INSERM LNC-UMR1231, Dijon, France.,University of Bourgogne Franche-Comté, Dijon, France.,Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
65
|
Zhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv 2019; 26:328-342. [PMID: 30905189 PMCID: PMC6442206 DOI: 10.1080/10717544.2019.1582730] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Efficient cellular delivery of biologically active molecules is one of the key factors that affect the discovery and development of novel drugs. The plasma membrane is the first barrier that prevents direct translocation of chemic entities, and thus obstructs their efficient intracellular delivery. Generally, hydrophilic small molecule drugs are poor permeability that reduce bioavailability and thus limit the clinic application. The cellular uptake of macromolecules and drug carriers is very inefficient without external assistance. Therefore, it is desirable to develop potent delivery systems for achieving effective intracellular delivery of chemic entities. Apart from of the types of delivery strategies, the composition of the cell membrane is critical for delivery efficiency due to the fact that cellular uptake is affected by the interaction between the chemical entity and the plasma membrane. In this review, we aimed to develop a profound understanding of the interactions between delivery systems and components of the plasma membrane. For the purpose, we attempt to present a broad overview of what delivery systems can be used to enhance the intracellular delivery of poorly permeable chemic entities, and how various delivery strategies are applied according to the components of plasma membrane.
Collapse
Affiliation(s)
- Renshuai Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Fandong Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Pengwei Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Guojun Pan
- School of Life Sciences, Taishan Medical University, Tai’an, P.R. China
| |
Collapse
|
66
|
Lamač M, Horáček M, Červenková Šťastná L, Karban J, Sommerová L, Skoupilová H, Hrstka R, Pinkas J. Harmless glucose‐modified ruthenium complexes suppressing cell migration of highly invasive cancer cell lines. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Lamač
- Academy of Sciences of the Czech RepublicJ. Heyrovský Institute of Physical Chemistry v.v.i., Dolejškova 2155/3, 182 23 Prague Czech Republic
| | - Michal Horáček
- Academy of Sciences of the Czech RepublicJ. Heyrovský Institute of Physical Chemistry v.v.i., Dolejškova 2155/3, 182 23 Prague Czech Republic
| | - Lucie Červenková Šťastná
- Academy of Sciences of the Czech RepublicInstitute of Chemical Process Fundamentals v.v.i., Rozvojová 135, 165 02 Prague Czech Republic
| | - Jindřich Karban
- Academy of Sciences of the Czech RepublicInstitute of Chemical Process Fundamentals v.v.i., Rozvojová 135, 165 02 Prague Czech Republic
| | - Lucia Sommerová
- Regional Centre for Applied and Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 Brno Czech Republic
| | - Hana Skoupilová
- Regional Centre for Applied and Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 Brno Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied and Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 Brno Czech Republic
| | - Jiří Pinkas
- Academy of Sciences of the Czech RepublicJ. Heyrovský Institute of Physical Chemistry v.v.i., Dolejškova 2155/3, 182 23 Prague Czech Republic
| |
Collapse
|
67
|
Biancalana L, Gruchała M, Batchelor LK, Błauż A, Monti A, Pampaloni G, Rychlik B, Dyson PJ, Marchetti F. Conjugating Biotin to Ruthenium(II) Arene Units via Phosphine Ligand Functionalization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Martyna Gruchała
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Błauż
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Andrea Monti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Błażej Rychlik
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
68
|
Xue X, Qian C, Fang H, Liu H, Yuan H, Guo Z, Bai Y, He W. Photoactivated Lysosomal Escape of a Monofunctional Pt
II
Complex Pt‐BDPA for Nucleus Access. Angew Chem Int Ed Engl 2019; 58:12661-12666. [DOI: 10.1002/anie.201906203] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xuling Xue
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Chenggen Qian
- School of PharmacyChina Pharmaceutical University Jiangsu, Nanjing 210009 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Hong‐Ke Liu
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| |
Collapse
|
69
|
Yao H, Xu Z, Li C, Tse MK, Tong Z, Zhu G. Synthesis and Cytotoxic Study of a Platinum(IV) Anticancer Prodrug with Selectivity toward Luteinizing Hormone-Releasing Hormone (LHRH) Receptor-Positive Cancer Cells. Inorg Chem 2019; 58:11076-11084. [PMID: 31393117 DOI: 10.1021/acs.inorgchem.9b01583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platinum drugs including cisplatin are widely used in clinics to treat various types of cancer. However, the lack of cancer-cell selectivity is one of the major problems that lead to side effects in normal tissues. Luteinizing hormone-releasing hormone (LHRH) receptors are overexpressed in many types of cancer cells but rarely presented in normal cells, making LHRH receptor a good candidate for cancer targeting. In this study, we report the synthesis and cytotoxic study of a novel platinum(IV) anticancer prodrug functionalized with LHRH peptide. This LHRH-platinum(IV) conjugate is highly soluble in water and quite stable in a PBS buffer. Cytotoxic study reveals that the prodrug selectively targets LHRH receptor-positive cancer cell lines with the cytotoxicities 5-8 times higher than those in LHRH receptor-negative cell lines. In addition, the introduction of LHRH peptide enhances the cellular accumulation in a manner of receptor-mediated endocytosis. Moreover, the LHRH-platinum(IV) prodrug is proved to kill cancer cells by binding to the genomic DNA, inducing apoptosis, and arresting the cell cycle at the G2/M phase. In summary, we report a novel LHRH-platinum(IV) anticancer prodrug having largely improved selectivity toward LHRH receptor-positive cancer cells, relative to cisplatin.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Zoufeng Xu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Zixuan Tong
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| |
Collapse
|
70
|
Xue X, Qian C, Fang H, Liu H, Yuan H, Guo Z, Bai Y, He W. Photoactivated Lysosomal Escape of a Monofunctional Pt
II
Complex Pt‐BDPA for Nucleus Access. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuling Xue
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Chenggen Qian
- School of PharmacyChina Pharmaceutical University Jiangsu, Nanjing 210009 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Hong‐Ke Liu
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| |
Collapse
|
71
|
Glenister A, Simone MI, Hambley TW. A Warburg effect targeting vector designed to increase the uptake of compounds by cancer cells demonstrates glucose and hypoxia dependent uptake. PLoS One 2019; 14:e0217712. [PMID: 31306426 PMCID: PMC6629077 DOI: 10.1371/journal.pone.0217712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugation to target the Warburg effect provides the potential to enhance selective uptake of anticancer or imaging agents by cancer cells. A Warburg effect targeting group, rationally designed to facilitate uptake by glucose transporters and promote cellular accumulation due to phosphorylation by hexokinase (HK), has been synthesised. This targeting group, the C2 modified glucose analogue 2-(2-[2-(2-aminoethoxy)ethoxy]ethoxy)-D-glucose, has been conjugated to the fluorophore nitrobenzoxadiazole to evaluate its effect on uptake and accumulation in cancer cells. The targeting vector has demonstrated inhibition of glucose phosphorylation by HK, indicating its interaction with the enzyme and thereby confirming the potential to facilitate an intracellular trapping mechanism for compounds it is conjugated with. The cellular uptake of the fluorescent analogue is dependent on the glucose concentration and is so to a greater extent than is that of the widely used fluorescent glucose analogue, 2-NBDG. It also demonstrates selective uptake in the hypoxic regions of 3D spheroid tumour models whereas 2-NBDG is distributed primarily through the normoxic regions of the spheroid. The increased selectivity is consistent with the blocking of alternative uptake pathways.
Collapse
Affiliation(s)
- Alexandra Glenister
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
| | - Michela I. Simone
- Discipline of Chemistry, Priority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Trevor W. Hambley
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
72
|
Zhang P, Ma J, Zhang Q, Jian S, Sun X, Liu B, Nie L, Liu M, Liang S, Zeng Y, Liu Z. Monosaccharide Analogues of Anticancer Peptide R-Lycosin-I: Role of Monosaccharide Conjugation in Complexation and the Potential of Lung Cancer Targeting and Therapy. J Med Chem 2019; 62:7857-7873. [DOI: 10.1021/acs.jmedchem.9b00634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
73
|
Hu D, Yang C, Lok C, Xing F, Lee P, Fung YME, Jiang H, Che C. An Antitumor Bis(N‐Heterocyclic Carbene)Platinum(II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chen Yang
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| | - Chun‐Nam Lok
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Fangrong Xing
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Pui‐Yan Lee
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Haibo Jiang
- School of Molecular SciencesThe University of Western Australia Perth Western Australia Australia
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| |
Collapse
|
74
|
Hu D, Yang C, Lok CN, Xing F, Lee PY, Fung YME, Jiang H, Che CM. An Antitumor Bis(N-Heterocyclic Carbene)Platinum(II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew Chem Int Ed Engl 2019; 58:10914-10918. [PMID: 31165553 DOI: 10.1002/anie.201904131] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Indexed: 12/22/2022]
Abstract
New anticancer platinum(II) compounds with distinctive modes of action are appealing alternatives to combat the drug resistance and improve the efficacy of clinically used platinum chemotherapy. Herein, we describe a rare example of an antitumor PtII complex targeting a tumor-associated protein, rather than DNA, under cellular conditions. Complex [(bis-NHC)Pt(bt)]PF6 (1 a; Hbt=1-(3-hydroxybenzo[b]thiophen-2-yl)ethanone) overcomes cisplatin resistance in cancer cells and displays significant tumor growth inhibition in mice with higher tolerable doses compared to cisplatin. The cellular Pt species shows little association with DNA, and localizes in the cytoplasm as revealed by nanoscale secondary ion mass spectrometry. An unbiased thermal proteome profiling experiment identified asparagine synthetase (ASNS) as a molecular target of 1 a. Accordingly, 1 a treatment reduced the cellular asparagine levels and inhibited cancer cell proliferation, which could be reversed by asparagine supplementation. A bis-NHC-ligated Pt species generated from the hydrolysis of 1 a forms adducts with thiols and appears to target an active-site cysteine of ASNS.
Collapse
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fangrong Xing
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haibo Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
75
|
Wang Z, Deng Z, Zhu G. Emerging platinum(iv) prodrugs to combat cisplatin resistance: from isolated cancer cells to tumor microenvironment. Dalton Trans 2019; 48:2536-2544. [PMID: 30633263 DOI: 10.1039/c8dt03923b] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cisplatin plays a pivotal role in the treatment of various malignant tumors, but its therapeutic effects are hampered by drug resistance. Pt(iv) prodrugs represent a promising class of "non-conventional" platinum-based anticancer agents to circumvent drug resistance, which can be easily functionalized with other bioactive ligands. One strategy is to build "dual-action" and "multi-action" Pt(iv) prodrugs that not only damage DNA but also perturb other pathways related to cisplatin resistance to achieve combinatorial therapeutic effects. Another way to overcome the shortcomings of cisplatin is to deliver Pt(iv) prodrugs via nanocarriers. Most studies in this area have focused on designing prodrugs based on the mechanism of cisplatin resistance within isolated cancer cells. Recent findings, however, reveal that the tumor microenvironment also plays important roles in the development of cisplatin resistance. This perspective focuses on various types of novel cisplatin-based Pt(iv) complexes, including Pt-loaded nanostructures, to overcome cisplatin resistance. Special attention will be devoted to complexes that target the tumor microenvironment, which is a new area for the development of effective Pt(iv) prodrugs. Our summary and outlook may have a hope to help researchers in the field generate new ideas and strategies to develop more potent Pt(iv) prodrugs to combat cisplatin resistance.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.
| | | | | |
Collapse
|
76
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
77
|
Transporter and protease mediated delivery of platinum complexes for precision oncology. J Biol Inorg Chem 2019; 24:457-466. [DOI: 10.1007/s00775-019-01660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023]
|
78
|
Miodragović Đ, Merlino A, Swindell EP, Bogachkov A, Ahn RW, Abuhadba S, Ferraro G, Marzo T, Mazar AP, Messori L, O’Halloran TV. Arsenoplatin-1 Is a Dual Pharmacophore Anticancer Agent. J Am Chem Soc 2019; 141:6453-6457. [PMID: 30943017 PMCID: PMC6830503 DOI: 10.1021/jacs.8b13681] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arsenoplatins are adducts of two chemically important anticancer drugs, cisplatin and arsenic trioxide, that have a Pt(II) bond to an As(III) hydroxide center. Screens of the NCI-60 human tumor cell lines reveal that arsenoplatin-1 (AP-1), [Pt(μ-NHC(CH3)O)2ClAs(OH)2], the first representative of this novel class of anticancer agents, displays a superior activity profile relative to the parent drugs As2O3 or cisplatin in a majority of cancer cell lines tested. These activity profiles are important because the success of arsenic trioxide in blood cancers (such as APL) has not been seen in solid tumors due to the rapid clearance of arsenous acid from the body. To understand the biological chemistry of these compounds, we evaluated interactions of AP-1 with the two important classes of biomolecules-proteins and DNA. The first structural studies of AP-1 bound to model proteins reveal that platinum(II) binds the Nε of His in a manner that preserves the Pt-As bond. We find that AP-1 readily enters cells and binds to DNA with an intact Pt-As bond (Pt:As ratio of 1). At longer incubation times, however, the Pt:As ratio in DNA samples increases, suggesting that the Pt-As bond breaks and releases the As(OH)2 moiety. We conclude that arsenoplatin-1 has the potential to deliver both Pt and As species to a variety of hematological and solid cancers.
Collapse
Affiliation(s)
- Đenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United
States
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte
Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Elden P. Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Richard W. Ahn
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| | - Sara Abuhadba
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United
States
| | - Giarita Ferraro
- Department of Chemistry “Ugo Schiff”, Università degli Studi Firenze, via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Andrew P. Mazar
- Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston,
Illinois 60208, United States
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, Università degli Studi Firenze, via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois
60208, United States
| |
Collapse
|
79
|
Wang H, Yang X, Zhao C, Wang PG, Wang X. Glucose-conjugated platinum(IV) complexes as tumor-targeting agents: design, synthesis and biological evaluation. Bioorg Med Chem 2019; 27:1639-1645. [PMID: 30852077 DOI: 10.1016/j.bmc.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023]
Abstract
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 μM) and oxaliplatin (8.34 μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.
Collapse
Affiliation(s)
- Haifeng Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiande Yang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Caili Zhao
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Peng George Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
80
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
81
|
Fu Q, Zhao Y, Yang Z, Yue Q, Xiao W, Chen Y, Yang Y, Guo L, Wu Y. Liposomes actively recognizing the glucose transporter GLUT1and integrin αvβ3for dual-targeting of glioma. Arch Pharm (Weinheim) 2019; 352:e1800219. [PMID: 30609116 DOI: 10.1002/ardp.201800219] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Qiuyi Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Zhongzhen Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Qiming Yue
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Wenjiao Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yang Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|
82
|
Annunziata A, Cucciolito ME, Esposito R, Imbimbo P, Petruk G, Ferraro G, Pinto V, Tuzi A, Monti DM, Merlino A, Ruffo F. A highly efficient and selective antitumor agent based on a glucoconjugated carbene platinum(ii) complex. Dalton Trans 2019; 48:7794-7800. [DOI: 10.1039/c9dt01614g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Pt(ii) complex with a glucosylated carbene shows very high in vitro cytotoxicity and selectivity toward malignant cells.
Collapse
|
83
|
Zhao Y, Wu Y, Xue B, Jin X, Zhu X. Novel target NIR-fluorescent polymer for living tumor cell imaging. Polym Chem 2019. [DOI: 10.1039/c8py01442f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel NIR-diblock copolymer, PMMA-b-P(GATH-co-BOD), with efficient cancer targeting abilities and excellent biocompatibility was synthesized in this study.
Collapse
Affiliation(s)
- Yanjie Zhao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yan Wu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bai Xue
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
84
|
Zhao Z, Zhang X, Li CE, Chen T. Designing luminescent ruthenium prodrug for precise cancer therapy and rapid clinical diagnosis. Biomaterials 2018; 192:579-589. [PMID: 30551086 DOI: 10.1016/j.biomaterials.2018.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
The effective design of a targeted drug delivery system could improve the therapeutic efficacy of anticancer drugs by reducing their undesirable adsorption and toxic side effects. Here, an RGD-peptide functionalized and bioresponsive ruthenium prodrug (Ru-RGD) was designed for both cancer therapy and clinical diagnosis. This prodrug can be selectively delivered to cervical tumor sites to enhance theranostic efficacy. The benzimidazole-based ligand of the complex is susceptible to acidic conditions so, after reaching the tumor microenvironment, ligand substitution occurs and the therapeutic drug is released. The deep-red emissions produced by both one-photon and two-photon excitation increases the potential of Ru-RGD for use in the deep tissue imaging of 3D tumor spheroids. The specific accumulation of the Ru prodrug in tumor sites allows for precise tumor diagnosis and therapy in vivo. Luminescence staining of 38 clinical patient specimens shows that Ru-RGD exhibits differences in binding capability between cervical cancer and normal tissue, with a sensitivity of 95% and a specificity of 100%. This study thus provides an approach for the effective design and application of targeted metal complexes in cancer therapy and clinical diagnosis.
Collapse
Affiliation(s)
- Zhennan Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiang Zhang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang-E Li
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
85
|
Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR. Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
86
|
Itoh T, Tamura K, Ueda H, Tanaka T, Sato K, Kuroda R, Aoki S. Design and synthesis of boron containing monosaccharides by the hydroboration of d-glucal for use in boron neutron capture therapy (BNCT). Bioorg Med Chem 2018; 26:5922-5933. [PMID: 30420329 DOI: 10.1016/j.bmc.2018.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023]
Abstract
Boron neutron capture therapy (BNCT) is one of the radiotherapies that involves the use of boron-containing compounds for the treatment of cancer. Boron-10 (10B) containing compounds that can accumulate in tumor tissue are expected to be suitable agents for BNCT. We report herein on the design and synthesis of some new BNCT agents based on a d-glucose scaffold, since glycoconjugation has been recognized as a useful strategy for the specific targeting of tumors. To introduce a boryl group into a d-glucose scaffold, we focused on the hydroboration of d-glucal derivatives, which have a double bond between the C1 and C2 positions. It was hypothesized that a C-B bond could be introduced at the C2 position of d-glucose by the hydroboration of d-glucal derivatives and that the products could be stabilized by conversion to the corresponding boronic acid ester. To test this hypothesis, we prepared some 2-boryl-1,2-dideoxy-d-glucose derivatives as boron carriers and evaluated their cytotoxicity and cellular uptake activity to cancer cells, especially under hypoxic conditions.
Collapse
Affiliation(s)
- Taiki Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kei Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Ueda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kyouhei Sato
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
87
|
Lameijer LN, le Roy J, van der Vorm S, Bonnet S. Synthesis of O-1- O-6 Substituted Positional Isomers of d-Glucose-Thioether Ligands and Their Ruthenium Polypyridyl Conjugates. J Org Chem 2018; 83:12985-12997. [PMID: 30272448 PMCID: PMC6218880 DOI: 10.1021/acs.joc.8b01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
A library of positional isomers of d-glucose (O-1–O-6) as ligands and their 11
light-active ruthenium conjugates has been synthesized. A protecting
group strategy without the necessity of using palladium on carbon
for the modification for the 2-O and 4-O position allows for the incorporation of sulfur donor atoms as ligands
for transition metal complexes.
Collapse
Affiliation(s)
- Lucien N Lameijer
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Julien le Roy
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Stefan van der Vorm
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Leiden University, Gorlaeus Laboratories , P.O. Box 9502, Leiden 2300 RA , The Netherlands
| |
Collapse
|
88
|
Kanamori T, Matsuyama A, Naito H, Tsuga Y, Ozako Y, Ogura SI, Okazaki S, Yuasa H. Water-Soluble Glucosyl Pyrene Photosensitizers: An Intramolecularly Synthesized 2-C-Glucoside and an O-Glucoside. J Org Chem 2018; 83:13765-13775. [DOI: 10.1021/acs.joc.8b02066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Akira Matsuyama
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Hidenori Naito
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Yuki Tsuga
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Yoshiki Ozako
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Shun-ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Shigetoshi Okazaki
- Department of Medical Spectroscopy, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| |
Collapse
|
89
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
90
|
Ma J, Liu H, Xi Z, Hou J, Li Y, Niu J, Liu T, Bi S, Wang X, Wang C, Wang J, Xie S, Wang PG. Protected and De-protected Platinum(IV) Glycoconjugates With GLUT1 and OCT2-Mediated Selective Cancer Targeting: Demonstrated Enhanced Transporter-Mediated Cytotoxic Properties in vitro and in vivo. Front Chem 2018; 6:386. [PMID: 30298127 PMCID: PMC6160541 DOI: 10.3389/fchem.2018.00386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/09/2018] [Indexed: 01/24/2023] Open
Abstract
Physiological characteristics of human malignancies are increased glycolysis and overexpression of glucose transporters (GLUTs). 18Flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers based on the Warburg effect. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, protected, and de-protected glucose, mannose, galactose, rhamnose, maltose, and lactose-conjugated platinum(IV) complexes were designed and synthesized. The suggested potential of facilitated intravenous to oral switching of glycosylated platinum(IV) prodrugs with cancer-targeting properties were evaluated for glucose transporter 1 (GLUT1) and organic cation transporter 2 (OCT2)-mediated selective properties in vitro and in vivo. The cytotoxicity of 2d, 5d, and 6d were ~23-fold greater than that of the positive controls cisplatin, oxaliplatin, and satraplatin, respectively. The leading compound 6d, the IC50 of which with the GLUT1 inhibitor 4,6-oethylidene-α-D-glucose (EDG) and phloretin (31.80 and 38.71 μM) are 36- and 44-folds higher, respectively, than the 48 h IC50 (0.89 μM), is superior to the reported 5-8, exhibiting enhanced cancer targeting. The compounds also showed reduced toxicity to normal cells (293T IC50 = 12.06 μM and 3T3 cells IC50 > 100 μM) and exhibited no cross-resistance to cisplatin. Moreover, the encouraging selectivity of 6d for MCF-7 cells in vivo indicated that the pyranoside performs an important function in cancer targeting.
Collapse
Affiliation(s)
- Jing Ma
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Hanfang Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Zhuoqing Xi
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Yingguang Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Jie Niu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Shuning Bi
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Xin Wang
- Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, Nankai University, Tianjin, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Jiajia Wang
- Henan University Joint National Laboratory for Antibody Drug Engineering, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Songqiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, China
| | - Peng G Wang
- Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
91
|
Bertrand B, Williams MRM, Bochmann M. Gold(III) Complexes for Antitumor Applications: An Overview. Chemistry 2018; 24:11840-11851. [DOI: 10.1002/chem.201800981] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Benoît Bertrand
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
- Sorbonne UniversitésUPMC Univ Paris 06CNRSInstitut Parisien de Chimie Moléculaire (IPCM) 4 Place Jussieu 75005 Paris France
| | | | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
92
|
Yuan SS, Li ML, Chen JS, Zhou L, Zhou W. Application of Mono- and Disaccharides in Drug Targeting and Efficacy. ChemMedChem 2018; 13:764-778. [DOI: 10.1002/cmdc.201700762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Si S. Yuan
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Mao L. Li
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Jian S. Chen
- College of Horticulture; South China Agricultural University; 483 Wushan Road Guangzhou 510642 China
| | - Li Zhou
- College of Science; Hunan Agricultural University; Furong Road Changsha 410128 China
| | - Wen Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| |
Collapse
|
93
|
Bertrand B, O'Connell MA, Waller ZAE, Bochmann M. A Gold(III) Pincer Ligand Scaffold for the Synthesis of Binuclear and Bioconjugated Complexes: Synthesis and Anticancer Potential. Chemistry 2018; 24:3613-3622. [PMID: 29334159 DOI: 10.1002/chem.201705902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/14/2022]
Abstract
Cyclometalated (C^N^C)AuIII complexes bearing functionalized N-heterocyclic carbene (NHC) ligands provide a high-yielding, modular route to bioconjugated and binuclear complexes. This methodology has been applied to the synthesis of bioconjugated complexes presenting biotin and 17α-ethynylestradiol vectors, as well as to the synthesis of bimetallic AuIII /AuI complexes. The in vitro antiproliferative activities of these compounds against various cancer cells lines depend on the linker length, with the longer linker being the most potent. The estradiol conjugate AuC6 Estra proved to be more toxic against the estrogen receptor positive (ER+) cancer cells than against the ER- cancer cells and non-cancer cells. The bimetallic complex AuC6 Au was more selective for breast cancer cells with respect to a healthy cell standard than the monometallic complex AuNHC. The metal uptake study on cells expressing or not biotin and estrogen receptors revealed an improved and targeted delivery of gold for both the bioconjugated complexes AuC6 Biot and AuC6 Estra compared to the non-vectorised analogue AuNHC. The investigations of the interaction of the bioconjugates and bimetallic complexes with human telomeric G-quadruplex DNA using FRET-melting techniques revealed a reduced ability to stabilize this DNA structure with respect to the non-vectorised analogue AuNHC.
Collapse
Affiliation(s)
- Benoît Bertrand
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Institut Parisien de Chimie Moléculaire (IPCM), UPMC Univ Paris 06, CNRS, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
| | | | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
94
|
Ramu V, Gautam S, Garai A, Kondaiah P, Chakravarty AR. Glucose-Appended Platinum(II)-BODIPY Conjugates for Targeted Photodynamic Therapy in Red Light. Inorg Chem 2018; 57:1717-1726. [PMID: 29400953 DOI: 10.1021/acs.inorgchem.7b02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum(II) complexes [Pt(L1)(R-BODIPY)]Cl (1) and [Pt(L2)(R-BODIPY)]Cl (2), where R-BODIPY is 8-(4-ethynylphenyl)-distyryl-4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3, L1 is 4'-phenyl-2,2':6',2″-terpyridine, and L2 is (2,2':6',2″-terpyridin-4'-oxy)ethyl-β-d-glucopyranoside, were synthesized and characterized, and their photocytotoxicity was studied. The phenylacetylide complex [Pt(L1)(C≡CPh)]Cl (3) was prepared and used as a control. Complexes 1 and 2 showed near-IR absorption bands at 713 nm (ε = 3.47 × 104 M-1 cm-1) and 715 nm (3.2 × 104 M-1 cm-1) in 10% dimethyl sulfoxide (DMSO)-Dulbecco's Modified Eagle's Medium (DMEM) (pH 7.2). The BODIPY complexes are emissive in 10% DMSO-DMEM at pH 7.2 with λem (λex, Φf) = 822 nm (710 nm, 0.022) for complex 1 and λem (λex, Φf) = 825 nm (710 nm, 0.026) for complex 2. They generated singlet oxygen (1O2) in red light as evidenced from 1,3-diphenylisobenzofuran (DPBF) titration experiments. The singlet oxygen quantum yield (ΦΔ) values for 1 and 2 were ∼0.6 signifying their photosensitizing ability. They were remarkably photodynamic therapy (PDT) active in red light showing significant red light-induced cytotoxicity in cervical HeLa, lung cancer A549, and breast cancer MCF-7 cells (IC50: 2.3-24.7 μM in light) with negligible dark toxicity (IC50 > 100 μM). A significant enhancement in cellular uptake was observed for 2 having glucose-appended terpyridine ligand compared to 1. The confocal microscopy showed significant mitochondrial localization of the complexes as evidenced from the JC-1 assay. The complexes released the photoactive R-BODIPY ligand upon red light-irradiation as evidenced from the mass and 1H NMR spectral studies. Complex 2 is remarkable in satisfying the essential requirements of targeted PDT in red light.
Collapse
Affiliation(s)
- Vanitha Ramu
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Srishti Gautam
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
95
|
Synthesis and spectroscopic/DFT structural characterization of coordination compounds of Nb(V) and Ti(IV) with bioactive carboxylic acids. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Cucciolito ME, De Luca Bossa F, Esposito R, Ferraro G, Iadonisi A, Petruk G, D'Elia L, Romanetti C, Traboni S, Tuzi A, Monti DM, Merlino A, Ruffo F. C-Glycosylation in platinum-based agents: a viable strategy to improve cytotoxicity and selectivity. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00664d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The glycosylation of five-coordinate Pt(ii) compounds through a Pt–C linkage can be a very effective strategy for attacking cancer cells, while preserving the survival of the healthy ones.
Collapse
|
97
|
Oliveri V, Bentivegna F, Caputo L, Quintieri L, Viale M, Maric I, Lentini G, Vecchio G. Positional isomers of mannose–quinoline conjugates and their copper complexes: exploring the biological activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00993g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannoconjugates show significant antibacterial activity. A regioisomer shows antiproliferative activity with copper(ii) ions.
Collapse
Affiliation(s)
| | | | - Leonardo Caputo
- Istituto di Scienze delle Produzioni Alimentari
- (CNR-ISPA)
- Bari
- Italy
| | - Laura Quintieri
- Istituto di Scienze delle Produzioni Alimentari
- (CNR-ISPA)
- Bari
- Italy
| | - Maurizio Viale
- IRCCS A.O.U. San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Irena Maric
- IRCCS A.O.U. San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Giovanni Lentini
- Dipartimento di Farmacia – Scienze del Farmaco
- Università degli Studi di Bari ‘Aldo Moro’
- Bari
- Italy
| | | |
Collapse
|
98
|
El Hilali M, Reux B, Debiton E, Leal F, Galmier MJ, Vivier M, Chezal JM, Miot-Noirault E, Coudert P, Weber V. Linker structure-activity relationships in fluorodeoxyglucose chlorambucil conjugates for tumor-targeted chemotherapy. Bioorg Med Chem 2017; 25:5692-5708. [PMID: 28927903 DOI: 10.1016/j.bmc.2017.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 01/18/2023]
Abstract
Nitrogen mustards, such as chlorambucil (CLB), can cause adverse side-effects due to ubiquitous distribution in non-target organs. To minimize this toxicity, strategies of tumor-targeting drug delivery have been developed, where a cytotoxic warhead is linked to a tumor-cell-specific small ligand. Malignant cells exhibit marked glucose avidity and an accelerated metabolism by aerobic glycolysis, known as the Warburg effect, and recognized as a hallmark of cancer. A targeting approach exploiting the Warburg effect by conjugation of CLB to 2-fluoro-2-deoxyglucose (FDG) was previously reported and identified two peracetylated glucoconjugates 2 and 3 with promising antitumor activities in vivo. These results prompted us to investigate the importance of the spacer in this tumor-targeting glucose-based conjugates. Here we report the chemical synthesis and an in vitro cytotoxicity evaluation, using a 5-member panel of human tumor cell lines and human fibroblasts, of 16 new CLB glucoconjugates in which the alkylating drug is attached to the C-1 position of FDG via different linkages. We studied the structure-activity relationships in the linker, and evidenced the positive impact of an aromatic linker on in vitro cytotoxicity: compound 51 proved to be the most active FDG-CLB glucoside, characterized by a bis-aromatic spacer tethered to CLB through an amide function.
Collapse
Affiliation(s)
- Mostafa El Hilali
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Bastien Reux
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Eric Debiton
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Fernand Leal
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Marie-Josephe Galmier
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Magali Vivier
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Pascal Coudert
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
99
|
Raza MK, Gautam S, Garai A, Mitra K, Kondaiah P, Chakravarty AR. Monofunctional BODIPY-Appended Imidazoplatin for Cellular Imaging and Mitochondria-Targeted Photocytotoxicity. Inorg Chem 2017; 56:11019-11029. [PMID: 28846407 DOI: 10.1021/acs.inorgchem.7b01346] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monofunctional platinum(II) complexes of formulation cis-[Pt(NH3)2(L)Cl](NO3), where L is an imidazole base conjugated to 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) with emissive (L1 in 1) and nonemissive (L2 in 2) moieties were prepared and characterized, and their singlet oxygen-mediated photoinduced cytotoxicity was studied. The 1-methylimidazole (1-MeIm) complex 3 was prepared as a control and for structural characterization by X-ray crystallography. Complexes 1 and 2 showed strong visible absorption bands at 500 nm (ε = 2.7 × 104 M-1 cm-1) and 540 nm (1.4 × 104 M-1 cm-1). Complex 1 is emissive with a band at 510 nm (ΦF = 0.09) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH 7.2). Singlet oxygen generation upon photoirradiation with visible light (400-700 nm) was evidenced from 1,3-diphenylisobenzofuran titration experiments showing significant photosensitizing ability of the BODIPY complexes. Both 1 and 2 were remarkably photocytotoxic in visible light (400-700 nm, 10 J cm-2) in skin keratinocyte HaCaT and breast cancer MCF-7 cells giving IC50 values in nanomolar concentration. The complexes were, however, essentially nontoxic to the cells in the dark (IC50 > 80 μM). Complex 2 having a diiodo-BODIPY unit is nonemissive but an efficient photosensitizer with high singlet oxygen generation ability in visible light (400-700 nm). Confocal microscopy using the emissive complex 1 showed significant mitochondrial localization of the complex. Cell death via apoptotic pathway was observed from the Annexin-V-FITC/PI assay. The formation of Pt-DNA adducts was evidenced from the binding experiments of the complexes 1 and 2 with 9-ethylguanine as a model nucleobase from 1H NMR and mass spectral studies.
Collapse
Affiliation(s)
- Md Kausar Raza
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Srishti Gautam
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
100
|
Xu Q, Luo J, Wu N, Zhang R, Shi D. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes. Int J Biol Macromol 2017; 106:379-386. [PMID: 28811203 DOI: 10.1016/j.ijbiomac.2017.08.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/06/2023]
Abstract
Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; The University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; The University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; The University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|