51
|
The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction. Pharmaceuticals (Basel) 2011; 4:1101-1136. [PMID: 32143540 PMCID: PMC4058662 DOI: 10.3390/ph4081101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/26/2023] Open
Abstract
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Collapse
|
52
|
The Role of Phosphatidylinositol-3-Kinase and AMP-Activated Kinase in the Rapid Estrogenic Attenuation of Cannabinoid-Induced Changes in Energy Homeostasis. Pharmaceuticals (Basel) 2011. [PMCID: PMC4055882 DOI: 10.3390/ph4040630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
53
|
Park CJ, Zhao Z, Glidewell-Kenney C, Lazic M, Chambon P, Krust A, Weiss J, Clegg DJ, Dunaif A, Jameson JL, Levine JE. Genetic rescue of nonclassical ERα signaling normalizes energy balance in obese Erα-null mutant mice. J Clin Invest 2011; 121:604-12. [PMID: 21245576 DOI: 10.1172/jci41702] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/23/2010] [Indexed: 12/21/2022] Open
Abstract
In addition to its role in reproduction, estradiol-17β is critical to the regulation of energy balance and body weight. Estrogen receptor α-null (Erα-/-) mutant mice develop an obese state characterized by decreased energy expenditure, decreased locomotion, increased adiposity, altered glucose homeostasis, and hyperleptinemia. Such features are reminiscent of the propensity of postmenopausal women to develop obesity and type 2 diabetes. The mechanisms by which ERα signaling maintains normal energy balance, however, have remained unclear. Here we used knockin mice that express mutant ERα that can only signal through the noncanonical pathway to assess the role of nonclassical ERα signaling in energy homeostasis. In these mice, we found that nonclassical ERα signaling restored metabolic parameters dysregulated in Erα-/- mutant mice to normal or near-normal values. The rescue of body weight and metabolic function by nonclassical ERα signaling was mediated by normalization of energy expenditure, including voluntary locomotor activity. These findings indicate that nonclassical ERα signaling mediates major effects of estradiol-17β on energy balance, raising the possibility that selective ERα agonists may be developed to reduce the risks of obesity and metabolic disturbances in postmenopausal women.
Collapse
Affiliation(s)
- Cheryl J Park
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Roepke TA, Ronnekleiv OK, Kelly MJ. Physiological consequences of membrane-initiated estrogen signaling in the brain. Front Biosci (Landmark Ed) 2011; 16:1560-73. [PMID: 21196248 DOI: 10.2741/3805] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many of the actions of 17beta-estradiol (E2) in the central nervous system (CNS) are mediated via the classical nuclear steroid receptors, ER(alpha) and ERbeta, which interact with the estrogen response element to modulate gene expression. In addition to the nuclear-initiated estrogen signaling, E2 signaling in the brain can occur rapidly within minutes prior to any sufficient effects on transcription of relevant genes. These rapid, membrane-initiated E2 signaling mechanisms have now been characterized in many brain regions, most importantly in neurons of the hypothalamus and hippocampus. Furthermore, our understanding of the physiological effects of membrane-initiated pathways is now a major field of interest in the hypothalamic control of reproduction, energy balance, thermoregulation and other homeostatic functions as well as the effects of E2 on physiological and pathophysiological functions of the hippocampus. Membrane signaling pathways impact neuronal excitability, signal transduction, cell death, neurotransmitter release and gene expression. This review will summarize recent findings on membrane-initiated E2 signaling in the hypothalamus and hippocampus and its contribution to the control of physiological and behavioral functions.
Collapse
Affiliation(s)
- Troy A Roepke
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
55
|
Xu Y, Faulkner LD, Hill JW. Cross-Talk between Metabolism and Reproduction: The Role of POMC and SF1 Neurons. Front Endocrinol (Lausanne) 2011; 2:98. [PMID: 22649394 PMCID: PMC3355979 DOI: 10.3389/fendo.2011.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/22/2011] [Indexed: 01/22/2023] Open
Abstract
Energy homeostasis and reproduction require tight coordination, but the mechanisms underlying their interaction are not fully understood. Two sets of hypothalamic neurons, namely pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and steroidogenic factor-1 (SF1) neurons in the ventromedial hypothalamic nucleus, are emerging as critical nodes where metabolic and reproductive signals communicate. This view is supported by recent genetic studies showing that disruption of metabolic signals (e.g., leptin and insulin) or reproductive signals (e.g., estradiol) in these neurons leads to impaired regulation of both energy homeostasis and fertility. In this review, we will examine the potential mechanisms of neuronal communication between POMC, SF1, and gonadotropin-releasing hormone neurons in the regulation of metabolism and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| | - Latrice D. Faulkner
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of ToledoToledo, OH, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| |
Collapse
|
56
|
Kelly MJ, Qiu J. Estrogen signaling in hypothalamic circuits controlling reproduction. Brain Res 2010; 1364:44-52. [PMID: 20807512 PMCID: PMC3070154 DOI: 10.1016/j.brainres.2010.08.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022]
Abstract
It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. Yet, it is not well understood how estrogen signals via membrane receptors and how these signals impact not only membrane excitability but also gene transcription in neurons that modulate GnRH neuronal excitability. Indeed, it has been known for some time that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in hypothalamic neurons critical for reproductive function.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, Portland, OR 97239, USA.
| | | |
Collapse
|
57
|
PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab 2010; 12:88-95. [PMID: 20620998 PMCID: PMC2919367 DOI: 10.1016/j.cmet.2010.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 12/20/2009] [Accepted: 05/03/2010] [Indexed: 11/20/2022]
Abstract
Phosphatidyl inositol 3-kinase (PI3K) signaling in the hypothalamus has been implicated in the regulation of energy homeostasis, but the critical brain sites where this intracellular signal integrates various metabolic cues to regulate food intake and energy expenditure are unknown. Here, we show that mice with reduced PI3K activity in the ventromedial hypothalamic nucleus (VMH) are more sensitive to high-fat diet-induced obesity due to reduced energy expenditure. In addition, inhibition of PI3K in the VMH impaired the ability to alter energy expenditure in response to acute high-fat diet feeding and food deprivation. Furthermore, the acute anorexigenic effects induced by exogenous leptin were blunted in the mutant mice. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in the regulation of energy expenditure.
Collapse
|
58
|
Brown LM, Gent L, Davis K, Clegg DJ. Metabolic impact of sex hormones on obesity. Brain Res 2010; 1350:77-85. [PMID: 20441773 DOI: 10.1016/j.brainres.2010.04.056] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 04/18/2010] [Accepted: 04/20/2010] [Indexed: 02/07/2023]
Abstract
Obesity and its associated health disorders and costs are increasing. Men and post-menopausal women have greater risk of developing complications of obesity than younger women. Within the brain, the hypothalamus is an important regulator of energy homeostasis. Two of its sub-areas, the ventrolateral portion of the ventral medial nucleus (VL VMN) and the arcuate (ARC) respond to hormones and other signals to control energy intake and expenditure. When large lesions are made in the hypothalamus which includes both the VL VMN and the ARC, animals eat more, have reduced energy expenditure, and become obese. The ARC and the VL VMN, in addition to other regions in the hypothalamus, have been demonstrated to contain estrogen receptors. There are two estrogen receptors, estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). We and others have previously demonstrated that activation of ERalpha by estrogens reduces food intake and increases body weight. This review focuses on the relative contribution of activation of ERalpha by estrogens in the ARC and the VL VMN in the regulation of food intake and body weight. Additionally, estrogen receptors have been found in many peripheral tissues including adipose tissue. Estrogens are thought to have direct effects on adipose tissue and estrogens may provide anti-inflammatory properties both in the periphery and the in the central nervous system (CNS) which may protect women from diseases associated with inflammation. Understanding the mechanisms by which estrogens regulate body weight and inflammation will assist in determining potential therapeutic agents for menopausal women to decrease the propensity of diseases associated with obesity.
Collapse
Affiliation(s)
- Lynda M Brown
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | | | | | | |
Collapse
|
59
|
Xiao E, Kim AJ, Dutia R, Conwell I, Ferin M, Wardlaw SL. Effects of estradiol on cerebrospinal fluid levels of agouti-related protein in ovariectomized rhesus monkeys. Endocrinology 2010; 151:1002-9. [PMID: 20056830 PMCID: PMC2840683 DOI: 10.1210/en.2009-0853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC)-derived MSH peptides and the melanocortin receptor antagonist, agouti-related protein (AgRP), interact to regulate energy balance. Both POMC and AgRP neurons express estrogen receptors, but little is known about estrogen regulation of the melanocortin system in the primate. We have therefore examined the effects of physiological doses of estradiol (E2) on POMC and AgRP in lumbar cerebrospinal fluid (CSF) of ovariectomized monkeys. POMC prohormone was measured by ELISA. AgRP was measured by RIA (sensitive for the more biologically active C-terminal AgRP(83-132) but also detects full-length AgRP) and by ELISA (measures primarily full length AgRP). In the first experiment, 14 animals were studied before and after 3 wk of E2. CSF POMC did not change, but AgRP(RIA) decreased from 7.9 +/- 1.2 to 4.7 +/- 1.2 fmol/ml after E2 (P = 0.03) and the POMC/AgRP(RIA) ratio increased from 4.2 +/- 0.89 to 6.8 +/- 1.04 (P = 0.04). AgRP(ELISA) did not change, but the ratio of AgRP(RIA) compared with AgRP(ELISA) was reduced after E2 (P = 0.02). In the second experiment, 11 animals were studied after 6 wk of E2, and similar changes were noted. The degree of AgRP(RIA) suppression with E2 was inversely related to body mass index (r = 0.569; P = 0.03). These results show for the first time that E2 suppresses AgRP(C-terminal) in CSF, increases the POMC to AgRP ratio, and may decrease AgRP processing, thus leading to increased melanocortin signaling. Furthermore, obesity was associated with resistance to the suppressive effects of E2 on AgRP, analogous to what is seen with obesity and leptin resistance.
Collapse
Affiliation(s)
- Ennian Xiao
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
60
|
Kelly MJ, Rønnekleiv OK. Control of CNS neuronal excitability by estrogens via membrane-initiated signaling. Mol Cell Endocrinol 2009; 308:17-25. [PMID: 19549588 PMCID: PMC2701913 DOI: 10.1016/j.mce.2009.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/24/2009] [Accepted: 03/05/2009] [Indexed: 10/24/2022]
Abstract
It is well known that many of the actions of 17beta-estradiol (E2) in the central nervous system (CNS) are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane-associated steroid receptors for E2 in hypothalamic and other brain neurons. Indeed, we are just beginning to understand how E2 signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. We know that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane-delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. This review will concentrate on rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus and hippocampus, the nature of receptors involved and how they contribute to CNS functions.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA. E-mail, ; fax 503-494-4352, phone 503-494-5833
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA. E-mail, ; fax 503-494-4352, phone 503-494-5833
- Department of Anesthesiology and Perioperative Medicine, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA. E-mail, ; fax 503-494-4352, phone 503-494-5840
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
61
|
Shi H, Seeley RJ, Clegg DJ. Sexual differences in the control of energy homeostasis. Front Neuroendocrinol 2009; 30:396-404. [PMID: 19341761 PMCID: PMC4517605 DOI: 10.1016/j.yfrne.2009.03.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 03/09/2009] [Accepted: 03/17/2009] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has reached epidemic proportion with enormous costs in both human lives and healthcare dollars spent. Obesity-related metabolic disorders are much lower in premenopausal women than men; however, there is a dramatic increase following menopause in women. The health risks associated with obesity vary depending on the location of adipose tissue. Adipose tissue distributed in the abdominal visceral carry a much greater risk for metabolic disorders than does adipose tissue distributed subcutaneously. There are distinct sex-dependent differences in the regional fat distribution, women carry more fat subcutaneously whereas men carry more fat viscerally. Males and females differ with respect to their regulation of energy homeostasis. Peripheral adiposity hormones such as leptin and insulin as well as sex hormones directly influence energy balance. Sexual dimorphisms in energy balance, body fat distribution, and the role sex hormones have in mediating these differences are the focus of this review.
Collapse
Affiliation(s)
- Haifei Shi
- Obesity Research Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | |
Collapse
|
62
|
Roepke TA, Qiu J, Bosch MA, Rønnekleiv OK, Kelly MJ. Cross-talk between membrane-initiated and nuclear-initiated oestrogen signalling in the hypothalamus. J Neuroendocrinol 2009; 21:263-70. [PMID: 19187465 PMCID: PMC2796511 DOI: 10.1111/j.1365-2826.2009.01846.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is increasingly evident that 17beta-oestradiol (E(2)), via a distinct membrane oestrogen receptor (Gq-mER), can rapidly activate kinase pathways to have multiple downstream actions in central nervous system (CNS) neurones. We have found that E(2) can rapidly reduce the potency of the GABA(B) receptor agonist baclofen and mu-opioid receptor agonist DAMGO to activate G-protein-coupled, inwardly rectifying K(+) (GIRK) channels in hypothalamic neurones, thereby increasing the excitability (firing activity) of pro-opiomelanocortin (POMC) and dopamine neurones. These effects are mimicked by the membrane impermeant E(2)-BSA and a new ligand (STX) that is selective for the Gq-mER that does not bind to ERalpha or ERbeta. Both E(2) and STX are fully efficacious in attenuating the GABA(B) response in ERalpha, ERbeta and GPR 30 knockout mice in an ICI 182 780 reversible manner. These findings are further proof that E(2) signals through a unique plasma membrane ER. We have characterised the coupling of this Gq-mER to a Gq-mediated activation of phospholipase C leading to the up-regulation of protein kinase Cdelta and protein kinase A activity in these neurones, which ultimately alters gene transcription. Finally, as proof of principle, we have found that STX, similar to E(2), reduces food intake and body weight gain in ovariectomised females. STX, presumably via the Gq-mER, also regulates gene expression of a number of relevant targets including cation channels and signalling molecules that are critical for regulating (as a prime example) POMC neuronal excitability. Therefore, E(2) can activate multiple receptor-mediated pathways to modulate excitability and gene transcription in CNS neurones that are critical for controlling homeostasis and motivated behaviors.
Collapse
Affiliation(s)
- Troy A. Roepke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
63
|
Abstract
The control of energy homeostasis in women is correlated with the anorectic effects of oestrogen, which can attenuate body weight gain and reduce food intake in rodent models. This review investigates the multiple signalling pathways and cellular targets that oestrogen utilises to control energy homeostasis in the hypothalamus. Oestrogen affects all of the hypothalamic nuclei that control energy homeostasis. Oestrogen controls the activity of hypothalamic neurones through gene regulation and neuronal excitability. Oestrogen's primary cellular pathway is the control of gene transcription through the classical oestrogen receptors (ERs) (ERalpha and ERbeta) with ERalpha having the primary role in energy homeostasis. Oestrogen also controls energy homeostasis through membrane-mediated events via membrane-associated ERs or a novel, putative membrane ER that is coupled to G-proteins. Therefore, oestrogen is coupled to at least two receptors with multiple signalling and transcriptional pathways to mediate immediate and long-term anorectic effects. Ultimately, it is the interactions of all the receptor-mediated processes in hypothalamus and other areas of the central nervous system that will determine the anorectic effects of oestrogen and its control of energy homeostasis.
Collapse
Affiliation(s)
- T A Roepke
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
64
|
Roepke TA, Xue C, Bosch MA, Scanlan TS, Kelly MJ, Rønnekleiv OK. Genes associated with membrane-initiated signaling of estrogen and energy homeostasis. Endocrinology 2008; 149:6113-24. [PMID: 18755790 PMCID: PMC2613047 DOI: 10.1210/en.2008-0769] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During the reproductive cycle, fluctuations in circulating estrogens affect multiple homeostatic systems controlled by hypothalamic neurons. Two of these neuronal populations are arcuate proopiomelanocortin and neuropeptide Y neurons, which control energy homeostasis and feeding. Estradiol modulates these neurons either through the classical estrogen receptors (ERs) to control gene transcription or through a G protein-coupled receptor (mER) activating multiple signaling pathways. To differentiate between these two divergent ER-mediated mechanisms and their effects on homeostasis, female guinea pigs were ovariectomized and treated systemically with vehicle, estradiol benzoate (EB) or STX, a selective mER agonist, for 4 wk, starting 7 d after ovariectomy. Individual body weights were measured after each injection day for 28 d, at which time the animals were euthanized, and the arcuate nucleus was microdissected. As predicted, the body weight gain was significantly lower for EB-treated females after d 5 and for STX-treated females after d 12 compared with vehicle-treated females. Total arcuate RNA was extracted from all groups, but only the vehicle and STX-treated samples were prepared for gene microarray analysis using a custom guinea pig gene microarray. In the arcuate nucleus, 241 identified genes were significantly regulated by STX, several of which were confirmed by quantitative real-time PCR and compared with EB-treated groups. The lower weight gain of EB-treated and STX-treated females suggests that estradiol controls energy homeostasis through both ERalpha and mER-mediated mechanisms. Genes regulated by STX indicate that not only does it control neuronal excitability but also alters gene transcription via signal transduction cascades initiated from mER activation.
Collapse
Affiliation(s)
- T A Roepke
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
65
|
Vida B, Hrabovszky E, Kalamatianos T, Coen CW, Liposits Z, Kalló I. Oestrogen receptor alpha and beta immunoreactive cells in the suprachiasmatic nucleus of mice: distribution, sex differences and regulation by gonadal hormones. J Neuroendocrinol 2008; 20:1270-7. [PMID: 18752649 DOI: 10.1111/j.1365-2826.2008.01787.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oestrogen regulates various aspects of circadian rhythm physiology. The presence of oestrogen receptors within the suprachiasmatic nucleus (SCN), the principal circadian oscillator, indicates that some actions of oestrogen on circadian functions may be exerted at that site. The present study analysed sex differences, topographic distribution, and neurochemical phenotype of neurones expressing the alpha and beta subtypes of oestrogen receptors (ERalpha and ERbeta) in the mouse SCN. We found that relatively few neurones in the SCN are immunoreactive (IR) for ERalpha (approximately 4.5% in females and 3% in males), but five- to six-fold more SCN neurones express ERbeta. ER-IR neurones are primarily in the shell subdivision of the nucleus and show differences between the sexes, significantly greater numbers being found in females. Treatment of male or female gonadectomised mice with oestradiol benzoate for 24 h substantially reduced the number of ERbeta-IR neurones, but not ERalpha-IR neurones. Double-labelling immunocytochemical experiments to characterise the phenotype of the oestrogen-receptive neurones showed the presence of the calcium-binding proteins calretinin or calbindin D28K in approximately 12% and 10%, respectively, of ERalpha-IR neurones. A higher proportion (approximately 38%) of ERbeta-IR neurones contains calbindin D28K; a few (approximately 2%) express calretinin or vasopressin. These double-labelled cells appear primarily in the shell subdivision of the SCN. Neither vasoactive intestinal polypeptide- nor gastrin releasing peptide-immunoreactivity was observed in ER-IR neurones. These data indicate that the primary target cells for oestrogen are in the shell subdivision of the nucleus. The sexually differentiated expression and distribution of ERalpha and ERbeta in various cell populations of the SCN suggest multiple modes of oestrogen signalling within this nucleus, which may modulate circadian functions.
Collapse
Affiliation(s)
- B Vida
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
66
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol 2008; 290:14-23. [PMID: 18538919 PMCID: PMC2601664 DOI: 10.1016/j.mce.2008.04.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/24/2022]
Abstract
It is well known that many of the actions of 17beta-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. But it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
67
|
Heer IM, Kumper C, Vogtle N, Muller-Egloff S, Dugas M, Strauss A. Analysis of factors influencing the ultrasonic fetal weight estimation. Fetal Diagn Ther 2008; 23:204-10. [PMID: 18417979 DOI: 10.1159/000116742] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 12/15/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. METHODS We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation (time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. RESULTS Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. CONCLUSION Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation.
Collapse
Affiliation(s)
- Ivo Markus Heer
- Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, University Kiel, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|