51
|
Chaudhury S, Nag TC, Wadhwa S. Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus. J Chem Neuroanat 2006; 32:117-26. [PMID: 16962286 DOI: 10.1016/j.jchemneu.2006.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/18/2022]
Abstract
Prenatal auditory enrichment by species-specific sounds and sitar music enhances the expression of immediate early genes, synaptic proteins and calcium binding proteins (CaBPs) as well as modifies the structural components of the brainstem auditory nuclei and auditory imprinting area in chicks. There is also facilitation of postnatal auditory preference of the chicks to maternal calls following both types of sound stimulation indicating prenatal perceptual learning. To examine whether the sound enrichment protocol also affects the areas related to learning and memory, we assessed morphological changes in the hippocampus at post-hatch day 1 of control and prenatally sound-stimulated chicks. Additionally, the proportions of neurons containing calbindin D-28K and parvalbumin immunoreactivity as well as their protein levels were determined. Fertilized eggs of domestic chick were incubated under normal conditions of temperature, humidity, forced draft of air as well as light and dark (12:12h) photoperiods. They were exposed to patterned sounds of species-specific and sitar music at 65 dB for 15 min per hour over a day/night cycle from day 10 of incubation till hatching. The hippocampal volume, neuronal nuclear size and total number of neurons showed a significant increase in the music-stimulated group as compared to the species-specific sound-stimulated and control groups. However, in both the auditory-stimulated groups the protein levels of calbindin and parvalbumin as well as the percentage of the immunopositive neurons were increased. The enhanced proportion of CaBPs in the sound-enriched groups suggests greater Ca(2+) influx, which may influence long-term potentiation and short-term memory.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
52
|
Abstract
Early 20th-century comparative anatomists regarded the avian telencephalon as largely consisting of a hypertrophied basal ganglia, with thalamotelencephalic circuitry thus being taken to be akin to thalamostriatal circuitry in mammals. Although this view has been disproved for more than 40 years, only with the recent replacement of the old telencephalic terminology that perpetuated this view by a new terminology reflecting more accurate understanding of avian brain organization has the modern view of avian forebrain organization begun to become more widely appreciated. The modern view, reviewed in the present article, recognizes that the avian basal ganglia occupies no more of the telencephalon than is typically the case in mammals, and that it plays a role in motor control and motor learning as in mammals. Moreover, the vast majority of the telencephalon in birds is pallial in nature and, as true of cerebral cortex in mammals, provides the substrate for the substantial perceptual and cognitive abilities evident among birds. While the evolutionary relationship of the pallium of the avian telencephalon and its thalamic input to mammalian cerebral cortex and its thalamic input remains a topic of intense interest, the evidence currently favors the view that they had a common origin from forerunners in the stem amniotes ancestral to birds and mammals.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
53
|
Nikolakopoulou AM, Davies HA, Stewart MG. Passive avoidance training decreases synapse density in the hippocampus of the domestic chick. Eur J Neurosci 2006; 23:1054-62. [PMID: 16519670 DOI: 10.1111/j.1460-9568.2006.04619.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bird hippocampus (Hp), although lacking the cellular lamination of the mammalian Hp, possesses comparable roles in spatial orientation and is implicated in passive avoidance learning. As in rodents it can be divided into dorsal and ventral regions based on immunocytochemical, tracing and electrophysiological studies. To study the effects of passive avoidance learning on synapse morphometry in the Hp, spine and shaft synapse densities of 1-day-old domestic chicks were determined in dorsal and ventral Hp of each hemisphere by electron microscopy, 6 and 24 h following training to avoid pecking at a bead coated with a bitter-tasting substance, methyl anthranilate (MeA). The density of asymmetric spine and shaft synapses in MeA-trained birds at 6 h post-training was significantly lower in the dorsal and ventral Hp of the right hemisphere relative to control (untrained) chicks, but by 24 h this difference was absent. A hemispheric asymmetry was apparent in the ventral Hp where the water-trained group showed enhanced shaft and spine synapse density in the left hemisphere, whilst in the MeA-trained group only asymmetric shaft synapses follow the same pattern in relation to the right hemisphere. There were no differences in asymmetric shaft synapses in the dorsal Hp at 6 h post-training, but at 24 h post-training there was a reduction in the density of shaft synapses in the right hemisphere in MeA compared with control birds. These data are discussed in relation to the pruning effects of stress and learning on synapse density in chick Hp.
Collapse
Affiliation(s)
- A M Nikolakopoulou
- The Open University, Biological Sciences, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | | | |
Collapse
|
54
|
Nair-Roberts RG, Erichsen JT, Reboreda JC, Kacelnik A. Distribution of substance P reveals a novel subdivision in the hippocampus of parasitic South American cowbirds. J Comp Neurol 2006; 496:610-26. [PMID: 16615130 DOI: 10.1002/cne.20915] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parasitic cowbirds monitor potential hosts' nests and return to lay when appropriate, a task that is likely to involve spatial recall. Seasonal and sexual behavioral variations in the cowbirds correlate with anatomical changes in the hippocampal formation. During the breeding season, parasites have larger hippocampal formations than nonparasites. In parasitic species in which females alone perform nest bookkeeping, females have larger hippocampal formations than males. We investigated the distribution of the neuropeptide substance P (SP) in three sympatric cowbirds: two obligate parasites (shiny cowbird and screaming cowbird) and one nonparasite (bay-winged cowbird). Distribution of SP was similar to that in other songbirds, except for a previously undescribed field of dense SP-rich terminals within the hippocampus that we call the hippocampal SP terminal field (SPh). We found robust species differences in the volume of this new area, measured relative to the remainder of the telencephalon. SPh was largest in the generalist parasite (shiny cowbird) and smallest in the nonparasitic species (bay-winged cowbird). In the specialist parasite (screaming cowbird), SPh was smaller than in the generalist parasite but larger than in the nonparasitic species. SPh overlaps with two subdivisions described in the pigeon that have been related to the mammalian dentate gyrus and subiculum. The area containing SPh receives a major input from the lateral mammillary nucleus, which is probably the avian equivalent of the mammalian supramammillary nucleus (SUM), the main source of extrinsic SP input to mammalian hippocampus. SPh may be the termination of a pathway homologous to the SP-rich projection from SUM to the hippocampus in mammals.
Collapse
|
55
|
Winship IR, Pakan JMP, Todd KG, Wong-Wylie DR. A comparison of ventral tegmental neurons projecting to optic flow regions of the inferior olive vs. the hippocampal formation. Neuroscience 2006; 141:463-73. [PMID: 16698184 DOI: 10.1016/j.neuroscience.2006.03.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 03/16/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
The ventral tegmental area (catecholaminergic group A10) is a midbrain region characterized by concentrated dopaminergic immunoreactivity. Previous studies in pigeons show that the ventral tegmental area provides a robust projection to the hippocampal formation and to the medial column of the inferior olive. However, the distribution, morphology, and neurochemical content of the neurons that constitute these projections have not been resolved. In this study, we used a combination of retrograde tracing techniques and immunofluorohistochemistry to address these issues. Retrograde tracers were used to demonstrate that the distribution of ventral tegmental area neurons projecting to the hippocampus and the inferior olive overlap in the caudo-ventral ventral tegmental area. The hippocampus- and inferior olive-projecting ventral tegmental area neurons could not be distinguished based on morphology: most neurons had small- to medium-sized multipolar or fusiform soma. Double-labeling with fluorescent retrograde tracers revealed that the hippocampus- and medial column of the inferior olive-projecting neurons were found intermingled in the ventral tegmental area, but no cells were double labeled; i.e. individual ventral tegmental area neurons do not project to both the hippocampal formation and medial column of the inferior olive. Finally, we found that a minority (8.2%) of ventral tegmental area neurons providing input to the hippocampus were tyrosine hydroxylase-immunoreactive, whereas none of the inferior olive-projecting neurons were tyrosine hydroxylase positive. Combined, our findings show that the projections to the hippocampus and olivocerebellar pathway arise from intermixed subpopulations of ventral tegmental area neurons with indistinguishable morphology but only the hippocampal projection involves dopaminergic neurons. We suggest that equivalent projections from the ventral tegmental area to the hippocampal formation and inferior olive exist in mammals and discuss their potential role in the processing of optic flow and the analysis of self-motion.
Collapse
Affiliation(s)
- I R Winship
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
56
|
Watanabe S. Effects of Partial Hippocampal Lesions by IbotenicAcid on Repeated Acquisition of Spatial Discrimination in Pigeons. Rev Neurosci 2006; 17:29-41. [PMID: 16703941 DOI: 10.1515/revneuro.2006.17.1-2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pigeons were trained on a spatial discrimination task using a repeated acquisition procedure. In this procedure, the pigeons were trained to discriminate between the positions of three keys. One of them was designated the correct key. When the subjects reached the criterion, the discrimination task was changed, with one of two previously incorrect keys now being made the correct key. This procedure was repeated at least 15 times. Then, lesions to the whole hippocampus, the medial hippocampus or to the lateral hippocampus were made by injections of ibotenic acid (Experiment 1). Only the subjects with damage to the whole hippocampus showed deficits in learning after the lesions. The deficits were similar to those caused by aspiration lesions /37/. Knife cuts separating the medial and lateral hippocampi were made in Experiment 2. The subjects did not show deficits in the spatial discrimination task after the sections. Although studies of the connectivity in the avian hippocampus suggested functional differences between the medial and lateral hippocampi, the present results show that pigeons can learn spatial discrimination with the medial and lateral parts of hippocampus separated.
Collapse
|
57
|
Jeong JK, Velho TAF, Mello CV. Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. J Comp Neurol 2005; 489:23-41. [PMID: 15977168 DOI: 10.1002/cne.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the alpha, beta, and gamma classes of retinoic acid receptors (RARs). In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds.
Collapse
Affiliation(s)
- Jin K Jeong
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97221, USA
| | | | | |
Collapse
|
58
|
Siegel JJ, Nitz D, Bingman VP. Spatial-specificity of single-units in the hippocampal formation of freely moving homing pigeons. Hippocampus 2005; 15:26-40. [PMID: 15390167 DOI: 10.1002/hipo.20025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The importance of space-specific single-unit activity for hippocampal formation (HF)-mediated learning and memory in rodents has been extensively studied, yet little is known about how the unit findings in rodents generalize to other vertebrate species. We report a first assessment of the space-specific single-unit activity recorded from the HF of homing pigeons as they moved through a plus maze for food reward. Rate maps of pigeon HF single-unit activity typically revealed multiple regions (2-5 per cell) of increased activity (on average, 2.5 times higher than other regions of the maze) that in 27% of slow-firing cells was reliably space-specific over time. The qualitative appearance of rate maps and the degree of spatial-specificity observed for most all pigeon HF cells suggests more modest space-specific activity than typically reported for rat hippocampal cells. The nature of space-specific activity in the pigeon HF includes (1) often transiently reliable regions of increased activity for many cells, (2) multiple patches of activity that were sometimes observed in analogous maze areas, and (3) cells displaying substantial decreases in firing rate between baseline and maze-run conditions that could not be explained by a simple relationship between firing rate and a pigeon's speed. These observations suggest that pigeon HF cells may be coding for an unspecified behavioral/motivational/environmental factors in addition to a pigeon's momentary location. The data further suggest that the spatial ecology and evolutionary history of different species may be a critical feature shaping how HF neurons capture properties of space.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA.
| | | | | |
Collapse
|
59
|
Yamamoto K, Reiner A. Distribution of the limbic system-associated membrane protein (LAMP) in pigeon forebrain and midbrain. J Comp Neurol 2005; 486:221-42. [PMID: 15844168 DOI: 10.1002/cne.20562] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The limbic system-associated membrane protein (LAMP) is an adhesion molecule involved in specifying regional identity during development, and it is enriched in the neuropil of limbic brain regions in mammals but also found in some somatic structures. Although originally identified in rat, LAMP is present in diverse species, including avians. In this study, we used immunolabeling with a monoclonal antibody against rat LAMP to examine the distribution of LAMP in pigeon forebrain and midbrain. LAMP immunolabeling was prominent in many telencephalic regions previously noted as limbic in birds. These regions include the hippocampal complex, the medial nidopallium, and the ventromedial arcopallium. Subpallial targets of these pallial regions were also enriched in LAMP, such as the medial-most medial striatum. Whereas some telencephalic areas that have not been regarded as limbic were also LAMP-rich (e.g., the hyperpallium intercalatum and densocellulare of the Wulst, the mesopallium, and the intrapeduncular nucleus), most nonlimbic telencephalic areas were LAMP-poor (e.g., field L, the lateral nidopallium, and somatic basal ganglia). Similarly, in the diencephalon and midbrain, prominent LAMP labeling was observed in such limbic areas as the dorsomedial thalamus, the hypothalamus, the ventral tegmental area, and the central midbrain gray, as well as in a few nonlimbic areas such as nucleus rotundus, the shell of the nucleus pretectalis, the superficial tectum, and the parvocellular isthmic nucleus. Thus, as in mammals, LAMP in birds appears to be enriched in most known forebrain and midbrain limbic structures but is present as well in some somatic structures.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
60
|
Hough GE, Bingman VP. Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1047-62. [PMID: 15449093 DOI: 10.1007/s00359-004-0562-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/24/2022]
Abstract
The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon ( Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells ( n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells ( n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells ( n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
61
|
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Gütürkün O. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 2004; 473:377-414. [PMID: 15116397 PMCID: PMC2518311 DOI: 10.1002/cne.20118] [Citation(s) in RCA: 888] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy, University of Tennessee Health Science Center, Memphis 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Montagnese CM, Székely AD, Adám A, Csillag A. Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): An anterograde pathway tracing study with a bearing on functional circuits. J Comp Neurol 2004; 469:437-56. [PMID: 14730592 DOI: 10.1002/cne.11018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in different subregions of the septum of domestic chicks. The main targets of septal projections comprised the ipsi- and contralateral septal nuclei, including the nucleus of the diagonal band, basal ganglia, including the ventral paleostriatum, lobus parolfactorius, nucleus accumbens, and olfactory tubercle, archistriatum, piriform cortex, and anterior neostriatum. Further diencephalic and mesencephalic septal projections were observed in the ipsilateral preoptic region, hypothalamus (the main regions of afferentation comprising the lateral hypothalamic nuclei, ventromedial, paraventricular and periventricular nuclei, and the mammillary region), dorsal thalamus, medial habenular and subhabenular nuclei, midbrain central gray, and ventral tegmental area. Contralateral projections were also encountered in the septal nuclei, ventral paleostriatum, periventricular and anteromedial hypothalamic nuclei, suprachiasmatic nucleus, and the lateral hypothalamic area. Avian septal efferents are largely similar to those of mammals, the main differences being a relatively modest hippocampal projection arising mainly from the nucleus of the diagonal band (as confirmed by a specific experiment with the retrograde pathway tracer True blue), the lack of interpeduncular projection, and a greater contingent of amygdalar efferents arising from the lateral septum rather than the nucleus of the diagonal band. This pattern of connectivity is likely to reflect an important role of the avian septal nuclei in the coordination of limbic circuits and the integration of a wide variety of information sources modulating the appropriate behavioral responses: attention and arousal level, memory formation, hormonally mediated behaviors, and their affective components (such as ingestive, reproductive, and parental behaviors), social interaction, locomotor modulation, and circadian rhythm.
Collapse
|
63
|
Sadananda M, Bischof HJ. c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata). Hippocampus 2004; 14:19-27. [PMID: 15058479 DOI: 10.1002/hipo.10149] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
c-fos was used to mark regions of enhanced neuronal activity during sexual imprinting, an early learning process by which information about the prospective sexual partner is acquired and consolidated. In the present study, we demonstrate that the hippocampus, already known for its specialized spatial memory capacities in navigating pigeons and in food-storing birds, depicts a selective differential c-fos induction in a situation shown to lead to sexual imprinting, that is, exposing previously isolated male birds to a female for 1 h. c-fos induction is lateralized, the left hippocampus showing more c-fos activity than the right. Our results would indicate a role for the hippocampus in the consolidation process of imprinting, probably in the transfer of information to the other telencephalic areas that show alterations in synaptic connectivity as a result of consolidation of sexual imprinting.
Collapse
Affiliation(s)
- Monika Sadananda
- Department of Applied Zoology, Mangalore University, Karnataka, India
| | | |
Collapse
|
64
|
do Amaral-Toma M, Ferrari EADM. Effects of hippocampal lesions in a food location task in pigeons. Behav Brain Res 2004; 148:21-34. [PMID: 14684244 DOI: 10.1016/s0166-4328(03)00175-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigated the role of the hippocampus in pigeons learning of a food-related choice task. The effects of lesions induced by ibotenic acid were analyzed in two experiments. Experiment 1 investigated the effects of hippocampal damage on postoperative memory retrieval and in reversal learning. Experiment 2 investigated the effects of hippocampal lesions on the acquisition and reversal of learning. In both experiments probe tests were used to assess the behavioral strategies underlying the choice. In Experiment 1 hippocampal lesions impaired the preoperative learned performance in terms of choice latency but not choice accuracy. Experiment 2 data showed that, in postoperative learning sessions, latency as well as choice accuracy were impaired by hippocampal damage. The probe tests, in which a curtain was placed around the chamber, revealed behavioral patterns of a non-mapping strategy. This was true in both experiments and groups (experimental and controls). Immediately after training, during the probe tests of both experiments, in which food cups were omitted, the three groups spent more time in the target quadrant. However, immediately after the reversal condition, neither hippocampal damaged nor control pigeons showed a preference for the target quadrant. This may be interpreted as evidence for a hippocampal role in stimulus location learning involving non-mapping strategies.
Collapse
Affiliation(s)
- Marizia do Amaral-Toma
- Laboratório de Sistemas Neurais e Comportamento, Departamento de Fisiologia e Biofísica, IB, Universidade Estadual de Campinas, Cx P 6109, Campinas 13083-970, SP, Brazil.
| | | |
Collapse
|
65
|
Saldanha CJ, Schlinger BA, Micevych PE, Horvath TL. Presynaptic N-methyl-D-aspartate receptor expression is increased by estrogen in an aromatase-rich area of the songbird hippocampus. J Comp Neurol 2004; 469:522-34. [PMID: 14755533 DOI: 10.1002/cne.11035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vertebrate hippocampus (HP) is sensitive to estrogens, in part via effects on N-methyl-D-aspartate (NMDA)-type glutamate receptors (NR). Although the precise mechanism of this interaction is unclear, it constitutes a key interface in the plasticity of the adult vertebrate HP. The songbird HP expresses high levels of aromatase (estrogen synthase), suggesting that locally generated steroid may affect excitatory pathways. By using light, confocal, and electron microscopy with antibodies that specifically recognize aromatase and NR, we have 1) mapped their distribution in the zebra finch brain, 2) documented their coexpression in HP neurons, 3) studied the ultrastructure of NR-expressing cells in the HP, and 4) tested the influence of estrogen on the cellular and subcellular characteristics of NR-positive HP neurons. Aromatase and NR are coexpressed in HP neurons. NRs are detectable in presynaptic boutons of the songbird HP in addition to postsynaptic loci. Treatment with estrogen increased the somal size and innervation of NR-positive neurons and the frequency of presynaptic NR. Autoreception of excitatory neurotransmission via presynaptic NR may promote the strengthening of activity-dependent, excitatory synapses, thereby enhancing learning. NR-mediated autoreception may underlie estrogenic enhancement of HP structural and functional plasticity.
Collapse
Affiliation(s)
- Colin J Saldanha
- Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | | | |
Collapse
|
66
|
Shimizu T, Bowers AN, Budzynski CA, Kahn MC, Bingman VP. What Does a Pigeon (Columba livia) Brain Look Like During Homing? Selective Examination of ZENK Expression. Behav Neurosci 2004; 118:845-51. [PMID: 15301610 DOI: 10.1037/0735-7044.118.4.845] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lesion studies have shown that the avian hippocampus plays a crucial role in homing pigeon (Columba livia) navigation. Using the expression of the immediate early gene protein ZENK in intact pigeons, the authors found regional variation in hippocampal activation as a consequence of homing and, necessarily, the behavior and internal states that accompany it. Specifically, pigeons that homed displayed a significant increase in the number of ZENK-labeled cells in the lateral hippocampal formation compared with pigeons that did not home, whereas no difference was seen in the medial hippocampus. Significant changes in ZENK expression were also found in the medial striatum, which resembles the mammalian ventral striatum. The results identify portions of the hippocampal formation and the medial striatum as sites of plasticity associated with homing.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Psychology, University of South Florida, Tampa, FL, US.
| | | | | | | | | |
Collapse
|
67
|
Atoji Y, Wild JM. Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 2004; 475:426-61. [PMID: 15221956 DOI: 10.1002/cne.20186] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of the pigeon hippocampal formation was examined by tract tracing by using biotinylated dextran amine (BDA) and cholera toxin B subunit (CTB) and by injections of kainic acid to produce excitotoxic lesions. The hippocampal formation was divided into seven subdivisions based on Nissl staining and intrinsic and septal connections: dorsomedial (DM), dorsolateral (DL), triangular (Tr), V-shaped layer, magnocellular (Ma), parvocellular, and cell-poor regions. DL was composed of dorsal and ventral portions and sent associational fibers to DM, the V-shaped layer, and Tr. DL had strong reciprocal connections with the densocellular part of the hyperpallium (HD) and projected to the dorsolateral corticoid area. DM had reciprocal fiber connections with the V-shaped layer, Ma, and DL as well as with several subdivisions of the arcopallium. DL and DM, but not the V-shaped layer, projected fibers to the septum where those from DM exceeded in number those from DL. These projections further extended to the hypothalamus, particularly the lateral hypothalamic area. The lateral and medial septal nuclei projected back a very small number of ascending fibers to the hippocampal formation. Intraventricular injections of kainic acid induced neuronal loss widely in the hippocampal formation and subsequently produced gliosis in DM. These results indicate that DL receives its main afferents from HD and in turn sends inputs to an intrinsic circuit composed of hippocampal subdivisions DM, Ma, Tr, and the V-shaped layer; and also that DM is the main exit to the septum and hypothalamus. It is suggested that neurons in the V-shaped layer are intrinsic. Together, the results suggest that the V-shaped layer is comparable to the dentate gyrus of the mammalian hippocampal formation and that DM incorporates components comparable to both Ammon's horn and the subiculum.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan.
| | | |
Collapse
|
68
|
Nakajima S, Izawa EI, Matsushima T. Hippocampal lesion delays the acquisition of egocentric spatial memory in chicks. Neuroreport 2003; 14:1475-80. [PMID: 12960767 DOI: 10.1097/00001756-200308060-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Effects of bilateral chemical lesion of the hippocampus was examined in 1- to 2-week-old domestic chicks. Chicks were trained and tested in an egocentric spatial task, in which subject chicks should memorize location of a rewarding object in reference to the subject's viewpoint. Two beads were simultaneously presented on a wall, and chicks pecked at one of them based on relative location (left-right or above-below) to gain a reward. Comparison of training curves revealed that the lesion significantly delayed, but did not impair, the acquisition. Recall of the spatial cue, as well as conditioning with color cues, was not impaired. Hippocampus could thus be involved in memory formation of spatial relationships between nearby objects.
Collapse
Affiliation(s)
- Shinya Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
69
|
Kahn MC, Hough GE, Ten Eyck GR, Bingman VP. Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 2003; 459:127-41. [PMID: 12640665 DOI: 10.1002/cne.10601] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian hippocampal formation (HF) is a structure necessary for learning and remembering aspects of environmental space. Therefore, understanding the connections between different HF regions is important for determining how spatial learning processes are organized within the avian brain. The prevailing feed-forward, trisynaptic internal connectivity of the mammalian hippocampus and its importance for cognition have been well described, but the internal connectivity of the avian HF has only recently been investigated. To examine further the connectivity within the avian HF, small amounts of cholera toxin subunit B, primarily a retrograde tracer (n = 15), or biotinylated dextran amine, primarily an anterograde tracer (n = 10), were injected into localized regions of the HF. Examination of the immunohistochemically labeled tissue showed projections from extrinsic sensory processing areas into dorsolateral HF and the dorsal portion of the dorsomedial HF (DMd). DMd in turn projected into the medial (VM) and lateral (VL) ventral cell layers. A projection from VM into VL was found, and together these areas and DM provided input into the contralateral ventral cell layers. Ipsilaterally, a ventral portion of dorsomedial HF (DMv) received input from VL and VM. From DMv, projections exited HF laterally. The highlighted projections formed a discernible feed-forward processing network through the avian HF that resembled the trisynaptic circuit of the mammalian HF.
Collapse
Affiliation(s)
- Meghan C Kahn
- Department of Psychology and J P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | | | | |
Collapse
|
70
|
Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G. Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. Eur J Neurosci 2003; 17:1695-702. [PMID: 12752387 DOI: 10.1046/j.1460-9568.2003.02593.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Domestic chicks bilaterally or unilaterally lesioned to the hippocampus were trained to search for food hidden beneath sawdust by ground-scratching in the centre of a large enclosure, the correct position of food being indicated by a local landmark in the absence of any extra-enclosure visual cues. At test, the landmark was removed or displaced at a distance from its original position. Results showed that sham-operated chicks and chicks with a lesion of the left hippocampus searched in the centre, relying on large-scale geometric information provided by the enclosure, whereas chicks with a lesion of either the right hippocampus or both hippocampi were completely disoriented (landmark removed) or searched close to the landmark shifted from the centre (landmark displaced). These results indicate that encoding of geometric features of an enclosure occurs in the right hippocampus even when local information provided by a landmark would suffice to localize the goal; encoding based on local information, in contrast, seems to occur outside the hippocampus. These findings provide evidence that the left and right avian hippocampi play different roles in spatial cognition, a phenomenon which had been documented previously only for the human hippocampus.
Collapse
Affiliation(s)
- Luca Tommasi
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | | | | | | |
Collapse
|
71
|
Kovjanic D, Redies C. Small-scale pattern formation in a cortical area of the embryonic chicken telencephalon. J Comp Neurol 2003; 456:95-104. [PMID: 12509867 DOI: 10.1002/cne.2158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The parahippocampal area is a cortical region of the avian dorsomedial telencephalon. In the chicken embryo, it contains discrete clusters of cadherin-7-positive cells, which are embedded in a cadherin-7-negative matrix. In the present work, the development and spatial distribution of these clusters is studied in whole-mount specimens. The clusters form a complex, coherent pattern of patches of variable size, spacing, and staining intensity. The pattern is especially prominent and regularly spaced in the rostral part of the caudolateral parahippocampal area. Here, it consists of stripes and connecting bridges with an average periodicity of approximately 0.3 mm. This pattern vaguely resembles some animal fur patterns and the ocular dominance domain of the mammalian visual cortex. The cadherin-7-positive patches also differ from their surrounding area by their cytoarchitecture and their increased acetylcholinesterase activity, suggesting that they represent functionally specialized subregions within the parahippocampal area. During development, the patchiness is first observed between 9 and 10 days of incubation and gradually becomes more prominent until 15 days of incubation. Our results indicate that the patchy organization of cortical gray matter on a small scale of periodicity (below 1 mm), which is well studied in the mammalian neocortex, is also found in the avian telencephalon.
Collapse
Affiliation(s)
- Dragica Kovjanic
- Institute of Anatomy, University of Essen School of Medicine, D-45122 Essen, Germany
| | | |
Collapse
|
72
|
Hough GE, Pang KCH, Bingman VP. Intrahippocampal connections in the pigeon (Columba livia) as revealed by stimulation evoked field potentials. J Comp Neurol 2002; 452:297-309. [PMID: 12353225 DOI: 10.1002/cne.10409] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hippocampal formation (HF) of mammals and birds is crucial for spatial learning and memory. However, although the underlying synaptic organization and connectivity of the mammalian HF are well characterized, comparatively little is known about the avian HF. Localized regions of the homing pigeon HF were stimulated at 400-600 microA while evoked field potentials (EFPs) were recorded from adjacent and more distant HF areas relative to the stimulation site. The shortest discernible EFP latency was 12.2 msec. The emerging connectivity profile (using the location of peak EFP amplitude after stimulation and making no determination of the number of intervening synapses) was characterized by projections from the dorsolateral (DL) HF to the dorsomedial (DM) HF (15-msec latency) at the same anterior/posterior (A/P) level, DM to ventrolateral (VL) and ventromedial (VM; 15 msec) HF across A/P levels, VM to VL (12 msec) and contralateral VM (15 msec) at the same A/P level, and VL to ventral DL (DLv; 15 msec) across A/P levels posterior to the stimulation site. Using these data as a first approximation, connectivity through the avian HF appears to be characterized by a discernible feed-forward network starting with a projection from DL to DM, DM to VL, VM, and contralateral VM, VM to VL, and VL to posterior ventral DLv. Although still speculative, the results suggest that the internal connectivity of the avian HF is similar to that of the mammalian HF, despite the large evolutionary divergence between the two taxa.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|
73
|
Bailey DJ, Rosebush JC, Wade J. The hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch. JOURNAL OF NEUROBIOLOGY 2002; 52:43-51. [PMID: 12115892 DOI: 10.1002/neu.10070] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons that are active following song presentation, specifically the caudal hyperstriatum ventrale (cHV) and caudomedial neostriatum (NCM). While studied in detail in the male zebra finch, IEG responses in these neural substrates involved in song perception have not been quantified in females. Therefore, adult female zebra finches were presented with zebra finch song, nonzebra finch song, randomly generated tones, or silence for 30 min. One hour later they were sacrificed, and their brains removed, sectioned, and immunocytochemically processed for FOS expression. Animals exposed to zebra finch song had a significantly higher density of FOS-immunoreactive cells in the NCM than those presented with other songs, tones, or silence. Neuronal activation in the cHV was equivalent in birds that heard zebra finch and non-zebra finch song, expression that was higher than that observed in the groups that heard no song. Interestingly, the hippocampus (HP) and adjacent parahippocampal area (AHP) were activated in a manner comparable to the NCM. These results suggest a general role for the cHV in song perception and a more specific role for the NCM and HP/AHP in facilitating recognition of and responsiveness to species-specific song in female zebra finches.
Collapse
Affiliation(s)
- David J Bailey
- Department of Psychology, Michigan State University, 235 Psychology Research Building, East Lansing 48824, USA.
| | | | | |
Collapse
|
74
|
Atoji Y, Wild JM, Yamamoto Y, Suzuki Y. Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 2002; 447:177-99. [PMID: 11977120 DOI: 10.1002/cne.10239] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Behavioral experiments using ablation of the hippocampus are increasingly being used to address the hypothesis that the avian hippocampus plays a role in memory, as in mammals. However, the morphological basis of the avian hippocampus has been poorly understood. In the present study, the afferent and efferent connections of the hippocampus in the pigeon telencephalon were defined by injections, at various rostrocaudal sites, of neuronal tracers mainly into the triangular part located between its V-shaped layer of densely packed neurons. The major results obtained in the present study were as follows. 1) A topographical organization of the commissural projections was confirmed. These projections had two courses that projected to the contralateral side, one traveling through the fiber wall of the ventromedial telencephalon, which was the main path from neurons in the caudal hippocampus, and the other running down through the septohippocampal junction, which was the main path from neurons in the middle to rostral hippocampus. Both courses passed through the pallial commissure. 2) The hippocampus projected bilaterally to the septum, parahippocampal area (APH), and dorsolateral cortical area (CDL). These projections were also distributed topographically, with contralateral efferents crossing through the pallial commissure. 3) The hippocampus had ipsilateral reciprocal connections with APH, CDL, and the dorsal hyperstriatum. Septal afferents to the ipsilateral hippocampus were very small. 4) Intrinsic connections were found between the triangular part of the hippocampus and the lateral limb of the V-shaped layer of neurons. 5) The hippocampus projected ipsilaterally to the ventral basal ganglia and the fasciculus diagonalis Brocae. In sum, these connections of the hippocampus may form a neuronal circuit for the processing of spatial memory in pigeons.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
75
|
Siegel JJ, Nitz D, Bingman VP. Electrophysiological profile of avian hippocampal unit activity: a basis for regional subdivisions. J Comp Neurol 2002; 445:256-68. [PMID: 11920705 DOI: 10.1002/cne.10167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrophysiological activity was recorded from single neurons (units) in the hippocampal formation (HF) of freely moving homing pigeons in order to provide a taxonomy of unit types found in the avian HF; a taxonomy that could be used to define regional subdivisions and be compared with unit types found in the mammalian hippocampus. Two distinct types of unit were observed in the avian HF. One type was uniformly characterized by relatively rapid firing rates and shorter spike widths, and was found throughout the HF. The other type was more variable in activity profile but, compared with the fast-firing units, was characterized by slower firing rates and longer spike widths. However, despite the variable nature of the slow-firing units, most slow-firing units recorded within a given anatomical region displayed similar firing rates, spike widths, and interspike intervals. In general, ventral HF units displayed activity patterns similar to projection cells found in the mammalian Ammon's horn. Most dorsocaudal units displayed activity patterns similar to presumed granular cells in the mammalian dentate gyrus. By contrast, most dorsorostral units displayed activity patterns similar to a type of unit found in the mammalian subiculum. Although different in some details, the overall activity profile of units found in the avian HF, and their regional distribution, is strikingly similar to unit types found in the mammalian hippocampus, suggesting that unit activity profile is one hippocampal dimension conserved through evolution.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | | |
Collapse
|
76
|
Gould KL, Newman SW, Tricomi EM, DeVoogd TJ. The distribution of substance P and neuropeptide Y in four songbird species: a comparison of food-storing and non-storing birds. Brain Res 2001; 918:80-95. [PMID: 11684045 DOI: 10.1016/s0006-8993(01)02961-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distributions of the neuropeptides substance P (SP) and neuropeptide Y (NPY) were investigated in four songbird species that differ in their food-storing behavior. The food-storing black-capped chickadee (Parus atricapillus) was compared to the non-storing blue tit (Parus caeruleus) and great tit (Parus major) within the avian family Paridae, as well as to the non-storing dark-eyed junco (Junco hyemalis). All four species showed a similar distribution of SP throughout the brain with the exception of two areas, the hippocampal complex (including hippocampus (Hp) and parahippocampus (APH)) and the Wulst (including the hyperstriatum accessorium (HA)). SP-like immunoreactivity was found in cells of the Hp in juncos, but not in the three parid species. Two areas within the APH and HA showed SP-like immunoreactivity in all four species. The more medial of these (designated SPm) is a distinctive field of fibers and terminals found throughout the APH and extending into the HA. A positive relationship between SPm and Hp volume was found for all four species with the chickadee having a significantly larger SPm area relative to telencephalon than the other species. The distribution of SP in this region may be related to differences in food-storing behavior. In contrast to substance P, NPY distribution throughout the brain was similar in all four species. Further, NPY-immunoreactive cells were found in the Hp of all four species and no species differences in the number of NPY cells was observed.
Collapse
Affiliation(s)
- K L Gould
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
77
|
Watanabe S. Effects of hippocampal lesions on repeated acquisition of spatial discrimination in pigeons. Behav Brain Res 2001; 120:59-66. [PMID: 11173085 DOI: 10.1016/s0166-4328(00)00358-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anatomical studies of avian hippocampus suggest this structure is a counterpart of that of mammals, and allometric studies of food storing birds support the idea that the avian hippocampus has spatial cognitive functions. In the present study, the spatial cognitive function of hippocampus in pigeons was examined by lesion experiments. Pigeons were trained on either a spatial discrimination, or a spatial discrimination with an added color cue, using a repeated acquisition procedure. In the spatial task, the pigeons were trained to discriminate the position of three keys. Each time the subjects reached the criterion, they were trained on different discriminations in which one out of two previously incorrect keys became the correct key. In the task with color added, each key had its own color, so the subject had both spatial and color cues for the discrimination. The hippocampal lesions disturbed the acquisition of the spatial discrimination, but not in the task in which color cues were added. These results suggest that the avian hippocampus have a crucial role in acquisition of spatial discriminations.
Collapse
Affiliation(s)
- S Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|
78
|
Redies C, Medina L, Puelles L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 2001. [DOI: 10.1002/cne.1315] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
79
|
Smulders TV, Shiflett MW, Sperling AJ, DeVoogd TJ. Seasonal changes in neuron numbers in the hippocampal formation of a food-hoarding bird: the black-capped chickadee. JOURNAL OF NEUROBIOLOGY 2000; 44:414-22. [PMID: 10945896 DOI: 10.1002/1097-4695(20000915)44:4<414::aid-neu4>3.0.co;2-i] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The volume of the hippocampal formation (HF) in black-capped chickadees (Poecile atricapillus) varies across the seasons, in parallel with the seasonal cycle in food hoarding. In this study, we estimate cell density and total cell number in the HF across seasons in both juveniles and adults. We find that the seasonal variation in volume is due to an increase in the number of small and large cells (principally neurons) in the fall. Adults also have lower neuron densities than juveniles. Both juveniles and adults show an increase in cell density in the rostral part of the HF in August and a subsequent decrease toward October. This suggests that the net cell addition to the HF may already start in August. We discuss the implications of this early start with respect to the possibility that the seasonal change in HF volume is driven by the experience of food hoarding. We also speculate on the functional significance of the addition of neurons to the HF in the fall.
Collapse
Affiliation(s)
- T V Smulders
- Department of Psychology, Uris Hall, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
80
|
Smulders TV, DeVoogd TJ. Expression of immediate early genes in the hippocampal formation of the black-capped chickadee (Poecile atricapillus) during a food-hoarding task. Behav Brain Res 2000; 114:39-49. [PMID: 10996045 DOI: 10.1016/s0166-4328(00)00189-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Black-capped chickadees store food in many different locations in their home range and are able to accurately remember these locations. We measured the number of cells immunopositive for three different Immediate Early Gene products (Fra-1, c-Fos and ZENK) to map neuronal activity in the chickadee Hippocampal Formation (HF) during food storing and retrieval. Fra-1-like immunoreactivity is downregulated in the dorsal HF of both storing and retrieving chickadees compared to controls. In retrieving birds, the number of Fos-like immunoreactive neurons relates to the number of items remembered, while the number of ZENK-like immunoreactive neurons in the HF may be related to the accuracy of cache retrieval. These results imply that the brain might process complex information by recruiting more neurons into the network of active neurons. Thus, our results could help explain why food-hoarding birds have more HF neurons than non-hoarders, and why this number increases in autumn when large numbers of food items are cached.
Collapse
Affiliation(s)
- T V Smulders
- Department of Psychology, Uris Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
81
|
Colombo M, Broadbent N. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 2000; 24:465-84. [PMID: 10817844 DOI: 10.1016/s0149-7634(00)00016-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of hippocampal lesions on the processing and retention of visual and spatial information in birds and mammals is reviewed. Both birds and mammals with damage to the hippocampus are severely impaired on a variety of spatial tasks, such as navigation, maze learning, and the retention of spatial information. In contrast, both birds and mammals with damage to the hippocampus are not impaired on a variety of visual tasks, such as delayed matching-to-sample, concurrent discrimination, or retention of a visual discrimination. In addition, both birds and mammals with hippocampal damage display impairments in the acquisition of an autoshaped response, as well as alterations in response suppression. These findings suggest that the avian hippocampus is a functional homologue of the mammalian hippocampus, and that in both birds and mammals the hippocampus is important for the processing and retention of spatial, rather than purely visual information.
Collapse
Affiliation(s)
- M Colombo
- Department of Psychology and The Center for Neuroscience, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
82
|
Dermon CR, Stamatakis A, Tlemçani O, Balthazart J. Performance of appetitive or consummatory components of male sexual behavior is mediated by different brain areas: a 2-deoxyglucose autoradiographic study. Neuroscience 2000; 94:1261-77. [PMID: 10625066 DOI: 10.1016/s0306-4522(99)00318-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The in vivo autoradiographic deoxyglucose method was used to identify the functional brain circuits that are involved in the performance of appetitive and consummatory components of male sexual behavior in Japanese quail (Coturnix japonica). Two groups of castrated, testosterone-treated male quail were trained during 12 sessions to associate the view of a female behind a window with the opportunity to interact freely and to copulate with her. They developed, as a consequence, a social proximity response (staying close and looking through the window providing a view of the female) that has been used in previous experiments to measure appetitive sexual behavior. A third control group (also castrated and treated with testosterone) was allowed to view the female but not to copulate with her and therefore did not develop this proximity response. 2-14C-deoxyglucose was then injected i.p. to these birds and they were allowed to either copulate freely with a female (consummatory sexual behavior group) or express the social proximity response (appetitive sexual behavior group). The control group was provided a view of the female but these birds, although they were exposed to the same stimuli as birds in the appetitive group, did not express the social proximity response because they had never learned the association with the opportunity to copulate. Birds were killed 45 min after the deoxyglucose injection and their brains were processed for autoradiography. Densitometric analyses of the autoradiograms revealed that the expression of appetitive or consummatory aspects of male sexual behavior was associated with significant increases by comparison with the control group in the deoxyglucose incorporation in the nucleus mesencephalicus lateralis, pars dorsalis and in the nucleus leminsci lateralis. In addition, an increase in the deoxyglucose incorporation was specifically observed in the paleostriatum primitivum, rostral preoptic area, nucleus intercollicularis, nucleus interpeduncularis and third nerve but a decrease was observed in the dorsomedial part of the hippocampus and in the nucleus nervi oculomotori in birds of the consummatory sexual behavior group by comparison with controls. By contrast, in the appetitive sexual behavior group, significant increases in deoxyglucose incorporation were observed in two telencephalic areas, the intermediate hyperstriatum ventrale and neostriatum caudolaterale by comparison with the controls, but decreases were detected in the stratum griseum et fibrosum superficiale of optic tectum by comparison with the consummatory behavior group. These studies demonstrate that the performance of appetitive or consummatory components of male sexual behavior affects in a specific manner the deoxyglucose uptake and accumulation in specific regions of the quail brain. Changes in metabolic activity were observed in steroid-sensitive areas, in auditory, visual and vocal brain regions, and in brain nuclei related to motor behavior but also in association telencephalic and limbic structures. These changes in oxidative metabolism overlap to some extent with metabolic changes as revealed by immunocytochemistry for the immediate early gene products Fos and Zenk, but many specific reactions are also detected indicating that these techniques are not necessarily redundant and, together, they can provide a more complete picture of the brain circuits that are implicated in the control and performance of complex behaviors.
Collapse
Affiliation(s)
- C R Dermon
- Department of Biology, University of Crete, Greece
| | | | | | | |
Collapse
|
83
|
Cornil C, Foidart A, Minet A, Balthazart J. Immunocytochemical localization of ionotropic glutamate receptors subunits in the adult quail forebrain. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001225)428:4<577::aid-cne1>3.0.co;2-k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
84
|
Abstract
The present review provides an overview of the distribution of dopaminergic fibers and dopaminoceptive elements within the avian telencephalon, the possible interactions of dopamine (DA) with other biochemically identified systems as revealed by immunocytochemistry, and the involvement of DA in behavioral processes in birds. Primary sensory structures are largely devoid of dopaminergic fibers, DA receptors and the D1-related phosphoprotein DARPP-32, while all these dopaminergic markers gradually increase in density from the secondary sensory to the multimodal association and the limbic and motor output areas. Structures of the avian basal ganglia are most densely innervated but, in contrast to mammals, show a higher D2 than D1 receptor density. In most of the remaining telencephalon D1 receptors clearly outnumber D2 receptors. Dopaminergic fibers in the avian telencephalon often show a peculiar arrangement where fibers coil around the somata and proximal dendrites of neurons like baskets, probably providing them with a massive dopaminergic input. Basket-like innervation of DARPP-32-positive neurons seems to be most prominent in the multimodal association areas. Taken together, these anatomical findings indicate a specific role of DA in higher order learning and sensory-motor processes, while primary sensory processes are less affected. This conclusion is supported by behavioral findings which show that in birds, as in mammals, DA is specifically involved in sensory-motor integration, attention and arousal, learning and working memory. Thus, despite considerable differences in the anatomical organization of the avian and mammalian forebrain, the organization of the dopaminergic system and its behavioral functions are very similar in birds and mammals.
Collapse
Affiliation(s)
- D Durstewitz
- AE Biopsychologie, Ruhr-Universität Bochum, Germany.
| | | | | |
Collapse
|
85
|
Abstract
The peptidergic melanin-concentrating hormone (MCH) system was investigated by immunocytochemistry in several birds. MCH perikarya were found in the periventricular hypothalamic nucleus near the paraventricular organ and in the lateral hypothalamic areas. Immunoreactive fibers were very abundant in the ventral pallidum, in the nucleus of the stria terminalis, and in the septum/diagonal band complex, where immunoreactive pericellular nets were prominent. Many fibers innervated the whole preoptic area, the lateral hypothalamic area, and the infundibular region. Some fibers also reached the dorsal thalamus and the epithalamus. The median eminence contained only sparse projections, and the posterior pituitary was not labeled. Thus, in birds, a neurohormonal role for MCH is not likely. Immunoreactive fibers were observed in other regions, such as the intercollicular nucleus, stratum griseum periventriculare (mesencephalic tectum), central gray, nigral complex (especially the ventral tegmental area), reticular areas, and raphe nuclei. Although no physiological investigation concerning the role of MCH has been performed in birds, the distribution patterns of the immunoreactive perikarya and fibers observed suggest that MCH may be involved in functions similar to those described in rats. In particular, the projections to parts of the limbic system (ventropallidal ganglia, septal complex, hypothalamus, dorsal thalamus, and epithalamus) and to structures concerned with visceral and other sensory information integration suggest that MCH acts as a neuromodulator involved in a wide variety of physiological and behavioral adaptations (arousal) with regard to feeding, drinking, and reproduction.
Collapse
Affiliation(s)
- J Cardot
- UPRESA CNRS 6025, Laboratoire d'Histologie, Faculté de Médecine, 25030 Besançon, France
| | | | | | | | | |
Collapse
|
86
|
Abstract
In experiment 1, pigeons were trained on spatial or color autodiscrimination. Presentation of one of two keys or one of two colors was followed by food presentation. However, the other side of the keys or the other color was not. The hippocampal lesions disturbed the acquisition of spatial discrimination but not of color discrimination. In experiment 2, pigeons were preoperatively trained the spatial autodiscrimination, then received the hippocampal lesions. The subjects maintained the discrimination. These results suggest that the avian hippocampus plays a crucial role in acquisition of spatial discrimination.
Collapse
Affiliation(s)
- S Watanabe
- Department of Psychology, Keio University, Tokyo, Japan.
| |
Collapse
|
87
|
Wieraszko A. Avian hippocampus as a model to study spatial orientation-related synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:107-29. [PMID: 10079840 DOI: 10.1007/978-1-4615-4869-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- A Wieraszko
- Department of Biology/Program in Neuroscience, College of Staten Island/CUNY, New York 10314, USA.
| |
Collapse
|
88
|
Abstract
The avian hippocampal formation (HP) is considered to be homologous to the mammalian hippocampus on the basis of topography, developmental origin and its role in processing spatial memory. However, the morphological organization of the avian HP is very different from that of mammals and components similar to the subdivisions of the mammalian structure are not readily recognizable. In passerine birds, three spatially and morphologically distinct populations of Calbindin immunoreactive neurones are found in the dorsolateral (DL), dorsomedial (DM) and ventral (V) aspects of HP. Iontophoresis of Phaseolus vulgaris leucoagglutinin revealed three consistently different projection patterns arising from the different subregions. Generally, there is a medial-to-lateral topographical organization of efferents in relation to the septal complex. The DL region could be paralleled to the subiculum of mammals with its main projections to the basal ganglia, the limbic archistriatum, the lateral septum and the paraxial meso-diencephalic centres. The 'V' subdivision is likely to be homologous to the Ammon's horn of mammals with its commissural projections to the contralateral HP. Based on its purely intrinsic connectivity, the DM region could be a good candidate for an equivalent of the dentate gyrus. Nitric oxide synthase (NOS) containing neural structures display a specific distribution within the hippocampal subregions which is uniform in all passerine species studied. However, there is a marked difference in the level of diffuse neuropil reactivity between food-storers versus non-storers. Unlike the mammalian homologue, avian hippocampal NOS positive neurones do not show a near complete co-localization with the inhibitory transmitter GABA.
Collapse
Affiliation(s)
- A D Székely
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medicine, Budapest, Hungary.
| |
Collapse
|
89
|
Stewart MG, Cristol D, Philips R, Steele RJ, Stamatakis A, Harrison E, Clayton N. A quantitative autoradiographic comparison of binding to glutamate receptor sub-types in hippocampus and forebrain regions of a food-storing and a non-food-storing bird. Behav Brain Res 1999; 98:89-94. [PMID: 10210525 DOI: 10.1016/s0166-4328(98)00055-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In two species of birds, food-storing marsh tits, P. palustris, and non-storing blue tits, P. caeruleus, quantitative receptor autoradiography was used to localize NMDA (N-methyl-D-aspartate)-sensitive [3H]glutamate, [3H]MK801, and [3H]AMPA binding sites, in six regions of the forebrain: hippocampus and parahippocampus, hyperstriatum accessorium (vision) and ventrale (sensory integration), neostriatum (auditory), and lobus parolfactorius (basal ganglia). In both species high levels of labelling to both NMDA and AMPA receptors were observed throughout the forebrain. However, a marked difference in receptor labelling was apparent between the two species, with levels of binding to NMDA ion channel sites being significantly lower (20%) in both the hippocampus and parahippocampus, in food storers compared to non-food storers. The levels of binding to other forebrain regions were remarkably similar in the two species. No differences were seen in the binding to AMPA receptors in forebrain regions of either species.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biology, The Open University, Milton Keynes, UK.
| | | | | | | | | | | | | |
Collapse
|
90
|
|
91
|
Abstract
Comparative studies provide a unique source of evidence for the role of the hippocampus in learning and memory. Within birds and mammals, the hippocampal volume of scatter-hoarding species that cache food in many different locations is enlarged, relative to the remainder of the telencephalon, when compared with than that of species which cache food in one larder, or do not cache at all. Do food-storing species show enhanced memory function in association with the volumetric enlargement of the hippocampus? Comparative studies within the parids (titmice and chickadees) and corvids (jays, nutcrackers and magpies), two families of birds which show natural variation in food-storing behavior, suggest that there may be two kinds of memory specialization associated with scatter-hoarding. First, in terms of spatial memory, several scatter-hoarding species have a more accurate and enduring spatial memory, and a preference to rely more heavily upon spatial cues, than that of closely related species which store less food, or none at all. Second, some scatter-hoarding parids and corvids are also more resistant to memory interference. While the most critical component about a cache site may be its spatial location, there is mounting evidence that food-storing birds remember additional information about the contents and status of cache sites. What is the underlying neural mechanism by which the hippocampus learns and remembers cache sites? The current mammalian dogma is that the neural mechanisms of learning and memory are achieved primarily by variations in synaptic number and efficacy. Recent work on the concomitant development of food-storing, memory and the avian hippocampus illustrates that the avian hippocampus may swell or shrivel by as much as 30% in response to presence or absence of food-storing experience. Memory for food caches triggers a dramatic increase in the total number of number of neurons within the avian hippocampus by altering the rate at which these cells are born and die.
Collapse
Affiliation(s)
- N S Clayton
- Section of Neurobiology, Physiology and Behavior, University of California Davis, 95616, USA.
| |
Collapse
|
92
|
Durstewitz D, Kröner S, Hemmings HC, Güntürkün O. The dopaminergic innervation of the pigeon telencephalon: distribution of DARPP-32 and co-occurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience 1998; 83:763-79. [PMID: 9483560 DOI: 10.1016/s0306-4522(97)00450-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dopaminergic axons arising from midbrain nuclei innervate the mammalian and avian telencephalon with heterogeneous regional and laminar distributions. In primate, rodent, and avian species, the neuromodulator dopamine is low or almost absent in most primary sensory areas and is most abundant in the striatal parts of the basal ganglia. Furthermore, dopaminergic fibres are present in most limbic and associative structures. Herein, the distribution of DARPP-32, a phosphoprotein related to the dopamine D1-receptor, was investigated in the pigeon telencephalon by immunocytochemical techniques. Furthermore, co-occurrence of DARPP-32-positive perikarya with tyrosine hydroxylase-positive pericellular axonal "baskets" or glutamate decarboxylase-positive neurons, as well as co-occurrence of tyrosine hydroxylase and glutamate decarboxylase were examined. Specificity of the anti-DARPP-32 monoclonal antibody in pigeon brain was determined by immunoblotting. The distribution of DARPP-32 shared important features with the distribution of D1-receptors and dopaminergic fibres in the pigeon telencephalon as described previously. In particular, DARPP-32 was highly abundant in the avian basal ganglia, where a high percentage of neurons were labelled in the "striatal" parts (paleostriatum augmentatum, lobus parolfactorius), while only neuropil staining was observed in the "pallidal" portions (paleostriatum primitivum). In contrast, DARPP-32 was almost absent or present in comparatively lower concentrations in most primary sensory areas. Secondary sensory and tertiary areas of the neostriatum contained numbers of labelled neurons comparable to that of the basal ganglia and intermediate levels of neuropil staining. Approximately up to one-third of DARPP-32-positive neurons received a basket-type innervation from tyrosine hydroxylase-positive fibres in the lateral and caudal neostriatum, but only about half as many did in the medial and frontal neostriatum, and even less so in the hyperstriatum. No case of colocalization of glutamate decarboxylase and DARPP-32 and no co-occurrence of glutamate decarboxylase-positive neurons and tyrosine hydroxylase-basket-like structures could be detected out of more than 2000 glutamate decarboxylase-positive neurons examined, although the high DARPP-32 and high tyrosine hydroxylase staining density hampered this analysis in the basal ganglia. In conclusion, the pigeon dopaminergic system seems to be organized similar to that of mammals. Apparently, in the telencephalon, dopamine has its primary function in higher level sensory, associative and motor processes, since primary areas showed only weak or no anatomical cues of dopaminergic modulation. Dopamine might exert its effects primarily by modulating the physiological properties of non-GABAergic and therefore presumably excitatory units.
Collapse
Affiliation(s)
- D Durstewitz
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
93
|
Abstract
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA- and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase. These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.
Collapse
|
94
|
Davies DC, Csillag A, Székely AD, Kabai P. Efferent connections of the domestic chick archistriatum: a phaseolus lectin anterograde tracing study. J Comp Neurol 1997; 389:679-93. [PMID: 9421147 DOI: 10.1002/(sici)1096-9861(19971229)389:4<679::aid-cne10>3.0.co;2-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The archistriatum of the domestic chick has been implicated in both fear behaviour and learning. However, relatively little is known about its organisation. The efferent connections of discrete anatomical regions of the chick archistriatum were therefore investigated by iontophoresis of the anterograde tracer Phaseolus vulgaris leucoagglutinin into its anterior, dorsal intermediate, ventral intermediate, medial, and posterior parts. The results of this study suggest that the chick archistriatum can be divided into two basic divisions according to whether they project to the following limbic structures: the hippocampal formation, septal areas, lobus parolfactorius, nucleus accumbens, ventral paleostriatum, and dorsomedial thalamus. The limbic archistriatum includes the posterior archistriatum and extends rostrally through the ventral intermediate archistriatum into the anterior archistriatum. The non-limbic archistriatum comprises the dorsal intermediate and medial archistriatum and largely gives rise to specific sensory, somatosensory, and motor telencephalofugal efferents. There may not be distinct borders between these two divisions of the chick archistriatum.
Collapse
Affiliation(s)
- D C Davies
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
95
|
Balthazart J, Absil P. Identification of catecholaminergic inputs to and outputs from aromatase-containing brain areas of the Japanese quail by tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970609)382:3<401::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
96
|
Hippocampal tissue transplants reverse lesion-induced spatial memory deficits in zebra finches (Taeniopygia guttata). J Neurosci 1997. [PMID: 9133404 DOI: 10.1523/jneurosci.17-10-03861.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The avian hippocampal formation (Hf) plays an important role in spatial memory for food storing. Here we examined the effects of excitotoxic lesions of the Hf and subsequent neural transplantation on a one-trial associative memory task in zebra finches. The results showed (1) that small ibotenic acid lesions of the dorsal Hf of zebra finches produced significant spatial memory impairments compared with controls, sham-lesioned birds, and prelesion performance; and (2) that Hf-lesioned birds given transplants of embryonic hippocampal (H) tissue, but not those given transplants of embryonic anterior telencephalon (AT) tissue, showed a significant reversal of the performance deficits on the spatial memory task. Lesioned-only birds and lesioned birds given H or AT transplants that did not survive did not show behavioral improvement. Sham-lesioned and untreated control birds maintained good performance throughout the experiment. The H and AT transplants were found to be growing partially within the Hf and partially within the underlying ventricle. The transplants appeared healthy and contained neurons with beaded and unbeaded fibers (shown by immunohistochemistry with antibodies to parvalbumin, substance P, and a 200 kDa neurofilament protein). Blood vessels and erythrocytes were also present within the transplants. The results show that neural transplants can survive within the bird brain and that small lesions of the Hf produce significant spatial memory deficits that can only be reversed by surviving homologous H transplants, and not by heterologous telencephalon transplants.
Collapse
|
97
|
Atoji Y, Shibata N, Yamamoto Y, Suzuki Y. Distribution of neurotensin-containing neurons in the central nervous system of the pigeon and the chicken. J Comp Neurol 1996; 375:187-211. [PMID: 8915825 DOI: 10.1002/(sici)1096-9861(19961111)375:2<187::aid-cne2>3.0.co;2-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurotensin is widely located in neurons of the central and peripheral nervous systems among mammalian species. To obtain a comparative evaluation, we examined the distribution of neurotensin-containing cell bodies and fibers in the central nervous system of the pigeon and the chicken. The pattern of localization of neurotensin immunoreactivity was similar in the two species. Abundant accumulations of neurotensin-containing cell bodies were found in the dorsolateral corticoid area, the piriform cortex, the parahippocampal area, the medial part of the frontal neostriatum, the lateral part of the caudal neostriatum, nucleus accumbens, the bed nucleus of the stria terminalis, ventral paleostriatum, the preoptic area, the ventromedial hypothalamic nucleus, the inferior hypothalamic nucleus, the infundibular hypothalamic nucleus, and the mammillary nuclei. Extremely dense networks of neurotensin-containing fibers were found in the pallial commissure, the lateral septal nucleus, the preoptic area, the periventricular gray around the third ventricle, the dorsalis hypothalamic area, the hypothalamic nuclei, the parabrachial nucleus, the locus ceruleus, and the dorsal vagal complex. Major differences of immunoreactivity between the two species were as follows. 1) The chicken neurohypophysis contained an extremely large accumulation of immunoreactive fibers, but there were few in the median eminence. The reverse was found in the pigeon. 2) The optic tectum in the pigeon contained immunoreactive cells and fibers in layers 2 and 4, but no immunoreactivity was seen in the chicken optic tectum. 3) The cerebellar cortex in the pigeon contained a small number of immunoreactive fibers, whereas that in the chicken did not. 4) The pigeon spinal cord contained immunoreactive neurons in the subependymal layer, but the chicken spinal cord did not. Our observations suggest the presence of a very wide network of neurotensin-containing neurons in the avian brain and spinal cord, which is also the case in mammals.
Collapse
Affiliation(s)
- Y Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Japan.
| | | | | | | |
Collapse
|
98
|
Healy SD, Gwinner E, Krebs JR. Hippocampal volume in migratory and non-migratory warblers: effects of age and experience. Behav Brain Res 1996; 81:61-8. [PMID: 8950002 DOI: 10.1016/s0166-4328(96)00044-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We tested the hypothesis that experience of migration from Europe to tropical Africa by Garden Warblers is associated with changes in the relative volume of the hippocampus, a brain region thought to be involved in processing spatial information, including that used in navigation. Relative hippocampal volume was larger in birds at least one year old that had migrated to and from Africa, than in naive birds approx. 3 months old. Further comparisons between groups of differing age and experience of migration suggested that both experience and age during the first year have an effect of relative hippocampal volume. The increase in relative hippocampal volume was mainly due to a decrease in the size of the telencephalon; however, the comparison between young, naive birds and older, experienced birds also suggests a possible increase in absolute hippocampal volume. The latter is associated with an increase in number and density of neurons, whilst the former is associated with an increase in density but no change in total number of neurons. In a non-migratory close relative of the garden warbler, the Sardinian warbler, older birds had a smaller telencephalon but there was no change in hippocampal volume, which supports the view that changes in the hippocampus may be associated with migratory experience, whilst changes in the telencephalon are not.
Collapse
Affiliation(s)
- S D Healy
- Department of Psychology, University of Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
99
|
Horner CH, Davies HA, Brown J, Stewart MG. Reduction in numerical synapse density in chick (Gallus domesticus) dorsal hippocampus following transient cerebral ischaemia. Brain Res 1996; 735:354-9. [PMID: 8911679 DOI: 10.1016/0006-8993(96)80001-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transient forebrain ischaemia was induced by a two-vessel occlusion method in the domestic chick. One week post-surgery, hippocampal tissue was processed for electron microscopy and synapse density assessed using the disector technique. Hippocampal volume was estimated using image analysis of serial coronal cryostat sections. The density of asymmetric synapses was significantly reduced (27%; P < 0.005) in ischaemic chicks. This appears to be a real reduction as hippocampal volume was not significantly decreased.
Collapse
Affiliation(s)
- C H Horner
- Department of Biology, Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
100
|
Shapiro E, Wieraszko A. Comparative, in vitro, studies of hippocampal tissue from homing and non-homing pigeon. Brain Res 1996; 725:199-206. [PMID: 8836526 DOI: 10.1016/0006-8993(96)00247-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this research was to characterize morphologically and electrophysiologically tissue slices obtained from the hippocampus of homing and non-homing pigeons. When hippocampal slices from the brain of homing and non-homing pigeons are observed under the dissecting microscope, diffuse fiber paths can be seen. These fiber pathways appeared to be identical with the medial fiber tract (VM) previously described histologically in the hippocampus of homing pigeon. Visualization of these tracts in living slices allowed placement of stimulating and recording electrodes in corresponding locations in these slices in both homing and non-homing pigeons. Extracellular potentials recorded from VM regions of the brains of both homing and non-homing pigeons were sensitive to CNQX indicating that glutamate may be a neurotransmitter in this area of pigeon hippocampus. These potentials could undergo long-term potentiation (LTP) following high frequency stimulation. This LTP was blocked by NMDA receptor antagonist APV in the hippocampus of homing pigeon, but was APV-resistant in the hippocampus of non-homing pigeon. Extracellular potentials from the hippocampus of homing pigeons were increased in amplitude when slices were perfused with Mg(2+)-free Ringer, while potential recorded from hippocampal slices from non-homing pigeons wre unaffected by Mg(2+)-free solutions. Intracellular recordings from the hippocampal slices of homing pigeons revealed that about half the cells demonstrated excitatory synaptic potentials evoked by extracellular stimulation. The EPSP was sometimes large enough to trigger an action potential. Neurons filled with the fluorescent dye, Lucifer Yellow, in the hippocampus of homing pigeons showed multipolar structure. The response of these cells to extracellular stimulation provides the activity responsible for the extracellular potentials which can undergo LTP.
Collapse
Affiliation(s)
- E Shapiro
- CSI/IBR Center for Developmental Neuroscience and Developmental Disabilities, College of Staten Island/CUNY 10314, USA
| | | |
Collapse
|