51
|
Golovyashkina N, Penazzi L, Ballatore C, Smith AB, Bakota L, Brandt R. Region-specific dendritic simplification induced by Aβ, mediated by tau via dysregulation of microtubule dynamics: a mechanistic distinct event from other neurodegenerative processes. Mol Neurodegener 2015; 10:60. [PMID: 26541821 PMCID: PMC4634596 DOI: 10.1186/s13024-015-0049-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic simplification, a key feature of the neurodegenerative triad of Alzheimer’s disease (AD) in addition to spine changes and neuron loss, occurs in a region-specific manner. However, it is unknown how changes in dendritic complexity are mediated and how they relate to spine changes and neuron loss. Results To investigate the mechanisms of dendritic simplification in an authentic CNS environment we employed an ex vivo model, based on targeted expression of enhanced green fluorescent protein (EGFP)-tagged constructs in organotypic hippocampal slices of mice. Algorithm-based 3D reconstruction of whole neuron morphology in different hippocampal regions was performed on slices from APPSDL-transgenic and control animals. We demonstrate that induction of dendritic simplification requires the combined action of amyloid beta (Aβ) and human tau. Simplification is restricted to principal neurons of the CA1 region, recapitulating the region specificity in AD patients, and occurs at sites of Schaffer collateral input. We report that γ-secretase inhibition and treatment with the NMDA-receptor antagonist, CPP, counteract dendritic simplification. The microtubule-stabilizing drug epothilone D (EpoD) induces simplification in control cultures per se. Similar morphological changes were induced by a phosphoblocking tau construct, which also increases microtubule stability. In fact, low nanomolar concentrations of naturally secreted Aβ decreased phosphorylation at S262 in a cellular model, a site which is known to directly modulate tau-microtubule interactions. Conclusions The data provide evidence that dendritic simplification is mechanistically distinct from other neurodegenerative events and involves microtubule stabilization by dendritic tau, which becomes dephosphorylated at certain sites. They imply that treatments leading to an overall decrease of tau phosphorylation might have a negative impact on neuronal connectivity.
Collapse
Affiliation(s)
- Nataliya Golovyashkina
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19014, USA. .,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19014, USA.
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
52
|
Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. J Neurosci 2015; 35:11315-29. [PMID: 26269639 DOI: 10.1523/jneurosci.3645-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Acquisition of neuronal polarity is a complex process involving cellular and molecular events. The second messenger cAMP is involved in axonal specification through activation of protein kinase A. However, an alternative cAMP-dependent mechanism involves the exchange protein directly activated by cAMP (EPAC), which also responds to physiological changes in cAMP concentration, promoting activation of the small Rap GTPases. Here, we present evidence that EPAC signaling contributes to axon specification and elongation. In primary rat hippocampal neurons, EPAC isoforms were expressed differentially during axon specification. Furthermore, 8-pCPT, an EPAC pharmacological activator, and genetic manipulations of EPAC in neurons induced supernumerary axons indicative of Rap1b activation. Moreover, 8-pCPT-treated neurons expressed ankyrin G and other markers of mature axons such as synaptophysin and axonal accumulation of vGLUT1. In contrast, pharmacological inhibition of EPAC delayed neuronal polarity. Genetic manipulations to inactivate EPAC1 using either shRNA or neurons derived from EPAC1 knock-out (KO) mice led to axon elongation and polarization defects. Interestingly, multiaxonic neurons generated by 8-pCPT treatments in wild-type neurons were not found in EPAC1 KO mice neurons. Altogether, these results propose that EPAC signaling is an alternative and complementary mechanism for cAMP-dependent axon determination. SIGNIFICANCE STATEMENT This study identifies the guanine exchange factor responsible for Rap1b activation during neuronal polarization and provides an alternate explanation for cAMP-dependent acquisition of neuronal polarity.
Collapse
|
53
|
Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 2015; 9:381. [PMID: 26483635 PMCID: PMC4588006 DOI: 10.3389/fncel.2015.00381] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/11/2015] [Indexed: 01/10/2023] Open
Abstract
A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad de Chile Santiago, Chile
| | | |
Collapse
|
54
|
Abstract
Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
55
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
56
|
Petsakou A, Sapsis TP, Blau J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015; 162:823-35. [PMID: 26234154 DOI: 10.1016/j.cell.2015.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/19/2015] [Accepted: 06/13/2015] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.
Collapse
Affiliation(s)
- Afroditi Petsakou
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Themistoklis P Sapsis
- Courant Institute for Applied Mathematics, New York University, New York, NY 10003, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA; Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
57
|
Ambrozkiewicz MC, Kawabe H. HECT-type E3 ubiquitin ligases in nerve cell development and synapse physiology. FEBS Lett 2015; 589:1635-43. [PMID: 25979171 DOI: 10.1016/j.febslet.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
The development of neurons is precisely controlled. Nerve cells are born from progenitor cells, migrate to their future target sites, extend dendrites and an axon to form synapses, and thus establish neural networks. All these processes are governed by multiple intracellular signaling cascades, among which ubiquitylation has emerged as a potent regulatory principle that determines protein function and turnover. Dysfunctions of E3 ubiquitin ligases or aberrant ubiquitin signaling contribute to a variety of brain disorders like X-linked mental retardation, schizophrenia, autism or Parkinson's disease. In this review, we summarize recent findings about molecular pathways that involve E3 ligases of the Homologous to E6-AP C-terminus (HECT) family and that control neuritogenesis, neuronal polarity formation, and synaptic transmission.
Collapse
Affiliation(s)
- Mateusz Cyryl Ambrozkiewicz
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany.
| | - Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany.
| |
Collapse
|
58
|
Sakakibara A, Hatanaka Y. Neuronal polarization in the developing cerebral cortex. Front Neurosci 2015; 9:116. [PMID: 25904841 PMCID: PMC4389351 DOI: 10.3389/fnins.2015.00116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic interneurons, whose connections construct highly organized neuronal circuits that control higher order information processing. Recent progress in live imaging has allowed us to examine how these neurons differentiate during development in vivo or in in vivo-like conditions. These analyses have revealed how the initial steps of polarization, in which neurons establish an axon, occur. Interestingly, both excitatory and inhibitory cortical neurons establish neuronal polarity de novo by undergoing a multipolar stage reminiscent of the manner in which polarity formation occurs in hippocampal neurons in dissociated culture. In this review, we focus on polarity formation in cortical neurons and describe their typical morphology and dynamic behavior during the polarization period. We also discuss cellular and molecular mechanisms underlying polarization, with reference to polarity formation in dissociated hippocampal neurons in vitro.
Collapse
Affiliation(s)
- Akira Sakakibara
- College of Life and Health Sciences, Chubu University Kasugai, Japan
| | - Yumiko Hatanaka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences Okazaki, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
59
|
Lian G, Sheen VL. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Front Cell Neurosci 2015; 9:99. [PMID: 25883548 PMCID: PMC4381626 DOI: 10.3389/fncel.2015.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/07/2015] [Indexed: 01/28/2023] Open
Abstract
The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| |
Collapse
|
60
|
Quassollo G, Wojnacki J, Salas DA, Gastaldi L, Marzolo MP, Conde C, Bisbal M, Couve A, Cáceres A. A RhoA Signaling Pathway Regulates Dendritic Golgi Outpost Formation. Curr Biol 2015; 25:971-82. [PMID: 25802147 DOI: 10.1016/j.cub.2015.01.075] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The neuronal Golgi apparatus (GA) localizes to the perinuclear region and dendrites as tubulo-vesicular structures designated Golgi outposts (GOPs). Current evidence suggests that GOPs shape dendrite morphology and serve as platforms for the local delivery of synaptic receptors. However, the mechanisms underlying GOP formation remain a mystery. Using live-cell imaging and confocal microscopy in cultured hippocampal neurons, we now show that GOPs destined to major "apical" dendrites are generated from the somatic GA by a sequence of events involving: (1) generation of a GA-derived tubule; (2) tubule elongation and deployment into the dendrite; (3) tubule fission; and (4) transport and condensation of the fissioned tubule. A RhoA-Rock signaling pathway involving LIMK1, PKD1, slingshot, cofilin, and dynamin regulates polarized GOP formation by controlling the tubule fission. Our observations identify a mechanism underlying polarized GOP biogenesis and provide new insights regarding involvement of RhoA in dendritic development and polarization.
Collapse
Affiliation(s)
- Gonzalo Quassollo
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Jose Wojnacki
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniela A Salas
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Laura Gastaldi
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - María Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo OHiggins 340, 8331010 Santiago, Chile
| | - Cecilia Conde
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Mariano Bisbal
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Andrés Couve
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Alfredo Cáceres
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina.
| |
Collapse
|
61
|
Li S, Tuft BW, Xu L, Polacco MA, Clarke JC, Guymon CA, Hansen MR. Microtopographical features generated by photopolymerization recruit RhoA/ROCK through TRPV1 to direct cell and neurite growth. Biomaterials 2015; 53:95-106. [PMID: 25890710 DOI: 10.1016/j.biomaterials.2015.02.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023]
Abstract
Cell processes, including growth cones, respond to biophysical cues in their microenvironment to establish functional tissue architecture and intercellular networks. The mechanisms by which cells sense and translate biophysical cues into directed growth are unknown. We used photopolymerization to fabricate methacrylate platforms with patterned microtopographical features that precisely guide neurite growth and Schwann cell alignment. Pharmacologic inhibition of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or reduced expression of TRPV1 by RNAi significantly disrupts neurite guidance by these microtopographical features. Exogenous expression of TRPV1 induces alignment of NIH3T3 fibroblasts that fail to align in the absence of TRPV1, further implicating TRPV1 channels as critical mediators of cellular responses to biophysical cues. Microtopographic features increase RhoA activity in growth cones and in TRPV1-expressing NIH3T3 cells. Further, Rho-associated kinase (ROCK) phosphorylation is elevated in growth cones and neurites on micropatterned surfaces. Inhibition of RhoA/ROCK by pharmacological compounds or reduced expression of either ROCKI or ROCKII isoforms by RNAi abolishes neurite and cell alignment, confirming that RhoA/ROCK signaling mediates neurite and cell alignment to microtopographic features. These studies demonstrate that microtopographical cues recruit TRPV1 channels and downstream signaling pathways, including RhoA and ROCK, to direct neurite and cell growth.
Collapse
Affiliation(s)
- Shufeng Li
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, EYE & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Bradley W Tuft
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Marc A Polacco
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph C Clarke
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
62
|
Wilson C, Núñez MT, González-Billault C. Contribution of NADPH-oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci 2015; 128:2989-95. [DOI: 10.1242/jcs.168567] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play important physiological and pathological roles in neurotransmission and neurodegeneration, respectively. However, the contribution of ROS to molecular mechanisms involved in neuronal polarity and axon elongation is not well understood. In this work, we found that loss of function of the NOX complex altered neuronal polarization and decreased axonal length by a mechanism that involves actin cytoskeleton dynamics. Together, these results indicate that physiological levels of ROS produced by the NOX complex modulate hippocampal neuronal polarity and axonal growth in vitro.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - M. Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| |
Collapse
|
63
|
Hansberg-Pastor V, González-Arenas A, Piña-Medina AG, Camacho-Arroyo I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front Psychiatry 2015; 6:165. [PMID: 26635640 PMCID: PMC4653291 DOI: 10.3389/fpsyt.2015.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
64
|
Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep 2014; 9:2166-79. [PMID: 25533347 DOI: 10.1016/j.celrep.2014.11.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 10/07/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022] Open
Abstract
Mutations in the Autism susceptibility candidate 2 gene (AUTS2), whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.
Collapse
|
65
|
Heintz TG, Heller JP, Zhao R, Caceres A, Eva R, Fawcett JW. Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons. Mol Cell Neurosci 2014; 63:60-71. [PMID: 25260485 DOI: 10.1016/j.mcn.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.
Collapse
Affiliation(s)
- Tristan G Heintz
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Janosch P Heller
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rongrong Zhao
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Alfredo Caceres
- Laboratorio de Neurobiología Celular y Molecular, Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Friuli 2434, 5016 Córdoba, Argentina
| | - Richard Eva
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| |
Collapse
|
66
|
Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014; 359:267-78. [PMID: 25080065 DOI: 10.1007/s00441-014-1955-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
The formation of a neurite, the basis for axons and dendrites, begins with the concerted accumulation and organization of actin and microtubules. Whereas much is known about the proteins that play a role in these processes, because they perform similar functions in axon branching and filopodia formation, much remains to be discovered concerning the interaction of these individual cytoskeletal regulators during neurite formation. Here, we review the literature regarding various models of filopodial formation and the way in which proteins that control actin organization and polymerization induce neurite formation. Although several different regulators of actin polymerization are involved in neurite initiation, redundancy occurs between these regulators, as the effects of the loss of a single regulator can be mitigated by the addition of neurite-promoting substrates and proteins. Similar to actin dynamics, both microtubule stabilizing and destabilizing proteins play a role in neurite initiation. Furthermore, interactions between the actin and microtubule cytoskeleton are required for neurite formation. Several lines of evidence indicate that the interactions between these two components of the cytoskeleton are needed for force generation and for the localization of microtubules at sites of nascent neurites. The general theme that emerges is the existence of several central regulatory pathways on which extracellular cues converge to control and organize both actin and microtubules to induce the formation of neurites.
Collapse
|
67
|
Schultz ML, Tecedor L, Stein CS, Stamnes MA, Davidson BL. CLN3 deficient cells display defects in the ARF1-Cdc42 pathway and actin-dependent events. PLoS One 2014; 9:e96647. [PMID: 24792215 PMCID: PMC4008583 DOI: 10.1371/journal.pone.0096647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023] Open
Abstract
Juvenile Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL) is a devastating neurodegenerative disease caused by mutations in CLN3, a protein of undefined function. Cell lines derived from patients or mice with CLN3 deficiency have impairments in actin-regulated processes such as endocytosis, autophagy, vesicular trafficking, and cell migration. Here we demonstrate the small GTPase Cdc42 is misregulated in the absence of CLN3, and thus may be a common link to multiple cellular defects. We discover that active Cdc42 (Cdc42-GTP) is elevated in endothelial cells from CLN3 deficient mouse brain, and correlates with enhanced PAK-1 phosphorylation, LIMK membrane recruitment, and altered actin-driven events. We also demonstrate dramatically reduced plasma membrane recruitment of the Cdc42 GTPase activating protein, ARHGAP21. In line with this, GTP-loaded ARF1, an effector of ARHGAP21 recruitment, is depressed. Together these data implicate misregulated ARF1-Cdc42 signaling as a central defect in JNCL cells, which in-turn impairs various cell functions. Furthermore our findings support concerted action of ARF1, ARHGAP21, and Cdc42 to regulate fluid phase endocytosis in mammalian cells. The ARF1-Cdc42 pathway presents a promising new avenue for JNCL therapeutic development.
Collapse
Affiliation(s)
- Mark L. Schultz
- Program of Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Luis Tecedor
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Colleen S. Stein
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Iowa City, Iowa, United States of America
| | - Beverly L. Davidson
- Program of Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Iowa City, Iowa, United States of America
- Department of Neurology, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
68
|
Afshordel S, Wood WG, Igbavboa U, Muller WE, Eckert GP. Impaired geranylgeranyltransferase-I regulation reduces membrane-associated Rho protein levels in aged mouse brain. J Neurochem 2014; 129:732-42. [PMID: 24428713 PMCID: PMC3999261 DOI: 10.1111/jnc.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho-GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho-GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase-I. We examined age-related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase-I in brain tissue of 3- and 23-month-old C57BL/6 mice. We report a shift in the cellular localization of Rho-GTPases toward reduced levels of membrane-associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age-related reduction in membrane-associated Rho proteins was associated with a reduction in GGTase-Iβ levels that regulates binding of GGPP to Rho-GTPases. Proteins prenylated by GGTase-II were not reduced in aged brain indicating a specific targeting of GGTase-I in the aged brain. Inhibition of GGTase-I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane-associated Rho proteins in aged brain in association with down-regulation of GGTase-Iβ. This down-regulation could be one of the mechanisms causing age-related weakening of synaptic plasticity.
Collapse
Affiliation(s)
- Sarah Afshordel
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - W. Gibson Wood
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Urule Igbavboa
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Walter E. Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
69
|
Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL, Bracken C. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 2014; 4:2490. [PMID: 24048383 PMCID: PMC3820160 DOI: 10.1038/ncomms3490] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/21/2013] [Indexed: 12/29/2022] Open
Abstract
A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.
Collapse
Affiliation(s)
- Agustin Anastasia
- Department of Medicine, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Wojnacki J, Quassollo G, Marzolo MP, Cáceres A. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics. Small GTPases 2014; 5:e28430. [PMID: 24691223 DOI: 10.4161/sgtp.28430] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.
Collapse
Affiliation(s)
- José Wojnacki
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización; Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Alfredo Cáceres
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina; Universidad Nacional Córdoba (UNC); Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC); Córdoba-Argentina
| |
Collapse
|
71
|
Tivodar S, Kalemaki K, Kounoupa Z, Vidaki M, Theodorakis K, Denaxa M, Kessaris N, de Curtis I, Pachnis V, Karagogeos D. Rac-GTPases Regulate Microtubule Stability and Axon Growth of Cortical GABAergic Interneurons. Cereb Cortex 2014; 25:2370-82. [PMID: 24626607 PMCID: PMC4537417 DOI: 10.1093/cercor/bhu037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cortical interneurons are characterized by extraordinary functional and morphological diversity. Although tremendous progress has been made in uncovering molecular and cellular mechanisms implicated in interneuron generation and function, several questions still remain open. Rho-GTPases have been implicated as intracellular mediators of numerous developmental processes such as cytoskeleton organization, vesicle trafficking, transcription, cell cycle progression, and apoptosis. Specifically in cortical interneurons, we have recently shown a cell-autonomous and stage-specific requirement for Rac1 activity within proliferating interneuron precursors. Conditional ablation of Rac1 in the medial ganglionic eminence leads to a 50% reduction of GABAergic interneurons in the postnatal cortex. Here we examine the additional role of Rac3 by analyzing Rac1/Rac3 double-mutant mice. We show that in the absence of both Rac proteins, the embryonic migration of medial ganglionic eminence-derived interneurons is further impaired. Postnatally, double-mutant mice display a dramatic loss of cortical interneurons. In addition, Rac1/Rac3-deficient interneurons show gross cytoskeletal defects in vitro, with the length of their leading processes significantly reduced and a clear multipolar morphology. We propose that in the absence of Rac1/Rac3, cortical interneurons fail to migrate tangentially towards the pallium due to defects in actin and microtubule cytoskeletal dynamics.
Collapse
Affiliation(s)
- Simona Tivodar
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Kalemaki
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Zouzana Kounoupa
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vidaki
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece Current Address: Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kostas Theodorakis
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Myrto Denaxa
- Division of Molecular Neurobiology, Medical Research Council, National Institute for Medical Research, London, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, UK
| | - Ivan de Curtis
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, Medical Research Council, National Institute for Medical Research, London, UK
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion, Greece Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
72
|
Kang K, Yoon SY, Choi SE, Kim MH, Park M, Nam Y, Lee JS, Choi IS. Cytoskeletal Actin Dynamics are Involved in Pitch-Dependent Neurite Outgrowth on Bead Monolayers. Angew Chem Int Ed Engl 2014; 53:6075-9. [DOI: 10.1002/anie.201400653] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 11/06/2022]
|
73
|
Kang K, Yoon SY, Choi SE, Kim MH, Park M, Nam Y, Lee JS, Choi IS. Cytoskeletal Actin Dynamics are Involved in Pitch-Dependent Neurite Outgrowth on Bead Monolayers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Abstract
Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.
Collapse
|
75
|
Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, Nakamura T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 2013; 8:e79689. [PMID: 24223996 PMCID: PMC3817099 DOI: 10.1371/journal.pone.0079689] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022] Open
Abstract
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.
Collapse
Affiliation(s)
- Akane Fujita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Yasuda
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanism, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
76
|
Yi MH, Kim S, Zhang E, Kang JW, Park JB, Lee YH, Chung CK, Kim YM, Kim DW. IQGAP1 expression in spared CA1 neurons after an excitotoxic lesion in the mouse hippocampus. Cell Mol Neurobiol 2013; 33:1003-12. [PMID: 23907317 DOI: 10.1007/s10571-013-9968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Repeated seizures induce permanent alterations in the hippocampal circuits in experimental models with intractable temporal lobe epilepsy. Sprouting and synaptic reorganization induced by seizures has been well-studied in the mossy fiber pathway. However, studies investigating sprouting and synaptic reorganization beyond the mossy fiber pathway are limited. The present study examined the biochemical changes of CA1 pyramidal neurons undergoing morphological changes after excitotoxicity-induced hippocampal CA3 neuronal death. IQ-domain GTPase-activating proteins (IQGAP1), is an effector of Rac1 and Cdc42 and an actin-binding protein, was upregulated in CA1 pyramidal neurons after kainic acid-induced hippocampal CA3 neuronal degeneration. IQGAP1 + cells were colocalized with Nestin, but not in astrocytes or mature neurons. Furthermore, IQGAP1 did not originate from newly divided local precursors or NG2 + cells. IQGAP1 and adenomatous polyposis coli localized in CA1 pyramidal neurons, and Cdc42 activation was followed by IQGAP1 recruitment. These findings suggest that IQGAP1 is upregulated in pre-existed sparing neurons of the CA1 layer undergoing morphological changes after excitoxicity-induced hippocampal CA3 neuronal death. It demonstrates the utility of IQGAP1 as a possible marker for spared pyramidal neurons, which may contribute to structural and functional alternations responsible for the development of epilepsy.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 301-747, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hazai D, Szudoczki R, Ding J, Soderling SH, Weinberg RJ, Sótonyi P, Rácz B. Ultrastructural abnormalities in CA1 hippocampus caused by deletion of the actin regulator WAVE-1. PLoS One 2013; 8:e75248. [PMID: 24086480 PMCID: PMC3783472 DOI: 10.1371/journal.pone.0075248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
By conveying signals from the small GTPase family of proteins to the Arp2/3 complex, proteins of the WAVE family facilitate actin remodeling. The WAVE-1 isoform is expressed at high levels in brain, where it plays a role in normal synaptic processing, and is implicated in hippocampus-dependent memory retention. We used electron microscopy to determine whether synaptic structure is modified in the hippocampus of WAVE-1 knockout mice, focusing on the neuropil of CA1 stratum radiatum. Mice lacking WAVE-1 exhibited alterations in the morphology of both axon terminals and dendritic spines; the relationship between the synaptic partners was also modified. The abnormal synaptic morphology we observed suggests that signaling through WAVE-1 plays a critical role in establishing normal synaptic architecture in the rodent hippocampus.
Collapse
Affiliation(s)
- Diána Hazai
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Róbert Szudoczki
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Jindong Ding
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States of America
| | - Scott H. Soderling
- Departments of Cell Biology and Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Richard J. Weinberg
- Department of Cell Biology & Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Péter Sótonyi
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
78
|
Wang J, Li X, Cheng H, Wang K, Lu W, Wen T. Overexpression of Rho-GDP-dissociation inhibitor-γ inhibits migration of neural stem cells. J Neurosci Res 2013; 91:1394-401. [PMID: 23996536 DOI: 10.1002/jnr.23261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/03/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Neural stem cell (NSC) migration relies heavily on the regulation of actin and microtubule cytoskeletons by Rho GTPases, which are critical regulators of key steps during NSC migration. However, the migration mechanism remains unclear. Rho-GDP-dissociation inhibitor-γ (Rho-GDIγ) was identified as an important downregulator of the Rho family of GTPases, because of its ability to prevent nucleotide exchange and thus membrane association. This study investigates the role of Rho-GDIγ in neural stem cells migration. Our results indicate that the overexpression of Rho-GDIγ maintains NSCs in the stem cell state, meanwhile preventing NSC migration through inhibition of Rac1 expression, one of the Rho-family GTPases. This study provides the basis for further study of the molecular mechanism of NSC migration.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
79
|
Corvest V, Bogliolo S, Follette P, Arkowitz RA, Bassilana M. Spatiotemporal regulation of Rho1 and Cdc42 activity duringCandida albicansfilamentous growth. Mol Microbiol 2013; 89:626-48. [DOI: 10.1111/mmi.12302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
|
80
|
Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M, Esteban-Pretel G. Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 2013; 24:532-48. [PMID: 23820986 DOI: 10.1007/s12640-013-9409-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
81
|
Shirao T, González-Billault C. Actin filaments and microtubules in dendritic spines. J Neurochem 2013; 126:155-64. [PMID: 23692384 DOI: 10.1111/jnc.12313] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023]
Abstract
Dendritic spines are small protrusions emerging from their parent dendrites, and their morphological changes are involved in synaptic plasticity. These tiny structures are composed of thousands of different proteins belonging to several subfamilies such as membrane receptors, scaffold proteins, signal transduction proteins, and cytoskeletal proteins. Actin filaments in dendritic spines consist of double helix of actin protomers decorated with drebrin and ADF/cofilin, and the balance of the two is closely related to the actin dynamics, which may govern morphological and functional synaptic plasticity. During development, the accumulation of drebrin-binding type actin filaments is one of the initial events occurring at the nascent excitatory postsynaptic site, and plays a pivotal role in spine formation as well as small GTPases. It has been recently reported that microtubules transiently appear in dendritic spines in correlation with synaptic activity. Interestingly, it is suggested that microtubule dynamics might couple with actin dynamics. In this review, we will summarize the contribution of both actin filaments and microtubules to the formation and regulation of dendritic spines, and further discuss the role of cytoskeletal deregulation in neurological disorders.
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
82
|
Utreras E, Henriquez D, Contreras-Vallejos E, Olmos C, Di Genova A, Maass A, Kulkarni AB, Gonzalez-Billault C. Cdk5 regulates Rap1 activity. Neurochem Int 2013; 62:848-53. [PMID: 23416045 PMCID: PMC3791512 DOI: 10.1016/j.neuint.2013.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
Rap1 signaling is important for migration, differentiation, axonal growth, and during neuronal polarity. Rap1 can be activated by external stimuli, which in turn regulates specific guanine nucleotide exchange factors such as C3G, among others. Cdk5 functions are also important to neuronal migration and differentiation. Since we found that pharmacological inhibition of Cdk5 by using roscovitine reduced Rap1 protein levels in COS-7 cells and also C3G contains three putative phosphorylation sites for Cdk5, we examined whether the Cdk5-dependent phosphorylation of C3G could affect Rap1 expression and activity. We co-transfected C3G and tet-OFF system for p35 over-expression, an activator of Cdk5 activity into COS-7 cells, and then we evaluated phosphorylation in serine residues in C3G by immunoprecipitation and Western blot. We found that p35 over-expression increased C3G-serine-phosphorylation while inhibition of p35 expression by tetracycline or inhibition of Cdk5 activity with roscovitine decreased it. Interestingly, we found that MG-132, a proteasome inhibitor, rescue Rap1 protein levels in the presence of roscovitine. Besides, C3G-serine-phosphorylation and Rap1 protein levels were reduced in brain from Cdk5(-/-) as compared with the Cdk5(+/+) brain. Finally, we found that p35 over-expression increased Rap1 activity while inhibition of p35 expression by tetracycline or roscovitine decreased Rap1 activity. These results suggest that Cdk5-mediated serine-phosphorylation of C3G may control Rap1 stability and activity, and this may potentially impact various neuronal functions such as migration, differentiation, and polarity.
Collapse
Affiliation(s)
- Elias Utreras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | - Daniel Henriquez
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | | | - Cristina Olmos
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | - Alex Di Genova
- Center for Mathematical Modeling and Center for Genome Regulation, Universidad de Chile
| | - Alejandro Maass
- Center for Mathematical Modeling and Center for Genome Regulation, Universidad de Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
83
|
Jausoro I, Mestres I, Quassollo G, Masseroni L, Heredia F, Caceres A. Regulation of spine density and morphology by IQGAP1 protein domains. PLoS One 2013; 8:e56574. [PMID: 23441206 PMCID: PMC3575492 DOI: 10.1371/journal.pone.0056574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022] Open
Abstract
IQGAP1 is a scaffolding protein that regulates spine number. We now show a differential role for IQGAP1 domains in spine morphogenesis, in which a region of the N-terminus that promotes Arp2/3-mediated actin polymerization and branching stimulates spine head formation while a region that binds to Cdc42 and Rac is required for stalk extension. Conversely, IQGAP1 rescues spine deficiency induced by expression of dominant negative Cdc42 by stimulating formation of stubby spines. Together, our observations place IQGAP1 as a crucial regulator of spine number and shape acting through the N-Wasp Arp2/3 complex, as well as upstream and downstream of Cdc42.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ivan Mestres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lujan Masseroni
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Caceres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
84
|
Henríquez DR, Bodaleo FJ, Montenegro-Venegas C, González-Billault C. The light chain 1 subunit of the microtubule-associated protein 1B (MAP1B) is responsible for Tiam1 binding and Rac1 activation in neuronal cells. PLoS One 2012; 7:e53123. [PMID: 23300879 PMCID: PMC3531375 DOI: 10.1371/journal.pone.0053123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022] Open
Abstract
Microtubule-associated protein 1B (MAP1B) is a neuronal protein involved in the stabilization of microtubules both in the axon and somatodendritic compartments. Acute, genetic inactivation of MAP1B leads to delayed axonal outgrowth, most likely due to changes in the post-translational modification of tubulin subunits, which enhances microtubule polymerization. Furthermore, MAP1B deficiency is accompanied by abnormal actin microfilament polymerization and dramatic changes in the activity of small GTPases controlling the actin cytoskeleton. In this work, we showed that MAP1B interacts with a guanine exchange factor, termed Tiam1, which specifically activates Rac1. These proteins co-segregated in neurons, and interact in both heterologous expression systems and primary neurons. We dissected the molecular domains involved in the MAP1B-Tiam1 interaction, and demonstrated that pleckstrin homology (PH) domains in Tiam1 are responsible for MAP1B binding. Interestingly, only the light chain 1 (LC1) of MAP1B was able to interact with Tiam1. Moreover, it was able to increase the activity of the small GTPase, Rac1. These results suggest that the interaction between Tiam1 and MAP1B, is produced by the binding of LC1 with PH domains in Tiam1. The formation of such a complex impacts on the activation levels of Rac1 confirming a novel function of MAP1B related with the control of small GTPases. These results also support the idea of cross-talk between cytoskeleton compartments inside neuronal cells.
Collapse
Affiliation(s)
- Daniel R Henríquez
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|