51
|
Manning JA, Colussi PA, Koblar SA, Kumar S. Nedd1 expression as a marker of dynamic centrosomal localization during mouse embryonic development. Histochem Cell Biol 2008; 129:751-64. [DOI: 10.1007/s00418-008-0392-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2008] [Indexed: 12/21/2022]
|
52
|
Qian D, Radde-Gallwitz K, Kelly M, Tyrberg B, Kim J, Gao WQ, Chen P. Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear. Dev Dyn 2007; 235:1689-700. [PMID: 16534784 PMCID: PMC2810659 DOI: 10.1002/dvdy.20736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix (bHLH) gene Hes6 is known to promote neural differentiation in vitro. Here, we report the expression and functional studies of Hes6 in the inner ear. The expression of Hes6 appears to be parallel to that of Math1 (also known as Atoh1), a bHLH gene necessary and sufficient for hair cell differentiation. Hes6 is expressed initially in the presumptive hair cell precursors in the cochlea. Subsequently, the expression of Hes6 is restricted to morphologically differentiated hair cells. Similarly, the expression of Hes6 in the vestibule is in the hair cell lineage. Hes6 is dispensable for hair cell differentiation, and its expression in inner ear hair cells is abolished in the Math1-null animals. Furthermore, the introduction of Hes6 into the cochlea in vitro is not sufficient to promote sensory or neuronal differentiation. Therefore, Hes6 is downstream of Math1 and its expression in the inner ear delineates the sensory lineage. However, the role of Hes6 in the inner ear remains elusive.
Collapse
Affiliation(s)
- Dong Qian
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Michael Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jaesang Kim
- Division of Molecular Life Sciences, Ewha Womans University, Seoul, Korea
| | - Wei-Qiang Gao
- Department of Molecular Biology Genentech South San Francisco, CA 94080
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Author for correspondence: , 404 727-1808 (Tel), 404 727-6256 (Fax)
| |
Collapse
|
53
|
Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007; 307:165-78. [PMID: 17531970 DOI: 10.1016/j.ydbio.2007.04.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/27/2007] [Accepted: 04/26/2007] [Indexed: 11/28/2022]
Abstract
Notch signaling inhibits hair cell differentiation, based on studies on mice deficient in Notch signaling-related genes and its downstream genes. However, the precise mechanisms of this inhibition are unknown because it is difficult to control the timing and duration of the suppression of Notch signaling. Here, we developed a novel in vitro culture and analysis method for mouse fetal cochleae and examined the roles of Notch signaling by its reversible inhibition through the use of Notch signaling inhibitors of gamma-secretase and TNF-alpha-converting enzyme. Notch inhibition with Notch signaling inhibitor treatment increases the number of cochlear hair cells, as observed in gene deletion experiments. We elucidated that this increase is regulated by the dichotomy between hair cells and supporting cells from common progenitors. We also propose other roles of Notch signaling in cochlear development. First, Notch signaling arrests the cell cycle of the cochlear epithelium containing putative hair cells and supporting cell progenitors because Notch inhibition with inhibitor treatment increases the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells that can differentiate into hair cells or supporting cells. Second, Notch signaling is required for the induction of Prox1-positive supporting cells. Third, Notch signaling is required for the maintenance of supporting cells.
Collapse
Affiliation(s)
- Shinji Takebayashi
- Department of Otolaryngology-Head and Neck surgery, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Planar cell polarity (PCP) refers to the polarization of a field of cells within the plane of a cell sheet. This form of polarization is required for diverse cellular processes in vertebrates, including convergent extension (CE), the establishment of PCP in epithelial tissues and ciliogenesis. Perhaps the most distinct example of vertebrate PCP is the uniform orientation of stereociliary bundles at the apices of sensory hair cells in the mammalian auditory sensory organ. The establishment of PCP in the mammalian cochlea occurs concurrently with CE in this ciliated epithelium, therefore linking three cellular processes regulated by the vertebrate PCP pathway in the same tissue and emerging as a model system for dissecting PCP signaling. This review summarizes the morphogenesis of this model system to assist the interpretation of the emerging data and proposes molecular mechanisms underlying PCP signaling in vertebrates.
Collapse
Affiliation(s)
| | - Ping Chen
- Correspondence to: Ping Chen, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.
| |
Collapse
|
55
|
Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 2007; 306:121-33. [PMID: 17433286 PMCID: PMC1978180 DOI: 10.1016/j.ydbio.2007.03.011] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) refers to the polarization of cells within the plane of a cell sheet. A distinctive epithelial PCP in vertebrates is the uniform orientation of stereociliary bundles of the sensory hair cells in the mammalian cochlea. In addition to establishing epithelial PCP, planar polarization is also required for convergent extension (CE); a polarized cellular movement that occurs during neural tube closure and cochlear extension. Studies in Drosophila and vertebrates have revealed a conserved PCP pathway, including Frizzled (Fz) receptors. Here we use the cochlea as a model system to explore the involvement of known ligands of Fz, Wnt morphogens, in PCP regulation. We show that Wnt5a forms a reciprocal expression pattern with a Wnt antagonist, the secreted frizzled-related protein 3 (Sfrp3 or Frzb), along the axis of planar polarization in the cochlear epithelium. We further demonstrate that Wnt5a antagonizes Frzb in regulating cochlear extension and stereociliary bundle orientation in vitro, and that Wnt5a(-/-) animals have a shortened and widened cochlea. Finally, we show that Wnt5a is required for proper subcellular distribution of a PCP protein, Ltap/Vangl2, and that Wnt5a interacts genetically with Ltap/Vangl2 for uniform orientation of stereocilia, cochlear extension, and neural tube closure. Together, these findings demonstrate that Wnt5a functions in PCP regulation in mice.
Collapse
Affiliation(s)
- Dong Qian
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Kelly M, Chen P. Shaping the mammalian auditory sensory organ by the planar cell polarity pathway. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2007; 51:535-47. [PMID: 17891715 PMCID: PMC4158833 DOI: 10.1387/ijdb.072344mk] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.
Collapse
Affiliation(s)
- Michael Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
57
|
Zeng G, Awan F, Otruba W, Muller P, Apte U, Tan X, Gandhi C, Demetris AJ, Monga SPS. Wnt'er in liver: expression of Wnt and frizzled genes in mouse. Hepatology 2007; 45:195-204. [PMID: 17187422 DOI: 10.1002/hep.21473] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED The Wnt signaling pathway is essential for a wide array of developmental and physiological processes. Wnts are extracellular ligands that bind to frizzled (Fz) receptors at the membrane, canonically inducing beta-catenin nuclear translocation and activation. Although beta-catenin has been shown to be critical in liver biology, the expression of the 19 Wnt and 10 Fz genes in liver remains undetermined. We report comprehensive analysis of Wnt and Fz expression in whole liver as well as individual cell types: freshly isolated and plated hepatocytes, biliary epithelial cells, normal and activated stellate and Kupffer cells, and sinusoidal endothelial cells (SECs). Oligonucleotides for the 19 Wnt, 10 frizzled receptors genes, and secreted Frizzled-related protein-1 (sFRP or Fzb) were synthesized based on the available sequences. A total of 11 Wnts and 8 Fz genes and Fzb were expressed in normal liver. Although only 6 Wnt and 5 Fz genes were expressed in freshly isolated hepatocytes, 8 Wnt genes, 7 Fz genes, and Fzb were expressed in plated hepatocytes. Although 12 Wnt and 7 Fz genes were expressed in biliary tree, additional Fz9 and Fzb were only expressed in cultured biliary epithelial cells. The same 14 Wnt and 7 Fz genes were expressed in both activated and normal stellate and Kupffer cells; only Fzb was expressed in their activated state. Also, 11 Wnt, seven Fz, and Fzb genes were expressed in SECs. CONCLUSION These data indicate that most Wnt and frizzled genes are expressed in the liver and might be playing important roles in liver pathobiology via canonical and noncanonical pathways.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The Wnt signaling pathway regulates multiple events in development and disease in both vertebrates and invertebrates. Recently, the noncanonical Wnt signaling cascades, those that do not signal through beta-catenin, have gained prominence for their role in the regulation of cellular polarity. It is not surprising that cellular polarization influences a number of different developmental events within the nervous system, including neurulation and neural tube closure, cellular migration, and uniform orientation of cells within an epithelial plane (planar cell polarity). In this review, we describe the differences between the canonical and noncanonical pathways, summarize recent data illustrating the roles of the noncanonical Wnt pathway in different polarizing events during neural development, and discuss the potential molecular mechanisms that underlie the generation of cellular asymmetry and polarity.
Collapse
|
59
|
Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T. Expression of Prox1 during mouse cochlear development. J Comp Neurol 2006; 496:172-86. [PMID: 16538679 PMCID: PMC2572724 DOI: 10.1002/cne.20944] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We carried out an analysis of the expression of Prox1, a homeo-domain transcription factor, during mouse inner ear development with particular emphasis on the auditory system. Prox1 is expressed in the otocyst beginning at embryonic day (E)11, in the developing vestibular sensory patches. Expression is down regulated in maturing (myosin VIIA immunoreactive) vestibular hair cells and subsequently in the underlying support cell layer by E16.5. In the auditory sensory epithelium, Prox1 is initially expressed at embryonic day 14.5 in a narrow stripe of cells at the base of the cochlea. This stripe encompasses the full thickness of the sensory epithelium, including developing hair cells and support cells. Over the next several days the stripe of expression extends to the apex, and as the sensory epithelium differentiates Prox1 becomes restricted to a subset of support cells. Double labeling for Prox1 and cell-type-specific markers revealed that the outer hair cells transiently express Prox1. After E18, Prox1 protein is no longer detectable in hair cells, but it continues to be expressed in support cells for the rest of embryogenesis and into the second postnatal week. During this time, Prox1 is not expressed in all support cell types in the organ of Corti, but is restricted to developing Deiters' and pillar cells. The expression is maintained in these cells into the second week of postnatal life, at which time Prox1 is dynamically down regulated. These studies form a baseline from which we can analyze the role of Prox1 in vertebrate sensory development.
Collapse
Affiliation(s)
- Olivia Bermingham-McDonogh
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Bianchi LM, Huri D, White IO. Embryonic inner ear cells use migratory mechanisms to establish cell patterns in vitro. J Neurosci Res 2006; 83:191-8. [PMID: 16342204 DOI: 10.1002/jnr.20710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hair cells of the sensory epithelium in the inner ear are among the most precisely organized cells in vertebrates. The mechanisms that lead to this orderly arrangement are only beginning to be understood. It has been suggested that hair cells use migratory mechanisms to help achieve their final position in the organ of Corti. The small size and complex organization of the intact inner ear have made it difficult to monitor changes in hair cell location over time in vivo. In the present study, an established in vitro assay of dissociated, embryonic inner ear cells was used to monitor how hair cells reorganize over time. The hair cell specific marker myosin-VI demonstrated that hair cell precursors from both cochlear and vestibular regions reorganized into specific patterns between 3-24 hr in vitro. In contrast to the unlabeled cells, the myosin-VI-positive cells extended processes while establishing the hair cell patterning within an aggregate. These studies support the hypothesis that hair cell precursors actively migrate to help achieve final patterning within the inner ear sensory epithelium.
Collapse
Affiliation(s)
- Lynne M Bianchi
- Department of Neuroscience, Oberlin College, Oberlin, Ohio 44074, USA.
| | | | | |
Collapse
|
61
|
Classen AK, Anderson KI, Marois E, Eaton S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell 2006; 9:805-17. [PMID: 16326392 DOI: 10.1016/j.devcel.2005.10.016] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 08/19/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms that order cellular packing geometry are critical for the functioning of many tissues, but they are poorly understood. Here, we investigate this problem in the developing wing of Drosophila. The surface of the wing is decorated by hexagonally packed hairs that are uniformly oriented by the planar cell polarity pathway. They are constructed by a hexagonal array of wing epithelial cells. Wing epithelial cells are irregularly arranged throughout most of development, but they become hexagonally packed shortly before hair formation. During the process, individual cell boundaries grow and shrink, resulting in local neighbor exchanges, and Cadherin is actively endocytosed and recycled through Rab11 endosomes. Hexagonal packing depends on the activity of the planar cell polarity proteins. We propose that these proteins polarize trafficking of Cadherin-containing exocyst vesicles during junction remodeling. This may be a common mechanism for the action of planar cell polarity proteins in diverse systems.
Collapse
Affiliation(s)
- Anne-Kathrin Classen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | | | | | | |
Collapse
|
62
|
Brumwell CL, Hossain WA, Morest DK, Wolf B. Biotinidase reveals the morphogenetic sequence in cochlea and cochlear nucleus of mice. Hear Res 2005; 209:104-21. [PMID: 16107307 DOI: 10.1016/j.heares.2005.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus. In the process, we reconstructed the normal morphogenetic sequences of the constituent cells. Immunolabeling for biotinidase was localized to neurons and other cells of the adult and immature mouse, including the embryonic precursors of these regions dating from the stage of the otocyst. Its distribution was compared to the particular morphological changes occurring at each developmental stage. Biotinidase was localized in cells and their processes at the critical stages in their proliferation, migration, structural differentiation, and innervation, covering the entire span of their development. The prevalence of immunostaining peaked in the adult animal, including hair cells and ganglion cells of the cochlea and neurons of the cochlear nucleus. The findings suggest that biotinidase plays a role in the normal development of the auditory system. Besides the pattern of localization of biotinidase, this study provides the first systematic account of each developmental stage in a mammalian auditory system.
Collapse
Affiliation(s)
- Craig L Brumwell
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030-3401, USA
| | | | | | | |
Collapse
|
63
|
Wang J, Mark S, Zhang X, Qian D, Yoo SJ, Radde-Gallwitz K, Zhang Y, Lin X, Collazo A, Wynshaw-Boris A, Chen P. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 2005; 37:980-5. [PMID: 16116426 PMCID: PMC1413588 DOI: 10.1038/ng1622] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/20/2005] [Indexed: 11/09/2022]
Abstract
The mammalian auditory sensory organ, the organ of Corti, consists of sensory hair cells with uniformly oriented stereocilia on the apical surfaces and has a distinct planar cell polarity (PCP) parallel to the sensory epithelium. It is not certain how this polarity is achieved during differentiation. Here we show that the organ of Corti is formed from a thicker and shorter postmitotic primordium through unidirectional extension, characteristic of cellular intercalation known as convergent extension. Mutations in the PCP pathway interfere with this extension, resulting a shorter and wider cochlea as well as misorientation of stereocilia. Furthermore, parallel to the homologous pathway in Drosophila melanogaster, a mammalian PCP component Dishevelled2 shows PCP-dependent polarized subcellular localization across the organ of Corti. Taken together, these data suggest that there is a conserved molecular mechanism for PCP pathways in invertebrates and vertebrates and indicate that the mammalian PCP pathway might directly couple cellular intercalations to PCP establishment in the cochlea.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Pediatrics and Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Hardin J, Walston T. Models of morphogenesis: the mechanisms and mechanics of cell rearrangement. Curr Opin Genet Dev 2004; 14:399-406. [PMID: 15261656 DOI: 10.1016/j.gde.2004.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The directional rearrangement of cells is a key mechanism for reshaping embryos. Despite substantial recent progress in understanding the basic signal transduction pathways that allow cells to orient themselves in space, the extrinsic cues that activate these pathways are just beginning to be understood. Even less-well understood are the physical mechanisms cells use to change position, especially when those cells are epithelial, and how mechanical forces within the embryo affect those movements. Recent studies are providing clues regarding how this fundamental process occurs with such remarkable reliability.
Collapse
Affiliation(s)
- Jeff Hardin
- Graduate Program in Genetics and Department of Zoology, University of Wisconsin, 1117 W. Johnson St., Madison, Wisconsin 53706, USA.
| | | |
Collapse
|