51
|
Antiproliferative effects of boswellic acid-loaded chitosan nanoparticles on human lung cancer cell line A549. Future Med Chem 2020; 12:2019-2034. [PMID: 33124483 DOI: 10.4155/fmc-2020-0083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
Collapse
|
52
|
Sugar-based nanoparticles for respiratory diseases: a new paradigm in the nanoworld. Future Med Chem 2020; 12:1887-1890. [PMID: 33054387 DOI: 10.4155/fmc-2020-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
53
|
Targeting interleukins in chronic airway diseases using advanced drug delivery. Future Med Chem 2020; 12:1805-1807. [PMID: 33016120 DOI: 10.4155/fmc-2020-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
54
|
Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, Bebawy M, Hansbro PM, Wich PR, Dua K. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102303. [PMID: 32980549 DOI: 10.1016/j.nano.2020.102303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia; Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
55
|
Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, Chellappan DK, Dua K. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med Hypotheses 2020; 144:110298. [PMID: 33254489 PMCID: PMC7515600 DOI: 10.1016/j.mehy.2020.110298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth. Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as increased economic burden. This has prompted the need for breakthrough innovations that can effectively manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune response and the efficacies of anti-viral therapeutics to combat influenza infections.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Nanotherapeutics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya Medical Centre, Subang Jaya, 47500 Selangor, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017 Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
56
|
Misra R, Patra B, Varadharaj S, Verma RS. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for Triple negative breast cancer therapy. ACTA ACUST UNITED AC 2020; 11:199-207. [PMID: 34336608 PMCID: PMC8314031 DOI: 10.34172/bi.2021.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/23/2022]
Abstract
![]()
Introduction: Triple-negative breast cancer (TNBC) is a lethal tumor with an advanced degree of metastasis and poor survivability as compared to other subtypes of breast cancer. TNBC which consists of 15 % of all types of breast cancer is categorized by the absence of expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER2). This is the main reason for the failure of current hormonal receptor-based therapies against TNBCs, thus leading to poor patient outcomes. Therefore, there is a necessity to develop novel therapies targeting this devastating disease. Methods: In this study, we have targeted TNBC by simultaneous activation of apoptosis through DNA damage via cytotoxic agent such as paclitaxel (PAC), inhibition of PARP activity via PARP inhibitor, olaparib (OLA) and inhibiting the activity of FOXM1 proto-oncogenic transcription factor by using RNA interference technology (FOXM1-siRNA) in nanoformulations. Experiments conducted in this investigation include cellular uptake, cytotoxicity and apoptosis study using MDA-MB-231 cells. Results: The present study validates that co-delivery of two drugs (PAC and OLA) along with FOXM1-siRNA by cationic NPs, enhances the therapeutic outcome leading to greater cytotoxicity in TNBC cells. Conclusion: The current investigation focuses on designing a multifunctional drug delivery platform for concurrent delivery of either PAC or PARP inhibitor (olaparib) and FOXM1 siRNA in chitosan-coated poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with the ability to emerge as a front runner therapeutic for TNBC therapy.
Collapse
Affiliation(s)
- Ranjita Misra
- Sathyabama Institute of Science and Technology, Centre for Nanoscience and Nanotechnology, Chennai, India
| | - Bamadeb Patra
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sudha Varadharaj
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rama Shanker Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
57
|
Uludağ H, Parent K, Aliabadi HM, Haddadi A. Prospects for RNAi Therapy of COVID-19. Front Bioeng Biotechnol 2020; 8:916. [PMID: 32850752 PMCID: PMC7409875 DOI: 10.3389/fbioe.2020.00916] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 caused by the SARS-CoV-2 virus is a fast emerging disease with deadly consequences. The pulmonary system and lungs in particular are most prone to damage caused by the SARS-CoV-2 infection, which leaves a destructive footprint in the lung tissue, making it incapable of conducting its respiratory functions and resulting in severe acute respiratory disease and loss of life. There were no drug treatments or vaccines approved for SARS-CoV-2 at the onset of pandemic, necessitating an urgent need to develop effective therapeutics. To this end, the innate RNA interference (RNAi) mechanism can be employed to develop front line therapies against the virus. This approach allows specific binding and silencing of therapeutic targets by using short interfering RNA (siRNA) and short hairpin RNA (shRNA) molecules. In this review, we lay out the prospect of the RNAi technology for combatting the COVID-19. We first summarize current understanding of SARS-CoV-2 virology and the host response to viral entry and duplication, with the purpose of revealing effective RNAi targets. We then summarize the past experience with nucleic acid silencers for SARS-CoV, the predecessor for current SARS-CoV-2. Efforts targeting specific protein-coding regions within the viral genome and intragenomic targets are summarized. Emphasizing non-viral delivery approaches, molecular underpinnings of design of RNAi agents are summarized with comparative analysis of various systems used in the past. Promising viral targets as well as host factors are summarized, and the possibility of modulating the immune system are presented for more effective therapies. We place special emphasis on the limitations of past studies to propel the field faster by focusing on most relevant models to translate the promising agents to a clinical setting. Given the urgency to address lung failure in COVID-19, we summarize the feasibility of delivering promising therapies by the inhalational route, with the expectation that this route will provide the most effective intervention to halt viral spread. We conclude with the authors' perspectives on the future of RNAi therapeutics for combatting SARS-CoV-2. Since time is of the essence, a strong perspective for the path to most effective therapeutic approaches are clearly articulated by the authors.
Collapse
Affiliation(s)
- Hasan Uludağ
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
58
|
Dileepan M, Ha SG, Rastle-Simpson S, Ge XN, Greenberg YG, Wijesinghe DS, Contaifer D, Rao SP, Sriramarao P. Pulmonary delivery of ORMDL3 short hairpin RNA - a potential tool to regulate allergen-induced airway inflammation. Exp Lung Res 2020; 46:243-257. [PMID: 32578458 DOI: 10.1080/01902148.2020.1781297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sung Gil Ha
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.,Merck & Co., Inc, Palo Alto, CA, USA
| | - Yana G Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
59
|
Mei D, Tan WSD, Tay Y, Mukhopadhyay A, Wong WSF. Therapeutic RNA Strategies for Chronic Obstructive Pulmonary Disease. Trends Pharmacol Sci 2020; 41:475-486. [PMID: 32434654 DOI: 10.1016/j.tips.2020.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation with persistent respiratory symptoms. Current therapeutics for COPD are largely borrowed from the drug armamentarium for the treatment of asthma, which has different pathophysiological mechanisms from COPD. COPD has been linked to dysregulated expression of mRNAs and noncoding (nc)RNAs including miRNAs, PIWI-interacting (pi)RNAs, long noncoding (lnc)RNAs, and circular (circ)RNAs. This review highlights and discusses some recent advances towards development of RNA therapeutics for COPD.
Collapse
Affiliation(s)
- Dan Mei
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117600
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117600
| | - Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599; Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597
| | - Amartya Mukhopadhyay
- Respiratory and Critical Care Medicine, University Medicine Cluster, National University Health System, Singapore 119228
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117600; Immunology Program, Life Science Institute; National University of Singapore, Singapore 117456; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore 138602.
| |
Collapse
|
60
|
Sun L, Hu Y, Mishra A, Sreeharsha N, Moktan JB, Kumar P, Wang L. Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 2020; 46:421-431. [PMID: 31926035 DOI: 10.1002/biof.1611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
Our study is aimed at evaluating the effects of pretreatment with Poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol (RSV PLGA NPs) compared to conventional resveratrol (RSV) on isoproterenol (ISO) induced myocardial infarction (MI) in rats. Sixty rats were randomly divided into six groups of 10 rats each. RSV and RSV PLGA NPs were given by gavage in two different doses (50 mg/kg body weight [BW] and 100 mg/kg BW) for 3 weeks. RSV and RSV PLGA NPs were given for 2 weeks starting 1 week before ISO administration. The blood samples were taken 24 hr after the last dose of ISO. The antioxidant, anti-inflammatory, and cardioprotective effects were evaluated in all groups. Only 100 mg/kg dose of RSV and both doses of RSV PLGA NPs offered a cardioprotective effect by preventing cardiac troponin T (cTnT) levels, lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) activities leakage from cardiomyocytes, with the best result for RSV PLGA NPs. All the oxidative stress parameters were significantly improved after RSV PLGA NPs compared to RSV pretreatment. RSV PLGA NPs were more efficient than RSV in limiting the increase in inflammatory cytokine expressions such as tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and NF-kappaB (NF-kB) expression. In addition, RSV PLGA NPs significantly upregulated eNOS expression and downregulated iNOS expression. RSV PLGA NPs better prevented myocardial necrosis and reduced interstitial edema and neutrophil infiltration than RSV, on histopathological examination. Therefore, improving the bioactivity of RSV by nanotechnology may help limit cardiac injury after myocardial infarction.
Collapse
Affiliation(s)
- Liqiang Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yucai Hu
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City, Henan Province, China
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jeet B Moktan
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, BG Nagara, Mandya, Karnataka, India
| | - Piyush Kumar
- Shikhar Institute of Pharmacy, Shekhupur, Budaun, Uttar Pradesh, India
| | - Lei Wang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
61
|
Molecular mechanisms of action of naringenin in chronic airway diseases. Eur J Pharmacol 2020; 879:173139. [PMID: 32343971 DOI: 10.1016/j.ejphar.2020.173139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Chronic airway inflammatory diseases are characterized by persistent proinflammatory responses in the respiratory tract. Although, several treatment strategies are currently available, lifelong therapy is necessary for most of these diseases. In recent years, phytophenols, namely, flavonoids, derived from fruits and vegetables have been gaining tremendous interest and have been extensively studied due to their low toxicological profile. Naringenin is a bioflavonoid abundantly found in citrus fruits. This substance has shown notable therapeutic potential in various diseases due to its promising diverse biological activities. In this review, we have attempted to review the published studies from the available literature, discussing the molecular level mechanisms of naringenin in different experimental models of airway inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis and cystic fibrosis. Current evidences have proposed that the anti-inflammatory properties of naringenin play a major role in ameliorating inflammatory disease states. In addition, naringenin also possesses several other biological properties. Despite the proposed mechanisms suggesting remarkable therapeutic benefits, the clinical use of naringenin is, however, hampered by its low solubility and bioavailability. Furthermore, this review also discusses on the studies that utilise nanocarriers as a drug delivery system to address the issue of poor solubility.
Collapse
|
62
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
63
|
Wang L, Shi W, Gao X, SreeHarsha N, Zhang D. Cardioprotective role of metformin against sodium arsenite‐induced oxidative stress, inflammation, and apoptosis. IUBMB Life 2019; 72:749-757. [PMID: 31587475 DOI: 10.1002/iub.2174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Wang
- Department of EndocrinologyQingdao central hospital Qingdao China
| | - Wenbin Shi
- Department of PharmacyQingdao Municipal Hospital Qingdao China
| | - Xuewei Gao
- Department of Hepatobiliary Internal MedicineQingdao Hiser Medical Center Qingdao China
| | - Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
| | - Daisong Zhang
- Department of PharmacyQingdao Hiser Medical Center Qingdao China
| |
Collapse
|