51
|
Li S, Yan X, Qu Y, Wang W, Chen B, Ma X, Liu S, Yu X. Hydrogen-Bond Cyclization Programming of Ultrasensitive Esters and Its Application in Gene Delivery. Chemistry 2019; 25:10375-10384. [PMID: 31090112 DOI: 10.1002/chem.201901173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/07/2023]
Abstract
The ester bond as a universal linker has recently been applied in gene delivery systems owing to its efficient gene release by electrostatic repulsion after its cleavage. However, the ester bond is nonlabile and is difficult to cleave in cells. This work reports a method in which a secondary amine was introduced to the β-position of the ester bond to generate a hydrogen-bond cyclization (HBC) structure that can make the ester bond hydrolysis ultrafast. A series of molecules comprising ultrasensitive esters that can be activated by H2 O2 were synthesized, and it was found that those able to form an HBC structure showed complete ester hydrolysis within 5 h in both water and phosphate-buffered saline solution, which was several times faster than other methods reported. Then, a series of amphiphilic poly(amidoamine) dendrimers were constructed, comprising the ultrasensitive ester groups for gene delivery; it was found that they could effectively release genes under quite a low concentration of H2 O2 (<200 μm) and transport them into the nucleus within 2 h in Hela cells with high safety. Their gene transfection efficiencies were higher than that of PEI25k . The results demonstrated that the hydrogen-bond-induced ultrasensitive esters could be powerfully applied to construct gene delivery systems.
Collapse
Affiliation(s)
- Shengran Li
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinxin Yan
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yangchun Qu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Wenliang Wang
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Binggang Chen
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaojing Ma
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Sanrong Liu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xifei Yu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
52
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
53
|
Shabbir MAB, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK, Ahmed S, Naveed U, Hao H, Yuan Z. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob 2019; 18:21. [PMID: 31277669 PMCID: PMC6611046 DOI: 10.1186/s12941-019-0317-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The development of antibiotic resistance in bacteria is a major public health threat. Infection rates of resistant pathogens continue to rise against nearly all antimicrobials, which has led to development of different strategies to combat the antimicrobial resistance. In this review, we discuss how the newly popular CRISPR-cas system has been applied to combat antibiotic resistance in both extracellular and intracellular pathogens. We also review a recently developed method in which nano-size CRISPR complex was used without any phage to target the mecA gene. However, there is still challenge to practice these methods in field against emerging antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Muhammad Zubair Shabbir
- Quality Operation Laboratory at University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Qin Wu
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Sammina Mahmood
- Department of Botany, University of Education, Bank Road Campus, Lahore, Pakistan
| | - Abdul Sajid
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200 Pakistan
| | - Muhammad Kashif Maan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Saeed Ahmed
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Umer Naveed
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland UK
| | - Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
54
|
Zheng N, Xie D, Zhang Z, Kuang J, Zheng Y, Wang Q, Li Y. Thioketal-crosslinked: ROS-degradable polycations for enhanced in vitro and in vivo gene delivery with self-diminished cytotoxicity. J Biomater Appl 2019; 34:326-338. [DOI: 10.1177/0885328219845081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dan Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jia Kuang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
55
|
Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16296-16310. [PMID: 30997984 DOI: 10.1021/acsami.9b02016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Endosomes/chemistry
- Humans
- Hydrogen-Ion Concentration
- Lipids/chemistry
- MCF-7 Cells
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms/drug therapy
- Neoplasms/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
| | - Li Jia
- Department of Pharmacy , Heze Medical College , Heze 274000 , P. R. China
| | | | | | | | | | | |
Collapse
|
56
|
A visualized colorimetric detection strategy for heparin in serum using a metal-free polymer nanozyme. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
57
|
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805092. [PMID: 30536445 DOI: 10.1002/adma.201805092] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/24/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic-resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchong Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
58
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
59
|
In situ vaccination with biocompatibility controllable immuno-sensitizer inducing antitumor immunity. Biomaterials 2019; 197:32-40. [PMID: 30639548 DOI: 10.1016/j.biomaterials.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
Anticancer immunotherapy is emerging as a promising tumor treatment that can replace the conventional tumor treatment such as surgery, radiation and chemo drug, but its therapeutic effect against solid tumor is limited due to the tumor microenvironment (TME). Herein, to overcome this limitation, the biocompatibility controllable immuno-sensitizer (BCI) based on polyethylene imine that can be applied to solid tumors is developed. BCI accumulates in the tumors by EPR effect and induces in situ tumor destruction that convert tumors into antigen source by biocompatibility change through surface charge switching in response to the acidic TME. Generated tumor antigens promote the maturation of dendritic cells and recruitment of cytotoxic T cells in tumors. Results from in vitro and in vivo experiments reveal that the BCI effectively induces tumor destruction and antitumor immune response. In consequence, the synergic effect of in situ tumor destruction and antitumor immune response induced by BCI's biocompatibility conversion remarkably enhances immunotherapeutic effect. This study may provide a way to improve immunotherapeutic effect on solid tumors by demonstrating the therapeutic effect of BCI against solid tumor and suggest a platform to control the toxicity of cationic polymer for the its extended biomedical application.
Collapse
|
60
|
Gleede T, Reisman L, Rieger E, Mbarushimana PC, Rupar PA, Wurm FR. Aziridines and azetidines: building blocks for polyamines by anionic and cationic ring-opening polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00278b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of aziridine and azetidine monomers and their ring-opening polymerization via different mechanisms is reviewed.
Collapse
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | - Louis Reisman
- Department of Chemistry and Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| | | | | | - Paul A. Rupar
- Department of Chemistry and Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| | | |
Collapse
|
61
|
Yan F, Wu JS, Liu ZL, Yu HL, Wang YH, Zhang WF, Ding DJ. Ruthenium-containing supramolecular nanoparticles based on bipyridine-modified cyclodextrin and adamantyl PEI with DNA condensation properties. NANOSCALE RESEARCH LETTERS 2018; 13:408. [PMID: 30569227 PMCID: PMC6300456 DOI: 10.1186/s11671-018-2820-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 06/08/2023]
Abstract
Exploring safe and highly efficient gene carriers made from biocompatible constituents has great prospects for clinical gene therapy. Here, a supramolecular gene delivery system was readily constructed by assembling adamantyl-modified polyethylenimine (PEI-Ada) units with a versatile ruthenium bipyridine-modified cyclodextrin (Ru-CD) through host-guest interactions. The photophysical and morphological features of the PEI-Ada@Ru-CD nanoparticles were systematically characterized by techniques including UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential experiments. The small size and suitably positive zeta potential of the nanoparticles facilitated their cellular uptake and gene transfection. As expected, DNA interaction studies, which were performed using agarose gel electrophoresis and atomic force microscopy, showed that the ability of the nanoparticles to condense DNA was higher than that of the gold standard, i.e., PEI, at low N/P ratios. The design of these ruthenium-containing supramolecular nanoparticles based on bipyridine-modified cyclodextrin and adamantyl PEI has great prospects in the development of gene delivery vehicles.
Collapse
Affiliation(s)
- Fang Yan
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053 Shandong China
| | - Jian-Shuang Wu
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
| | - Zhi-Li Liu
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
| | - Hong-Li Yu
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
| | - Yong-Hong Wang
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
| | - Wei-Fen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053 Shandong China
| | - De-Jun Ding
- College of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053 Shandong China
| |
Collapse
|
62
|
Nie X, Zhang Z, Wang CH, Fan YS, Meng QY, You YZ. Interactions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene Transfection. Bioconjug Chem 2018; 30:284-292. [DOI: 10.1021/acs.bioconjchem.8b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | | | | | | | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
63
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Wolf T, Wurm FR. Organocatalytic Ring-opening Polymerization Towards Poly(cyclopropane)s, Poly(lactame)s, Poly(aziridine)s, Poly(siloxane)s, Poly(carbosiloxane)s, Poly(phosphate)s, Poly(phosphonate)s, Poly(thiolactone)s, Poly(thionolactone)s and Poly(thiirane)s. ORGANIC CATALYSIS FOR POLYMERISATION 2018. [DOI: 10.1039/9781788015738-00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The following chapter is a collection of monomers that undergo organocatalyzed ring-opening polymerizations and have not been covered in a separate chapter of this book. This includes polymers widely used in industrial applications, but also solely academically relevant and more “exotic” polymer classes. As most of these polymers contain heteroatoms in their backbone, the chapter is divided according to the respective heteroatoms. Each sub-section first gives a short introduction to the respective polymer or monomer properties and industrial applications (if available), followed by a brief summary of the traditional synthetic pathways. Afterwards, important milestones for the organocatalytic ROP are presented in chronological order. Special emphasis is put on the advantages and disadvantages of organocatalysis over traditional (ROP) methods on the basis of appropriate literature examples.
Collapse
Affiliation(s)
- Thomas Wolf
- Max Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
65
|
Zhang H, Chen Z, Du M, Li Y, Chen Y. Enhanced gene transfection efficiency by low-dose 25 kDa polyethylenimine by the assistance of 1.8 kDa polyethylenimine. Drug Deliv 2018; 25:1740-1745. [PMID: 30241446 PMCID: PMC6161618 DOI: 10.1080/10717544.2018.1510065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022] Open
Abstract
Gene therapy is a promising strategy for treatments of various diseases. Efficient and safe introduction of therapeutic genes into targeted cells is essential to realize functions of the genes. High-molecular-weight polyethylenimines (HMW PEIs) including 25 kDa branched PEI and 22 kDa linear PEI are widely used for in vitro gene transfection. However, high-gene transfection efficiency is usually accompanied with high cytotoxicity, which hampers their further clinical study. On the contrary, low-molecular-weight polyethylenimines (LMW PEIs) such as 1.8 kDa PEI and 800 Da PEI show good biocompatibility but their applications are limited by the poor DNA condensation capability. In this study, we find that 1.8 kDa PEI, but not 800 Da PEI combined with low-dose 25 kDa PEI could significantly promote gene transfection with low cytotoxicity. Plasmids encoding enhanced green fluorescence protein (EGFP) were delivered by the combined PEI and gene transfection efficiency was evaluated by microscopic observation and flow cytometry. Parameters including concentrations of 25 kDa PEI and 1.8 kDa PEI and preparation ways were further optimized. This study presents an efficient and safe combined PEI-based non-viral gene delivery strategy with potential for in vivo applications.
Collapse
Affiliation(s)
- Hui Zhang
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhao Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
66
|
Inpota P, Nacapricha D, Sunintaboon P, Sripumkhai W, Jeamsaksiri W, Wilairat P, Chantiwas R. Chemiluminescence detection with microfluidics for innovative in situ measurement of unbound cobalt ions in dynamic equilibrium with bound ions in binding study with polyethyleneimine and its functionalized nanoparticles. Talanta 2018; 188:606-613. [DOI: 10.1016/j.talanta.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
|
67
|
Zhang JH, Yang HZ, Zhang J, Liu YH, He X, Xiao YP, Yu XQ. Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers (Basel) 2018; 10:E1080. [PMID: 30961005 PMCID: PMC6403675 DOI: 10.3390/polym10101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
The linking and modification of low molecular weight cationic polymers (oligomers) has become an attracted strategy to construct non-viral gene carriers with good transfection efficiency and much reduced cytotoxicity. In this study, PEI 600 Da was linked by biodegradable bridges containing rigid aromatic rings. The introduction of aromatic rings enhanced the DNA-binding ability of the target polymers and also improved the stability of the formed polymer/DNA complexes. The biodegradable property and resulted DNA release were verified by enzyme stimulated gel electrophoresis experiment. These materials have lower molecular weights compared to PEI 25 kDa, but exhibited higher transfection efficiency, especially in the presence of serum. Flow cytometry and confocal laser scanning microscopy results indicate that the polymers with aromatic rings could induce higher cellular uptake. This strategy for the construction of non-viral gene vectors may be applied as an efficient and promising method for gene delivery.
Collapse
Affiliation(s)
- Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
68
|
Joshi CR, Raghavan V, Vijayaraghavalu S, Gao Y, Saraswathy M, Labhasetwar V, Ghorpade A. Reaching for the Stars in the Brain: Polymer-Mediated Gene Delivery to Human Astrocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:645-657. [PMID: 30081235 PMCID: PMC6082920 DOI: 10.1016/j.omtn.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/22/2018] [Indexed: 02/04/2023]
Abstract
Astrocytes, the "star-shaped" glial cells, are appealing gene-delivery targets to treat neurological diseases due to their diverse roles in brain homeostasis and disease. Cationic polymers have successfully delivered genes to mammalian cells and hence present a viable, non-immunogenic alternative to widely used viral vectors. In this study, we investigated the gene delivery potential of a series of arginine- and polyethylene glycol-modified, siloxane-based polyethylenimine analogs in primary cultured human neural cells (neurons and astrocytes) and in mice. Plasmid DNAs encoding luciferase reporter were used to measure gene expression. We hypothesized that polyplexes with arginine would help in cellular transport of the DNA, including across the blood-brain barrier; polyethylene glycol will stabilize polyethylenimine and reduce its toxicity while maintaining its DNA-condensing ability. Polyplexes were non-toxic to human neural cells and red blood cells. Cellular uptake of polyplexes and sustained gene expression were seen in human astrocytes as well as in mouse brains post-intravenous-injections. The polyplexes also delivered and expressed genes driven by astrocyte-restricted glial fibrillary acidic protein promoters, which are weaker than viral promoters. To our knowledge, the presented work validates a biocompatible and effective polymer-facilitated gene-delivery system for both human brain cells and mice for the first time.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vijay Raghavan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
69
|
Bouché M, Fournel S, Kichler A, Selvam T, Gallani J, Bellemin‐Laponnaz S. Straightforward Synthesis of L‐PEI‐Coated Gold Nanoparticles and Their Biological Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mathilde Bouché
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Sylvie Fournel
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Antoine Kichler
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Tamilselvi Selvam
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Jean‐Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
70
|
Blakney AK, Yilmaz G, McKay PF, Becer CR, Shattock RJ. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules 2018; 19:2870-2879. [PMID: 29698602 DOI: 10.1021/acs.biomac.8b00429] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Paul F McKay
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - C Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Robin J Shattock
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| |
Collapse
|
71
|
Batista CCS, Albuquerque LJC, de Araujo I, Albuquerque BL, da Silva FD, Giacomelli FC. Antimicrobial activity of nano-sized silver colloids stabilized by nitrogen-containing polymers: the key influence of the polymer capping. RSC Adv 2018; 8:10873-10882. [PMID: 35541560 PMCID: PMC9078938 DOI: 10.1039/c7ra13597a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/11/2018] [Indexed: 11/24/2022] Open
Abstract
Synthesis of stable silver colloids was achieved using nitrogen-containing polymers acting simultaneously as a reducing and stabilizer agent. The polymers polyethyleneimine (PEI), polyvinylpyrrolidone (PVP) and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP) were used in the procedures. The influence of the surface chemistry and chemical nature of the stabilizer on the cytotoxicity and antimicrobial properties have been evaluated. The produced nanomaterials were found to be non-toxic up to the highest evaluated concentration (1.00 ppm). Nevertheless, at this very low concentration, the AgNPs stabilized by PVP and PEO-b-P2VP were found to be remarkable biocides against bacteria and fungus. On the other hand, we have surprisingly evidenced negligible antimicrobial activity of AgNPs stabilized by positively charged PEI although both (AgNPs and PEI) materials separately are known for their antimicrobial activity as also evidenced in the current investigation. The evidence is claimed to be related to the blocking of Ag+ kinetic release. Accordingly, the antimicrobial effect of nano-sized silver colloids largely depends on the chemical nature of the polymer coating. Possibly, the outstanding colloid stabilization provided by polyethyleneimine slows down Ag+ release thereby hampering its biological activity whereas the poorer stabilization and good ionic transport property of PVP and PEO-b-P2VP allows much faster ion release and cell damage.
Collapse
Affiliation(s)
- Carin C S Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | | | - Iris de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | - Brunno L Albuquerque
- Departamento de Química, Universidade Federal de Santa Catarina Florianópolis 88040-900 Brazil
| | - Fernanda D da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| |
Collapse
|
72
|
Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sci 2018; 197:101-108. [DOI: 10.1016/j.lfs.2018.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 11/23/2022]
|
73
|
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018. [DOI: 10.1039/c8py00978c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
Collapse
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
74
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
75
|
Wan N, Huan ML, Ma XX, Jing ZW, Zhang YX, Li C, Zhou SY, Zhang BL. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors. NANOTECHNOLOGY 2017; 28:465101. [PMID: 28905810 DOI: 10.1088/1361-6528/aa8c9c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Collapse
Affiliation(s)
- Ning Wan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, People's Republic of China. Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Yang C, Vu-Quang H, Husum DMU, Tingskov SJ, Vinding MS, Nielsen T, Song P, Nielsen NC, Nørregaard R, Kjems J. Theranostic poly(lactic-co-glycolic acid) nanoparticle for magnetic resonance/infrared fluorescence bimodal imaging and efficient siRNA delivery to macrophages and its evaluation in a kidney injury model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2451-2462. [DOI: 10.1016/j.nano.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 01/23/2023]
|
77
|
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond) 2017; 12:2533-2554. [DOI: 10.2217/nnm-2017-0223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive CNS tumor with poor prognosis. Current treatment lacks efficacy indicating that new therapeutic approaches are needed. One of these new approaches is based on the use of nanoparticles (NPs) to deliver different cargos (antitumoral drugs or genetic materials) to tumoral cells. This review covers the signaling pathways altered in GBM cells to understand the rationale behind choosing new therapeutic targets and recent advances in the use of different NPs to deliver to GBM cells, both in vitro and in vivo, different therapeutic molecules. A special focus is placed on the effect of NPs on orthotopic brain tumors since this animal model represents the optimal model for translational purposes.
Collapse
Affiliation(s)
- Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
78
|
Wan Y, Dai W, Nevagi RJ, Toth I, Moyle PM. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater 2017; 59:257-268. [PMID: 28655658 DOI: 10.1016/j.actbio.2017.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
The development of carriers for the delivery of oligonucleotide therapeutics is essential for the successful translation of gene therapies to the clinic. In the present study, a delivery system, which combines the fusogenic lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with a well-defined synthetic multifunctional peptide, was produced and optimized for gene delivery, with the aim to develop an efficient gene delivery platform for breast cancer cells. For this purpose, a breast cancer-specific cell targeting peptide (CTP) was incorporated into our leading peptide-based gene delivery system (to generate DEN-K(GALA)-TAT-K(STR)-CTP) to improve its cell-specific internalization, and investigated in combination with a formulation approach (DOPE/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)). DEN-K(GALA)-TAT-K(STR)-CTP alone efficiently complexed with DNA or siRNA, and promoted efficient cellular uptake, but low levels of gene expression. By adding the formulation approach, synergistic improvements in gene expression and silencing were observed compared to the peptide or formulation approaches alone. Of significance, this current system demonstrated more efficient gene knockdown when compared to the leading commercial siRNA delivery agent Lipofectamine® RNAiMAX. The utility of this system was demonstrated through the delivery of BCL2 (B-cell lymphoma 2) siRNA to MCF-7 cells, which led to near complete knockdown of the Bcl-2 protein, and inhibition of MCF-7 cell migration in a wound healing assay. The present peptide/lipid hybrid system is an excellent candidate for the delivery of DNA or siRNA into breast cancer cells. STATEMENT OF SIGNIFICANCE The identification of safe and effective delivery systems for DNA and siRNA is of great importance. Herein, we developed a well-defined, multifunctional and cell-specific lipidic peptide DEN-K(GALA)-TAT-K(STR)-CTP as a breast cancer cell targeted gene delivery vector. When combined with a lipid component (DOTAP/DOPE), the peptide/lipid hybrid system demonstrated higher gene expression or knockdown levels compared to the peptide or lipid approach alone when used to deliver pDNA or siRNA respectively, indicating synergistic enhancement of gene delivery efficiency. Importantly, this delivery strategy achieved greater knockdown of the Bcl-2 protein when compared to the leading commercial siRNA delivery system Lipofectamine® RNAiMAX, suggesting its potential utility for the targeted treatment of Bcl-2 overexpressing breast cancers.
Collapse
Affiliation(s)
- Yu Wan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Wei Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Reshma J Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia.
| |
Collapse
|
79
|
Huang X, Zhou D, Zeng M, Alshehri F, Li X, O’Keeffe-Ahern J, Gao Y, Pierucci L, Greiser U, Yin G, Wang W. Star Poly(β-amino esters) Obtained from the Combination of Linear Poly(β-amino esters) and Polyethylenimine. ACS Macro Lett 2017; 6:575-579. [PMID: 35650840 DOI: 10.1021/acsmacrolett.7b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Composed of a three-dimensional structure with a central core and multiple radiating linear "arms", star polymers represent a significant type of branched macromolecular architectures. Due to the spatially defined core-shell-periphery architecture, star polymers have demonstrated their superiority in a variety of biomedical applications such as drug/gene delivery, molecular imaging, antibacterial agents, and so on. In this paper, we report the successful synthesis of a new type of star-shape poly(β-amino esters) with low molecular weight PEI as core and linear PAE (LPAE) as arms. This new star-PAE exhibits low cytotoxicity and high gene transfection efficacy. Star-PAE achieved between 264-fold and 14781-fold higher gene transfection efficiency of primary rat adipose derived mesenchymal stem cells in comparison with studies performed with the individual PEI and LPAE, respectively. The results suggest that star-PAE is a promising nonviral gene delivery vector.
Collapse
Affiliation(s)
- Xiaobei Huang
- School
of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dezhong Zhou
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ming Zeng
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fatma Alshehri
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xiaolin Li
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan O’Keeffe-Ahern
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Luca Pierucci
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Udo Greiser
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Guangfu Yin
- School
of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
80
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
81
|
Gleede T, Rieger E, Homann-Müller T, Wurm FR. 4-Styrenesulfonyl-(2-methyl)aziridine: The First Bivalent Aziridine-Monomer for Anionic and Radical Polymerization. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung (MPIP); Ackermannweg 10 55128 Mainz Germany
| | - Elisabeth Rieger
- Max-Planck-Institut für Polymerforschung (MPIP); Ackermannweg 10 55128 Mainz Germany
| | - Tatjana Homann-Müller
- Max-Planck-Institut für Polymerforschung (MPIP); Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung (MPIP); Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
82
|
Albuquerque LJC, de Castro CE, Riske KA, da Silva MCC, Muraro PIR, Schmidt V, Giacomelli C, Giacomelli FC. Gene Transfection Mediated by Catiomers Requires Free Highly Charged Polymer Chains To Overcome Intracellular Barriers. Biomacromolecules 2017; 18:1918-1927. [PMID: 28453254 DOI: 10.1021/acs.biomac.7b00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prospective use of the block copolymers poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50) and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47)) as nonviral gene vectors was evaluated. The polymers are able to properly condense DNA into nanosized particles (RH ≈ 75 nm), which are marginally cytotoxic and can be uptaken by cells. However, the green fluorescent protein (GFP) expression assays evidenced that DNA delivery is essentially negligible meaning that intracellular trafficking hampers efficient gene release. Subsequently, we demonstrate that cellular uptake and particularly the quantity of GFP-positive cells are substantially enhanced when the block copolymer polyplexes are produced and further supplemented by BPEI chains (branched polyethylenimine). The dynamic light scattering/electrophoretic light scattering/isothermal titration calorimetry data suggest that such a strategy allows the adsorption of BPEI onto the surface of the polyplexes, and this phenomenon is responsible for increasing the size and surface charge of the assemblies. Nevertheless, most of the BPEI chains remain freely diffusing in the systems. The biological assays confirmed that cellular uptake is enhanced in the presence of BPEI and principally, the free highly charged polymer chains play the central role in intracellular trafficking and gene transfection. These investigations pointed out that the transfection efficiency versus cytotoxicity issue can be balanced by a mixture of BPEI and less cytotoxic agents such as for instance the proposed block copolymers.
Collapse
Affiliation(s)
- Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Carlos E de Castro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , 04023-062 São Paulo, Brazil
| | - Maria C Carlan da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Paulo I R Muraro
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Vanessa Schmidt
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Cristiano Giacomelli
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| |
Collapse
|
83
|
Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance. Bioconjug Chem 2017; 28:957-967. [PMID: 28215090 DOI: 10.1021/acs.bioconjchem.6b00676] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.
Collapse
Affiliation(s)
- Yoo Kyung Kang
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| | - Kyu Kwon
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| | - Ha Neul Lee
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| | - Chankyu Park
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology and ‡Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Republic of Korea
| |
Collapse
|
84
|
Ting SRS, Min EH, Lau BKF, Hutvagner G. Acetyl-α-d-mannopyranose-based cationic polymer via RAFT polymerization for lectin and nucleic acid bindings. J Appl Polym Sci 2017. [DOI: 10.1002/app.44947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S. R. Simon Ting
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Eun Hee Min
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Benjamin K. F. Lau
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Gyorgy Hutvagner
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| |
Collapse
|
85
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
86
|
Taranejoo S, Chandrasekaran R, Cheng W, Hourigan K. Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydr Polym 2016; 153:160-168. [DOI: 10.1016/j.carbpol.2016.07.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
|
87
|
Zhang B, Zhang H, Dai S, Bi J. Cell-penetrating peptide-labelled smart polymers for enhanced gene delivery. Eng Life Sci 2016; 17:193-203. [PMID: 32624767 DOI: 10.1002/elsc.201600069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/09/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
Highly efficient gene delivery vehicles are pursued to progress gene therapy. In this study, we developed the cell-penetrating peptide-labelled and degradable gene carriers for efficient external gene transfection. The cationic carriers were prepared by coupling low-molecular-weight polyethylenimine (PEI800) with 4'4-dithiodibutyric acid (DA), and HIV-1 Trans-Activator of Transcription (TAT) was conjugated to the carriers as a penetrating peptide. The resulted PEI-DA-TAT was able to condense plasmid DNA (pDNA) into a complex with a hydrodynamic size of around 150 nm under a neutral condition. PEI-DA-TAT showed negligible cytotoxicity to both Hela and HEK 293 cells with the cell viability of more than 80% beyond the carrier concentration of 50 μg/mL. This new carrier displayed better performance in regard to DNA transfection efficiency in comparison with the carriers of non-TAT labelled PEI-DA, commercial PEI25K and low-molecular-weight PEI (PEI800). The transfection efficiency of PEI-DA-TAT was increased by 8% compared with PEI-DA and PEI25K. The experimental findings suggested that the developed PEI-DA-TAT is a promising carrier for efficient DNA delivery with low cytotoxicity for gene therapy.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Chemical Engineering University of Adelaide Adelaide Australia
| | - Hu Zhang
- School of Chemical Engineering University of Adelaide Adelaide Australia
| | - Sheng Dai
- School of Chemical Engineering University of Adelaide Adelaide Australia
| | - Jingxiu Bi
- School of Chemical Engineering University of Adelaide Adelaide Australia
| |
Collapse
|
88
|
Zhao J, Huang P, Wang Z, Tan Y, Hou X, Zhang L, He CY, Chen ZY. Synthesis of Amphiphilic Poly(β-amino ester) for Efficiently Minicircle DNA Delivery in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19284-19290. [PMID: 27267084 DOI: 10.1021/acsami.6b04412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Minicircle DNA (mcDNA) is a kind of enhanced nonviral DNA vector with excellent profiles in biosafety and transgene expression. Herein, we reported a novel amphiphilic polymer comprising polyethylenimine(PEI) modified Poly(β-amino ester) PEI-PBAE(C16) for efficient mcDNA delivery in vivo. The synthesized polymer could condense mcDNA into nanoscaled structure and exhibited efficient gene transfection ability without detectable cytotoxicity. Importantly, when injected into mouse intraperitoneally, these PEI-PBAE(C16) nanocomplexes were able to result in high level of trangene expression which lasted at least 72 h. Overall, these results demonstrated the PEI-PBAE(C16) can mediate effective and safe gene delivery in vivo with clinical application potential.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhiyong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Xiaohu Hou
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Liping Zhang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| |
Collapse
|
89
|
Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ, Valeur E. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates? J Med Chem 2016; 59:9599-9621. [PMID: 27362955 DOI: 10.1021/acs.jmedchem.6b00376] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.
Collapse
Affiliation(s)
- Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Department of Chemical Biology, Max Planck Institute of Molecular Physiology , Dortmund 44202, Germany
| | - Andrey I Frolov
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Laurent Knerr
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - William J Drury
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
90
|
Movassaghian S, Xie Y, Hildebrandt C, Rosati R, Li Y, Kim NH, Conti DS, da Rocha SRP, Yang ZQ, Merkel OM. Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles. Mol Pharm 2016; 13:2605-21. [PMID: 27223606 DOI: 10.1021/acs.molpharmaceut.5b00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basal-like breast cancer (BLBC) accounts for the most aggressive types of breast cancer, marked by high rates of relapse and poor prognoses and with no effective clinical therapy yet. Therefore, investigation of new targets and treatment strategies is more than necessary. Here, we identified a receptor that can be targeted in BLBC for efficient and specific siRNA mediated gene knockdown of therapeutically relevant genes such as the histone demethylase GASC1, which is involved in multiple signaling pathways leading to tumorigenesis. Breast cancer and healthy breast cell lines were compared regarding transferrin receptor (TfR) expression via flow cytometry and transferrin binding assays. Nanobioconjugates made of low molecular weight polyethylenimine (LMW-PEI) and transferrin (Tf) were synthesized to contain a bioreducible disulfide bond. siRNA complexation was characterized by condensation assays and dynamic light scattering. Cytotoxicity, transfection efficiency, and the targeting specificity of the conjugates were investigated in TfR positive and negative healthy breast and breast cancer cell lines by flow cytometry, confocal microscopy, RT-PCR, and Western blot. Breast cancer cell lines revealed a significantly higher TfR expression than healthy breast cells. The conjugates efficiently condensed siRNA into particles with 45 nm size at low polymer concentrations, showed no apparent toxicity on different breast cancer cell lines, and had significantly greater transfection and gene knockdown activity on mRNA and protein levels than PEI/siRNA leading to targeted and therapeutic growth inhibition post GASC1 knockdown. The synthesized nanobioconjugates improved the efficiency of gene transfer and targeting specificity in transferrin receptor positive cells but not in cells with basal receptor expression. Therefore, these materials in combination with our newly identified siRNA sequences are promising candidates for therapeutic targeting of hard-to-treat BLBC and are currently further investigated regarding in vivo targeting efficacy and biocompatibility.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Claudia Hildebrandt
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmaceutics and Biopharmaceutics, Kiel University , 24118 Kiel, Germany
| | - Rayna Rosati
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Ying Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Na Hyung Kim
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Denise S Conti
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University , Richmond, Virginia 23298, United States.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München , 80539 Munich, Germany
| |
Collapse
|
91
|
Du J, Zhu W, Yang L, Wu C, Lin B, Wu J, Jin R, Shen T, Ai H. Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation. Regen Biomater 2016; 3:223-9. [PMID: 27482464 PMCID: PMC4966295 DOI: 10.1093/rb/rbw023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications. When covered with amphiphilic alkyl-polyethyleneimine (PEI), the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes. However, the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications. In this study, we used lactose to modify amphiphilic low molecular weight polyethylenimine (C12-PEI2K) at different lactosylation degree. It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells, comparing to the unsubstituted ones. Besides, we found the PEI induced cell autophagy can be reduced via lactose modification, indicating the increased cell viability might rely on down-regulating autophagy. Thus, our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification.
Collapse
Affiliation(s)
- Jiuju Du
- National Engineering Research Center for Biomaterials
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China and
| | - Li Yang
- National Engineering Research Center for Biomaterials
| | - Changqiang Wu
- National Engineering Research Center for Biomaterials; School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Bingbing Lin
- National Engineering Research Center for Biomaterials
| | - Jun Wu
- National Engineering Research Center for Biomaterials
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials
| | - Taipeng Shen
- National Engineering Research Center for Biomaterials
| | - Hua Ai
- National Engineering Research Center for Biomaterials; Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610065, P.R. China
| |
Collapse
|
92
|
Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:5385137. [PMID: 27313626 PMCID: PMC4899599 DOI: 10.1155/2016/5385137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 12/04/2022] Open
Abstract
Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency.
Collapse
|
93
|
Foxley MA, Friedline AW, Jensen JM, Nimmo SL, Scull EM, King JB, Strange S, Xiao MT, Smith BE, Thomas Iii KJ, Glatzhofer DT, Cichewicz RH, Rice CV. Efficacy of ampicillin against methicillin-resistant Staphylococcus aureus restored through synergy with branched poly(ethylenimine). J Antibiot (Tokyo) 2016; 69:871-878. [PMID: 27189119 PMCID: PMC5115998 DOI: 10.1038/ja.2016.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 01/20/2023]
Abstract
Beta-lactam antibiotics kill Staphylococcus aureus bacteria by inhibiting the function of cell-wall penicillin binding proteins (PBPs) 1 and 3. However, β-lactams are ineffective against PBP2a, used by methicillin-resistant Staphylococcus aureus (MRSA) to perform essential cell wall crosslinking functions. PBP2a requires teichoic acid to properly locate and orient the enzyme, and thus MRSA is susceptible to antibiotics that prevent teichoic acid synthesis in the bacterial cytoplasm. As an alternative, we have used branched poly(ethylenimine), BPEI, to target teichoic acid in the bacterial cell wall. The result is restoration of MRSA susceptibility to the β-lactam antibiotic ampicillin with a MIC of 1 μg/mL, superior to that of vancomycin (MIC = 3.7 μg/mL). A checkerboard assay shows synergy of BPEI and ampicillin. Nuclear magnetic resonance (NMR) data show that BPEI alters the teichoic acid chemical environment. Laser scanning confocal microscopy (LSCM) images show BPEI residing on the bacterial cell wall where teichoic acids and PBPs are located.
Collapse
Affiliation(s)
- Melissa A Foxley
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Anthony W Friedline
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jessica M Jensen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Erin M Scull
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jarrod B King
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Stoffel Strange
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Min T Xiao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Benjamin E Smith
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, USA
| | - Kieth J Thomas Iii
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Daniel T Glatzhofer
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
94
|
Englert C, Fevre M, Wojtecki RJ, Cheng W, Xu Q, Yang C, Ke X, Hartlieb M, Kempe K, García JM, Ono RJ, Schubert US, Yang YY, Hedrick JL. Facile carbohydrate-mimetic modifications of poly(ethylene imine) carriers for gene delivery applications. Polym Chem 2016. [DOI: 10.1039/c6py00940a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PEI was chemically-modified with carbohydrates and carbohydrate-mimetics to improve biocompatibility.
Collapse
Affiliation(s)
- Christoph Englert
- IBM Almaden Research Center
- San Jose
- USA
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
| | | | | | - Wei Cheng
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Qingxing Xu
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Xiyu Ke
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | | | | | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | | |
Collapse
|
95
|
Bansal R, Kiran P, Kumar P. Synthesis, characterization and evaluation of diglycidyl-1,2-cyclohexanedicarboxylate crosslinked polyethylenimine nanoparticles as efficient carriers of DNA. NEW J CHEM 2016. [DOI: 10.1039/c5nj02953h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Crosslinked PEI nanoparticles were synthesized, which efficiently transported DNA inside the cells with minimal cytotoxicity.
Collapse
Affiliation(s)
- Ruby Bansal
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi University Campus
- Delhi – 110 007
- India
| | - Pallavi Kiran
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi University Campus
- Delhi – 110 007
- India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi University Campus
- Delhi – 110 007
- India
| |
Collapse
|
96
|
Zhao J, Yang L, Huang P, Wang Z, Tan Y, Liu H, Pan J, He CY, Chen ZY. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA. J Colloid Interface Sci 2015; 463:93-8. [PMID: 26520815 DOI: 10.1016/j.jcis.2015.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Gene therapy has held great promise for treating specific acquired and inherited diseases. However, the lack of safe and efficient gene delivery systems remains as the major challenge. Poly(β-amino ester)s (PBAEs) have attracted much attention due to their outstanding properties in biosafety, DNA delivery efficiency and convenience in synthesis. In this paper, we reported the further enhancement of the PBAE functions by increasing its positive charge through conjugating with low molecular weight polyethylenimine (LPEI). The resulted LPEI-PBAE polymer was able to condense minicircle DNA (mcDNA) forming nanoparticles with a diameter of 50-200nm. Furthermore, as compared to parental PBAE and a commercial transfection reagent very common in laboratory application, the LPEI-PBAE demonstrated significantly higher transfection efficiency with little cytotoxicity. These results suggested LPEI-PBAEs are worthy of further optimization for gene therapy applications.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lei Yang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - ZhiYong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - JiaJia Pan
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
97
|
Loh XJ, Wu YL. Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun (Camb) 2015; 51:10815-8. [DOI: 10.1039/c5cc03686k] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cationic star copolymer with a β-cyclodextrin core was developed for nonviral gene transfer to mouse embryonic stem cells (mESCs).
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
| | - Yun-Long Wu
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|