51
|
Sun H, Li X, Jin K, Lai X, Du J. Highly porous nitrogen-doped carbon superstructures derived from the intramolecular cyclization-induced crystallization-driven self-assembly of poly(amic acid). NANOSCALE ADVANCES 2022; 4:1422-1430. [PMID: 36133680 PMCID: PMC9418133 DOI: 10.1039/d1na00853f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 06/16/2023]
Abstract
Hierarchically porous carbon nanomaterials have shown significant potential in electrochemical energy storage due to the promoted charge and mass transfer. Herein, a facile template-free method is proposed to prepare nitrogen-doped carbon superstructures (N-CSs) with multi-level pores by pyrolysis of polymeric precursors derived from the intramolecular cyclization-induced crystallization-driven self-assembly (ICI-CDSA) of poly(amic acid) (PAA). The excellent thermal stability of PAA enables the N-CSs to inherit the hierarchical structure of the precursors during pyrolysis, which facilitates the formation of meso- and macropores while the decomposition of the precursors promotes the creation of micropores. Electrochemical tests demonstrate the ultrahigh surface-area-normalized capacitance (76.5 μF cm-2) of the N-CSs facilitated by the hierarchically porous structure, promoting the charge and mass transfer, as well as the high utilization of pyridinic and pyrrolic nitrogen (12.9%) to provide significant pseudocapacitance contribution up to 40.6%. Considering the diversity of monomers of PAA, this ICI-CDSA strategy could be extended to prepare carbon nanomaterials with various morphologies, pore structures and chemical compositions.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Kai Jin
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaoyong Lai
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
52
|
Sun M, Bian Z, Cui W, Zhao X, Dong S, Ke X, Zhou Y, Wang J. Pyrolyzing soft template-containing poly(ionic liquid) into hierarchical N-doped porous carbon for electroreduction of carbon dioxide. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
53
|
Li K, Zhang S, Zhang X, Liu S, Jiang H, Jiang T, Shen C, Yu Y, Chen W. Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO 2 Reduction. NANO LETTERS 2022; 22:1557-1565. [PMID: 35104146 DOI: 10.1021/acs.nanolett.1c04382] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrochemical reduction of CO2 to produce carbon-based fuels and chemicals possesses huge potentials to alleviate current environmental problems. However, it is confronted by great challenges in the design of active electrocatalysts with low overpotentials and high product selectivity. Here we report the atomic tuning of a single-Fe-atom catalyst with phosphorus (Fe-N/P-C) on commercial carbon black as a robust electrocatalyst for CO2 reduction. The Fe-N/P-C catalyst exhibits impressive performance in the electrochemical reduction of CO2 to CO, with a high Faradaic efficiency of 98% and a high mass-normalized turnover frequency of 508.8 h-1 at a low overpotential of 0.34 V. On the basis of ex-situ X-ray absorption spectroscopy measurements and DFT calculations, we reveal that the tuning of P in single-Fe-atom catalysts reduces the oxidation state of the Fe center and decreases the free-energy barrier of *CO intermediate formation, consequently maintaining the electrocatalytic activity and stability of single-Fe-atom catalysts.
Collapse
Affiliation(s)
- Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuli Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haosong Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunyue Shen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
54
|
Gong W, Zhang H, Yang L, Yang Y, Wang J, Liang H. Core@shell MOFs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
55
|
Li Z, Yang Y, Wei M. Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation. Catalysts 2021. [DOI: 10.3390/catal11121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Electrocatalytic Nitrogen Reduction Reaction (NRR) to ammonia is one of the most recent trends of research in heterogeneous catalysis for sustainability. The stark challenges posed by the NRR arise from many factors, beyond the strongly unfavored thermodynamics. The design of efficient heterogeneous electrocatalysts must rely on a suitable interplay of different components, so that the majority of research is focusing on development of nanohybrids or nanocomposites that synergistically harness the NRR sequence. Nanostructured carbon is one of the most versatile and powerful conductive supports that can be combined with metal species in an opportune manner, so as to guide the correct proceeding of the reaction and boost the catalytic activity.
Collapse
|
57
|
Yi J, Li Q, Chi S, Huang Y, Cao R. Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1384-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
59
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
60
|
Sun X, Tuo Y, Ye C, Chen C, Lu Q, Li G, Jiang P, Chen S, Zhu P, Ma M, Zhang J, Bitter JH, Wang D, Li Y. Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO 2 Electroreduction Reaction. Angew Chem Int Ed Engl 2021; 60:23614-23618. [PMID: 34463412 DOI: 10.1002/anie.202110433] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Electrochemical reduction of carbon dioxide (CO2 ) into chemicals and fuels has recently attracted much interest, but normally suffers from a high overpotential and low selectivity. In this work, single P atoms were introduced into a N-doped carbon supported single Fe atom catalyst (Fe-SAC/NPC) mainly in the form of P-C bonds for CO2 electroreduction to CO in an aqueous solution. This catalyst exhibited a CO Faradaic efficiency of ≈97 % at a low overpotential of 320 mV, and a Tafel slope of only 59 mV dec-1 , comparable to state-of-the-art gold catalysts. Experimental analysis combined with DFT calculations suggested that single P atom in high coordination shells (n≥3), in particular the third coordination shell of Fe center enhanced the electronic localization of Fe, which improved the stabilization of the key *COOH intermediate on Fe, leading to superior CO2 electrochemical reduction performance at low overpotentials.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongxiao Tuo
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Chen
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Qing Lu
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ming Ma
- Department of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jun Zhang
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
61
|
Sun X, Tuo Y, Ye C, Chen C, Lu Q, Li G, Jiang P, Chen S, Zhu P, Ma M, Zhang J, Bitter JH, Wang D, Li Y. Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO
2
Electroreduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaohui Sun
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yongxiao Tuo
- Department of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Chenliang Ye
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chen Chen
- Department of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Qing Lu
- Department of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Guanna Li
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shenghua Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Peng Zhu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ming Ma
- Department of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jun Zhang
- Department of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Johannes H. Bitter
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
62
|
Chen C, Yan X, Wu R, Wu Y, Zhu Q, Hou M, Zhang Z, Fan H, Ma J, Huang Y, Ma J, Sun X, Lin L, Liu S, Han B. Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO 2 reduction with high efficiency. Chem Sci 2021; 12:11914-11920. [PMID: 34659731 PMCID: PMC8442700 DOI: 10.1039/d1sc02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm-2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd-O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2 via an adsorption-electrolysis device.
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
63
|
Guo W, Liu S, Tan X, Wu R, Yan X, Chen C, Zhu Q, Zheng L, Ma J, Zhang J, Huang Y, Sun X, Han B. Highly Efficient CO
2
Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiwei Guo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab) Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China
| | - Jing Zhang
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab) Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Yuquan Road, ShijingshanDistrict Beijing 100049 China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing 101400 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| |
Collapse
|
64
|
Wu Y, Chen C, Yan X, Sun X, Zhu Q, Li P, Li Y, Liu S, Ma J, Huang Y, Han B. Boosting CO 2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021; 60:20803-20810. [PMID: 34272915 DOI: 10.1002/anie.202105263] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Guided by first-principles calculations, it was found that Cd single-atom catalysts (SACs) have excellent performance in activating CO2 , and the introduction of axial coordination structure to Cd SACs cannot only further decrease the free energy barrier of CO2 reduction, but also suppress the hydrogen evolution reaction (HER). Based on the above discovery, we designed and synthesized a novel Cd SAC that comprises an optimized CdN4 S1 moiety incorporated in a carbon matrix. It was shown that the catalyst exhibited outstanding performance in CO2 electroreduction to CO. The faradaic efficiency (FE) of CO could reach up to 99.7 % with a current density of 182.2 mA cm-2 in a H-type electrolysis cell, and the turnover frequency (TOF) value could achieve 73000 h-1 , which was much higher than that reported to date. This work shows a successful example of how to design highly efficient catalysts guided by theoretical calculations.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yiming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
65
|
Boosting Effect of Nitrogen and Phosphorous Co-doped Three-Dimensional Graphene Architecture: Highly Selective Electrocatalysts for Carbon Dioxide Electroreduction to Formate. Top Catal 2021. [DOI: 10.1007/s11244-021-01500-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Boosting CO
2
Electroreduction over a Cadmium Single‐Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
67
|
Guo W, Liu S, Tan X, Wu R, Yan X, Chen C, Zhu Q, Zheng L, Ma J, Zhang J, Huang Y, Sun X, Han B. Highly Efficient CO 2 Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angew Chem Int Ed Engl 2021; 60:21979-21987. [PMID: 34346160 DOI: 10.1002/anie.202108635] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Indexed: 11/09/2022]
Abstract
Using renewable electricity to drive CO2 electroreduction is an attractive way to achieve carbon-neutral energy cycle and produce value-added chemicals and fuels. As an important platform molecule and clean fuel, methanol requires 6-electron transfer in the process of CO2 reduction. Currently, CO2 electroreduction to methanol suffers from poor efficiency and low selectivity. Herein, we report the first work to design atomically dispersed Sn site anchored on defective CuO catalysts for CO2 electroreduction to methanol. It exhibits high methanol Faradaic efficiency (FE) of 88.6 % with a current density of 67.0 mA cm-2 and remarkable stability in a H-cell, which is the highest FE(methanol) with such high current density compared with the results reported to date. The atomic Sn site, adjacent oxygen vacancy and CuO support cooperate very well, leading to higher double-layer capacitance, larger CO2 adsorption capacity and lower interfacial charge transfer resistance. Operando experiments and density functional theory calculations demonstrate that the catalyst is beneficial for CO2 activation via decreasing the energy barrier of *COOH dissociation to form *CO. The obtained key intermediate *CO is then bound to the Cu species for further reduction, leading to high selectivity toward methanol.
Collapse
Affiliation(s)
- Weiwei Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, ShijingshanDistrict, Beijing, 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
68
|
Han SG, Ma DD, Zhu QL. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO 2 Reduction. SMALL METHODS 2021; 5:e2100102. [PMID: 34927867 DOI: 10.1002/smtd.202100102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) converting CO2 into value-added chemicals and fuels to realize carbon recycling is a solution to the problem of renewable energy shortage and environmental pollution. Among all the catalysts, the carbon-based single-atom catalysts (SACs) with isolated metal atoms immobilized on conductive carbon substrates have shown significant potential toward CO2 RR, which intrigues researchers to explore high-performance SACs for fuel and chemical production by CO2 RR. Especially, regulating the coordination structures of the metal centers and the microenvironments of the substrates in carbon-based SACs has emerged as an effective strategy for the tailoring of their CO2 RR catalytic performance. In this review, the current in situ/operando study techniques and the fundamental parameters for CO2 RR performance are first briefly presented. Furthermore, the recent advances in synthetic strategies which regulate the atomic structures of the carbon-based SACs, including heteroatom coordination, coordination numbers, diatomic metal centers, and the microenvironments of substrates are summarized. In particular, the structure-performance relationship of the SACs toward CO2 RR is highlighted. Finally, the inevitable challenges for SACs are outlined and further research directions toward CO2 RR are presented from the perspectives.
Collapse
Affiliation(s)
- Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
69
|
Chen K, Deng J, Zhao J, Liu X, Imhanria S, Wang W. Electrocatalytic Production of Tunable Syngas from CO 2 via a Metal-Free Porous Nitrogen-Doped Carbon. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Keyu Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jie Deng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xi Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sarah Imhanria
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
70
|
Chen C, Yan X, Wu Y, Liu S, Sun X, Zhu Q, Feng R, Wu T, Qian Q, Liu H, Zheng L, Zhang J, Han B. The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO 2 reduction. Chem Sci 2021; 12:5938-5943. [PMID: 35342541 PMCID: PMC8869928 DOI: 10.1039/d1sc00042j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Oxide-derived copper (OD-Cu) has been discovered to be an effective catalyst for the electroreduction of CO2 to C2+ products. The structure of OD-Cu and its surface species during the reaction process are interesting topics, which have not yet been clearly discussed. Herein, in situ surface-enhanced Raman spectroscopy (SERS), operando X-ray absorption spectroscopy (XAS), and 18O isotope labeling experiments were employed to investigate the surface species and structures of OD-Cu catalysts during CO2 electroreduction. It was found that the OD-Cu catalysts were reduced to metallic Cu(0) in the reaction. CuOx species existed on the catalyst surfaces during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO−) on Cu instead of on the active sites of the catalyst. It was also found that abundant interfaces can be produced on OD-Cu, which can provide heterogeneous CO adsorption sites (strong binding sites and weak binding sites), leading to outstanding performance for obtaining C2+ products. The Faradaic efficiency (FE) for C2+ products reached as high as 83.8% with a current density of 341.5 mA cm−2 at −0.9 V vs. RHE. CuOx species were shown to exist on OD-Cu during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO−) on Cu instead of on the active sites of the catalyst.![]()
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China.,Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
71
|
Cai A, He H, Zhang Q, Xu Y, Li X, Zhang F, Fan X, Peng W, Li Y. Synergistic Effect of N-Doped sp 2 Carbon and Porous Structure in Graphene Gels toward Selective Oxidation of C-H Bond. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13087-13096. [PMID: 33705096 DOI: 10.1021/acsami.0c21177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
N-doped carbon materials represent a type of metal-free catalyst for diverse organic synthetic reactions. However, single N-doped carbon materials perform insufficiently in the selective oxidation reaction of C-H bond compared with metal catalysts or multielement co-doped materials. There are a few reports on the application of three-dimensional (3D) carbon materials in such a reaction. Besides, the relationship between the well-developed porous structures, heteroatom doping, and their catalytic performance is unclear. In this study, 3D porous N-doped graphene aerogel catalysts with high activity and selectivity for the C-H bond oxidation under mild reaction conditions have been synthesized through a two-step method. Systematic studies on the dosage of N sources, pyrolysis temperature, and their influences on the catalytic performances have been evolved. Moreover, solid evidence of the synergistic effect of sp2 C atoms adjacent to the N atoms and porous structure promoting the performance has been provided in this work.
Collapse
Affiliation(s)
- An Cai
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongwei He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xintong Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
72
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
73
|
Du J, Zhang P, Liu H. Electrochemical Reduction of Carbon Dioxide to Ethanol: An Approach to Transforming Greenhouse Gas to Fuel Source. Chem Asian J 2021; 16:588-603. [PMID: 33522132 DOI: 10.1002/asia.202001189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Indexed: 11/09/2022]
Abstract
Converting carbon dioxide (CO2 ) into high-value fuels or chemicals is considered as a promising way to utilize CO2 and alleviate the excessive greenhouse gas emission. Among multiple catalysis approaches, electrochemical reduction of CO2 to ethanol has an important prospect due to the high energy density and widely applications of ethanol. In recent years, many electrocatalysts for CO2 reduce reaction (CO2 RR) have shown promising catalytic activity for ethanol production. In this review, we will introduce the recent progress in this field. The basic principles and electrochemical performances of CO2 RR are reviewed at first. Then, several categories of active electrocatalysts for CO2 RR to ethanol are summarized, including the discussion of reaction mechanism and catalytic sites. Finally, several possible strategies are proposed, providing guidance for future design and preparation of high-performance catalysts.
Collapse
Affiliation(s)
- Juan Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, United States
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
74
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
75
|
Wang Q, Cai C, Dai M, Fu J, Zhang X, Li H, Zhang H, Chen K, Lin Y, Li H, Hu J, Miyauchi M, Liu M. Recent Advances in Strategies for Improving the Performance of CO
2
Reduction Reaction on Single Atom Catalysts. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiyou Wang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Chao Cai
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Minyang Dai
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 Hunan P. R. China
| | - Junwei Fu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Xiaodong Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Huangjingwei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hang Zhang
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Kejun Chen
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Yiyang Lin
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Hongmei Li
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 Hunan P. R. China
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology Tokyo 152‐8503 Japan
| | - Min Liu
- Shenzhen Research Institute School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
76
|
Xue D, Xia H, Yan W, Zhang J, Mu S. Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO 2 Reduction. NANO-MICRO LETTERS 2020; 13:5. [PMID: 34138192 PMCID: PMC8187541 DOI: 10.1007/s40820-020-00538-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 05/18/2023]
Abstract
Electrocatalytic carbon dioxide (CO2) reduction (ECR) has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy, but there are still some problems such as poor stability, low activity, and selectivity. While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost, high activity, and long-term stability. Recently, defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials. Here, the present review mainly summarizes the latest research progress of the construction of the diverse types of defects (intrinsic carbon defects, heteroatom doping defects, metal atomic sites, and edges detects) for carbon materials in ECR, and unveil the structure-activity relationship and its catalytic mechanism. The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed, as well as possible future solutions. It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts.
Collapse
Affiliation(s)
- Dongping Xue
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| |
Collapse
|
77
|
Jiao L, Yang W, Wan G, Zhang R, Zheng X, Zhou H, Yu SH, Jiang HL. Single-Atom Electrocatalysts from Multivariate Metal-Organic Frameworks for Highly Selective Reduction of CO 2 at Low Pressures. Angew Chem Int Ed Engl 2020; 59:20589-20595. [PMID: 32721058 DOI: 10.1002/anie.202008787] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Indexed: 01/31/2023]
Abstract
Single-atom catalysts (SACs) are of great interest because of their ultrahigh activity and selectivity. However, it is difficult to construct model SACs according to a general synthetic method, and therefore, discerning differences in activity of diverse single-atom catalysts is not straightforward. Herein, a general strategy for synthesis of single-atom metals implanted in N-doped carbon (M1 -N-C; M=Fe, Co, Ni and Cu) has been developed starting from multivariate metal-organic frameworks (MOFs). The M1 -N-C catalysts, featuring identical chemical environments and supports, provided an ideal platform for differentiating the activity of single-atom metal species. When employed in electrocatalytic CO2 reduction, Ni1 -N-C exhibited a very high CO Faradaic efficiency (FE) up to 96.8 % that far surpassed Fe1 -, Co1 - and Cu1 -N-C. Remarkably, the best-performer, Ni1 -N-C, even demonstrated excellent CO FE at low CO2 pressures, thereby representing a promising opportunity for the direct use of dilute CO2 feedstock.
Collapse
Affiliation(s)
- Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Gang Wan
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Rui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
78
|
Jiao L, Yang W, Wan G, Zhang R, Zheng X, Zhou H, Yu S, Jiang H. Single‐Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO
2
at Low Pressures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Weijie Yang
- Department of Power Engineering School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding 071003 P. R. China
| | - Gang Wan
- Materials Science Division Argonne National Laboratory Lemont IL 60439 USA
| | - Rui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Hua Zhou
- X-ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Shu‐Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hai‐Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|