51
|
Salgado-Freiría R, López-Doval S, Lafuente A. Perfluorooctane sulfonate (PFOS) can alter the hypothalamic–pituitary–adrenal (HPA) axis activity by modifying CRF1 and glucocorticoid receptors. Toxicol Lett 2018; 295:1-9. [DOI: 10.1016/j.toxlet.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 12/22/2022]
|
52
|
Dos-Santos RC, Grover HM, Reis LC, Ferguson AV, Mecawi AS. Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Front Cell Neurosci 2018; 12:275. [PMID: 30210300 PMCID: PMC6121211 DOI: 10.3389/fncel.2018.00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/05/2022] Open
Abstract
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil.,Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
53
|
Changes in pituitary gene expression may underlie multiple domesticated traits in chickens. Heredity (Edinb) 2018; 122:195-204. [PMID: 29789643 DOI: 10.1038/s41437-018-0092-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/05/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022] Open
Abstract
Domesticated animals share a unique set of morphological and behavioral traits, jointly referred to as the domesticated phenotype. Striking similarities amongst a range of unrelated domesticated species suggest that similar regulatory mechanisms may underlie the domesticated phenotype. These include color pattern, growth, reproduction, development and stress response. Although previous studies have focused on the brain to find mechanisms underlying domestication, the potential role of the pituitary gland as a target of domestication is highly overlooked. Here, we study gene expression in the pituitary gland of the domesticated White Leghorn chicken and its wild ancestor, the Red Junglefowl. By overlapping differentially expressed genes with a previously published list of functionally important genes in the pituitary gland, we narrowed down to 34 genes. Amongst them, expression levels of genes with inhibitory function on pigmentation (ASIP), main stimulators of metabolism and sexual maturity (TSHB and DIO2), and a potential inhibitor of broodiness (PRLR), were higher in the domesticated breed. Additionally, expression of 2 key inhibitors of the stress response (NR3C1, CRHR2) was higher in the domesticated breed. We suggest that changes in the transcription of important modulatory genes in the pituitary gland can account not only for domestication of the stress response in domestic chickens, but also for changes in pigmentation, development, and reproduction. Given the pivotal role of the pituitary gland in the regulation of multiple shared domesticated traits, we suggest that similar changes in pituitary transcriptome may contribute to the domesticated phenotype in other species as well.
Collapse
|
54
|
Guillod L, Habersaat S, Suter M, Jeanneret T, Bertoni C, Stéphan P, Urben S. Processus psychologiques de gestion du stress et régulation neuroendocrinienne chez les adolescents délinquants en institution fermée : une étude pilote. Encephale 2018; 44:111-117. [DOI: 10.1016/j.encep.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
|
55
|
Delvecchio G, Mandolini GM, Perlini C, Barillari M, Marinelli V, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Pituitary gland shrinkage in bipolar disorder: The role of gender. Compr Psychiatry 2018; 82:95-99. [PMID: 29454165 DOI: 10.1016/j.comppsych.2018.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hyperactivity of the Hypothalamic-Pituitary-Adrenal Axis (HPAA) has been consistently reported in mood disorders. However, only few studies investigated the Pituitary gland (PG) in Bipolar Disorder (BD) and the results are so far contrasting. Therefore, the aim of this study is to explore the integrity of the PG as well as the role of gender and the impact of clinical measurements on this structure in a sample of BD patients compared to healthy controls (HC). METHODS 34 BD patients and 41 HC underwent a 1.5 T MRI scan. PG volumes were manually traced for all subjects. Psychiatric symptoms were assessed by means of the Brief Psychiatry Rating Scale, the Hamilton Depression Rating Scale and the Bech Rafaelsen Mania Rating Scale. RESULTS We found decreased PG volumes in BD patients compared to HC (F = 24.9, p < 0.001). Interestingly, after dividing the sample by gender, a significant PG volume decrease was detected only in female BD patients compared to female HC (F = 9.1, p < 0.001), but not in male BD compared to male HC (F = -0.12, p = 0.074). No significant correlations were observed between PG volumes and clinical variables. CONCLUSIONS Our findings suggest that BD patients have decreased PG volumes, probably due to the long-term hyperactivity of the HPAA and to the consequent strengthening of the negative feedback control towards the PG volume itself. This alteration was particularly evident in females, suggesting a role of gender in affecting PG volumes in BD. Finally, the absence of significant correlations between PG volumes and clinical variables further supports that PG disruption is a trait feature of BD, being independent of symptoms severity and duration of treatment.
Collapse
Affiliation(s)
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | - Marco Barillari
- Section of Radiology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Veronica Marinelli
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy; Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
56
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
57
|
Involvement of Noncoding RNAs in Stress-Related Neuropsychiatric Diseases Caused by DOHaD Theory : ncRNAs and DOHaD-Induced Neuropsychiatric Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:49-59. [PMID: 29956194 DOI: 10.1007/978-981-10-5526-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the DOHaD theory, low birth weight is a risk factor for various noncommunicable chronic diseases that develop later in life. Noncoding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs, and lncRNAs, are functional RNA molecules that are transcribed from DNA but that are not translated into proteins. In general, miRNAs, siRNAs, and piRNAs function to regulate gene expression at the transcriptional and posttranscriptional levels. Studying ncRNAs has provided opportunities for new diagnosis and therapeutic knowledge in the endocrinological and metabolic fields as well as cancer biology. In this review, we focus on the roles of miRNAs and lncRNAs in the pathophysiology of stress-related neuropsychiatric diseases, which show abnormal blood hormone levels due to loss of feedback control and/or decreased sensitivity. Numerous recent studies have begun to unveil the importance of ncRNAs in regulation of stress-related hormone levels and functions. We summarize the involvement of abnormal ncRNA expression in the development of stress-related neuropsychiatric diseases based on the DOHaD theory.
Collapse
|
58
|
Løtvedt P, Fallahshahroudi A, Bektic L, Altimiras J, Jensen P. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol Stress 2017; 7:113-121. [PMID: 28879214 PMCID: PMC5577413 DOI: 10.1016/j.ynstr.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 01/21/2023] Open
Abstract
Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens. We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.
Collapse
Affiliation(s)
| | | | | | | | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
59
|
Zhou J, Wang D, Luo X, Jia X, Li M, Laudon M, Zhang R, Jia Z. Melatonin Receptor Agonist Piromelatine Ameliorates Impaired Glucose Metabolism in Chronically Stressed Rats Fed a High-Fat Diet. J Pharmacol Exp Ther 2017; 364:55-69. [DOI: 10.1124/jpet.117.243998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
|
60
|
A Basal Forebrain Site Coordinates the Modulation of Endocrine and Behavioral Stress Responses via Divergent Neural Pathways. J Neurosci 2017; 36:8687-99. [PMID: 27535914 DOI: 10.1523/jneurosci.1185-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The bed nuclei of the stria terminalis (BST) are critically important for integrating stress-related signals between the limbic forebrain and hypothalamo-pituitary-adrenal (HPA) effector neurons in the paraventricular hypothalamus (PVH). Nevertheless, the circuitry underlying BST control over the stress axis and its role in depression-related behaviors has remained obscure. Utilizing optogenetic approaches in rats, we have identified a novel role for the anteroventral subdivision of BST in the coordinated inhibition of both HPA output and passive coping behaviors during acute inescapable (tail suspension, TS) stress. Follow-up experiments probed axonal pathways emanating from the anteroventral BST which accounted for separable endocrine and behavioral functions subserved by this cell group. The PVH and ventrolateral periaqueductal gray were recipients of GABAergic outputs from the anteroventral BST that were necessary to restrain stress-induced HPA activation and passive coping behavior, respectively, during TS and forced swim tests. In contrast to other BST subdivisions implicated in anxiety-like responses, these results direct attention to the anteroventral BST as a nodal point in a stress-modulatory network for coordinating neuroendocrine and behavioral coping responses, wherein impairment could account for core features of stress-related mood disorders. SIGNIFICANCE STATEMENT Dysregulation of the neural pathways modulating stress-adaptive behaviors is implicated in stress-related psychiatric illness. While aversive situations activate a network of limbic forebrain regions thought to mediate such changes, little is known about how this information is integrated to orchestrate complex stress responses. Here we identify novel roles for the anteroventral bed nuclei of the stria terminalis in inhibiting both stress hormone output and passive coping behavior via divergent projections to regions of the hypothalamus and midbrain. Inhibition of these projections produced features observed with rodent models of depression, namely stress hormone hypersecretion and increased passive coping behavior, suggesting that dysfunction in these networks may contribute to expression of pathological changes in stress-related disorders.
Collapse
|
61
|
Findling JW, Raff H. DIAGNOSIS OF ENDOCRINE DISEASE: Differentiation of pathologic/neoplastic hypercortisolism (Cushing's syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as pseudo-Cushing's syndrome). Eur J Endocrinol 2017; 176:R205-R216. [PMID: 28179447 DOI: 10.1530/eje-16-0946] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/20/2017] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
Abstract
Endogenous hypercortisolism (Cushing's syndrome) usually implies the presence of a pathologic condition caused by either an ACTH-secreting neoplasm or autonomous cortisol secretion from a benign or malignant adrenal neoplasm. However, sustained or intermittent hypercortisolism may also accompany many medical disorders that stimulate physiologic/non-neoplastic activation of the HPA axis (formerly known as pseudo-Cushing's syndrome); these two entities may share indistinguishable clinical and biochemical features. A thorough history and physical examination is often the best (and sometimes only) way to exclude pathologic/neoplastic hypercortisolism. The presence of alcoholism, renal failure, poorly controlled diabetes and severe neuropsychiatric disorders should always raise suspicion that the presence of hypercortisolism may be related to physiologic/non-neoplastic Cushing's syndrome. As late-night salivary cortisol and low-dose dexamethasone suppression have good sensitivity and negative predictive value, normal studies exclude Cushing's syndrome of any form. However, these tests have imperfect specificity and additional testing over time with clinical follow-up is often needed. When there is persistent diagnostic uncertainty, secondary tests such as the DDAVP stimulation test and the dexamethasone-CRH test may provide evidence for the presence or absence of an ACTH-secreting tumor. This review will define and characterize the numerous causes of physiologic/non-neoplastic hypercortisolism and provide a rational clinical and biochemical approach to distinguish it from pathologic/neoplastic hypercortisolism (true Cushing's syndrome).
Collapse
Affiliation(s)
- James W Findling
- Endocrinology Center and ClinicsMedical College of Wisconsin, Menomonee Falls, Wisconsin, USA
| | - Hershel Raff
- Departments of MedicineSurgery, and Physiology, Medical College of Wisconsin and Endocrine Research Laboratory, Aurora St Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin, USA
| |
Collapse
|
62
|
Han B, Yu L, Geng Y, Shen L, Wang H, Wang Y, Wang J, Wang M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J Alzheimers Dis 2016; 53:1539-52. [PMID: 27392857 DOI: 10.3233/jad-160189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
63
|
Clark AJ, Forfar R, Hussain M, Jerman J, McIver E, Taylor D, Chan L. ACTH Antagonists. Front Endocrinol (Lausanne) 2016; 7:101. [PMID: 27547198 PMCID: PMC4974254 DOI: 10.3389/fendo.2016.00101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022] Open
Abstract
Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing's disease and ectopic ACTH syndrome - especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia - as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role.
Collapse
Affiliation(s)
- Adrian John Clark
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rachel Forfar
- Centre for Therapeutics Discovery, MRC Technology, Stevenage, UK
| | - Mashal Hussain
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jeff Jerman
- Centre for Therapeutics Discovery, MRC Technology, Stevenage, UK
| | - Ed McIver
- Centre for Therapeutics Discovery, MRC Technology, Stevenage, UK
| | - Debra Taylor
- Centre for Therapeutics Discovery, MRC Technology, Stevenage, UK
| | - Li Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
64
|
Cardoso EMDL, Arregger AL, Budd D, Zucchini AE, Contreras LN. Dynamics of salivary cortisol in chronic kidney disease patients at stages 1 through 4. Clin Endocrinol (Oxf) 2016; 85:313-9. [PMID: 26800302 DOI: 10.1111/cen.13023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/30/2022]
Abstract
CONTEXT End-stage renal disease has been associated with derangement of the HPA function. The dynamics of this axis in early stages of renal disease (CKD) has not been assessed. OBJECTIVES To evaluate in patients with CKD at stages 1-4 (KDOQI): the diurnal variation of salivary cortisol; the suppressibility of cortisol in saliva and serum after an overnight oral 1 mg dexamethasone suppression test (1 mg DST) with simultaneous measurement of circulating dexamethasone. DESIGN AND METHODS 80 CKD outpatients and 40 healthy subjects were included. All CKD collected whole saliva at 08·00 and 23·00 h (SAF23 ) on two nonconsecutive days. Thereafter at 08·00 h, following 1 mg DST, saliva and blood were obtained. Salivary and serum cortisol as well as CBG were assessed by RIA, dexamethasone by ELISA and serum free cortisol was calculated. RESULTS SAF23 correlated negatively with glomerular filtration rate (GFR). The fraction of free cortisol in serum and saliva after 1 mg DST, correlated positively and significantly in both patients with CKD and healthy subjects (r: 0·86 and r: 0·85, respectively; P < 0·0001 for both). Ten percent of CKD with GFR < 90 ml/min/1·73 m(2) had false positive results unrelated to dexamethasone and CBG concentrations. CONCLUSIONS False positive responses to 1 mg DST were associated with GFR < 90 ml/min/1·73 m(2) . This could not be ascribed to either defects in dexamethasone absorption or CBG concentrations. Higher dexamethasone doses were necessary to achieve adequate HPA suppression. Salivary cortisol was useful to assess circadian cortisol levels and feed-back regulation in CKD.
Collapse
Affiliation(s)
- Estela María Del Luján Cardoso
- Endocrine Research Department, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
- Unidad Ejecutora Instituto de Investigaciones Médicas, National Council of Technical and Scientific Research, Buenos Aires, Argentina
- Laboratory of Salivary Glands, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Luis Arregger
- Endocrine Research Department, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Dianne Budd
- Endocrine Research Department, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Enrique Zucchini
- Chief Research Department, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Liliana Noemí Contreras
- Endocrine Research Department, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
- Unidad Ejecutora Instituto de Investigaciones Médicas, National Council of Technical and Scientific Research, Buenos Aires, Argentina
- Laboratory of Salivary Glands, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
65
|
Diz-Chaves Y, Gil-Lozano M, Toba L, Fandiño J, Ogando H, González-Matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. J Endocrinol 2016; 230:R77-94. [PMID: 27325244 DOI: 10.1530/joe-16-0118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus exerts metabolic stress on cells and it provokes a chronic increase in the long-term activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, perhaps thereby contributing to insulin resistance. GLP-1 receptor (GLP-1R) agonists are pleiotropic hormones that not only affect glycaemic and metabolic control, but they also produce many other effects including activation of the HPA axis. In fact, several of the most relevant effects of GLP-1 might involve, at least in part, the modulation of the HPA axis. Thus, the anorectic activity of GLP-1 could be mediated by increasing CRF at the hypothalamic level, while its lipolytic effects could imply a local increase in glucocorticoids and glucocorticoid receptor (GC-R) expression in adipose tissue. Indeed, the potent activation of the HPA axis by GLP-1R agonists occurs within the range of therapeutic doses and with a short latency. Interestingly, the interactions of GLP-1 with the HPA axis may underlie most of the effects of GLP-1 on food intake control, glycaemic metabolism, adipose tissue biology and the responses to stress. Moreover, such activity has been observed in animal models (mice and rats), as well as in normal humans and in type I or type II diabetic patients. Accordingly, better understanding of how GLP-1R agonists modulate the activity of the HPA axis in diabetic subjects, especially obese individuals, will be crucial to design new and more efficient therapies for these patients.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Manuel Gil-Lozano
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Laura Toba
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Juan Fandiño
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Hugo Ogando
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Lucas C González-Matías
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Federico Mallo
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| |
Collapse
|
66
|
Duncan PJ, Tabak J, Ruth P, Bertram R, Shipston MJ. Glucocorticoids Inhibit CRH/AVP-Evoked Bursting Activity of Male Murine Anterior Pituitary Corticotrophs. Endocrinology 2016; 157:3108-21. [PMID: 27254001 PMCID: PMC4967125 DOI: 10.1210/en.2016-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corticotroph cells from the anterior pituitary are an integral component of the hypothalamic-pituitary-adrenal (HPA) axis, which governs the neuroendocrine response to stress. Corticotrophs are electrically excitable and fire spontaneous single-spike action potentials and also display secretagogue-induced bursting behavior. The HPA axis function is dependent on effective negative feedback in which elevated plasma glucocorticoids result in inhibition at the level of both the pituitary and the hypothalamus. In this study, we have used an electrophysiological approach coupled with mathematical modeling to investigate the regulation of spontaneous and CRH/arginine vasopressin-induced activity of corticotrophs by glucocorticoids. We reveal that pretreatment of corticotrophs with 100 nM corticosterone (CORT; 90 and 150 min) reduces spontaneous activity and prevents a transition from spiking to bursting after CRH/arginine vasopressin stimulation. In addition, previous studies have identified a role for large-conductance calcium- and voltage-activated potassium (BK) channels in the generation of secretagogue-induced bursting in corticotrophs. Using the dynamic clamp technique, we demonstrated that CRH-induced bursting can be switched to spiking by subtracting a fast BK current, whereas the addition of a fast BK current can induce bursting in CORT-treated cells. In addition, recordings from BK knockout mice (BK(-/-)) revealed that CORT can also inhibit excitability through BK-independent mechanisms to control spike frequency. Thus, we have established that glucocorticoids can modulate multiple properties of corticotroph electrical excitability through both BK-dependent and BK-independent mechanisms.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Joël Tabak
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Peter Ruth
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Richard Bertram
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Michael J Shipston
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
67
|
Thorsell A, Nätt D. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw012. [PMID: 29492293 PMCID: PMC5804527 DOI: 10.1093/eep/dvw012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/15/2016] [Accepted: 06/26/2016] [Indexed: 06/08/2023]
Abstract
It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.
Collapse
Affiliation(s)
- Annika Thorsell
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, SE 581 83, Linköping, Sweden
| | - Daniel Nätt
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, SE 581 83, Linköping, Sweden
| |
Collapse
|
68
|
Kwan W, Cortes M, Frost I, Esain V, Theodore LN, Liu SY, Budrow N, Goessling W, North TE. The Central Nervous System Regulates Embryonic HSPC Production via Stress-Responsive Glucocorticoid Receptor Signaling. Cell Stem Cell 2016; 19:370-82. [PMID: 27424782 DOI: 10.1016/j.stem.2016.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) specification is regulated by numerous defined factors acting locally within the hemogenic niche; however, it is unclear whether production can adapt to fluctuating systemic needs. Here we show that the CNS controls embryonic HSPC numbers via the hypothalamic-pituitary-adrenal/interrenal (HPA/I) stress response axis. Exposure to serotonin or the reuptake inhibitor fluoxetine increased runx1 expression and Flk1(+)/cMyb(+) HSPCs independent of peripheral innervation. Inhibition of neuronal, but not peripheral, tryptophan hydroxlyase (Tph) persistently reduced HSPC number. Consistent with central HPA/I axis induction and glucocorticoid receptor (GR) activation, GR agonists enhanced, whereas GR loss diminished, HSPC formation. Significantly, developmental hypoxia, as indicated by Hif1α function, induced the HPA/I axis and cortisol production. Furthermore, Hif1α-stimulated HSPC enhancement was attenuated by neuronal tph or GR loss. Our data establish that embryonic HSC production responds to physiologic stress via CNS-derived serotonin synthesis and central feedback regulation to control HSC numbers.
Collapse
Affiliation(s)
- Wanda Kwan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Isaura Frost
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Virginie Esain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay N Theodore
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nadine Budrow
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|