51
|
Olival KJ, Cryan PM, Amman BR, Baric RS, Blehert DS, Brook CE, Calisher CH, Castle KT, Coleman JTH, Daszak P, Epstein JH, Field H, Frick WF, Gilbert AT, Hayman DTS, Ip HS, Karesh WB, Johnson CK, Kading RC, Kingston T, Lorch JM, Mendenhall IH, Peel AJ, Phelps KL, Plowright RK, Reeder DM, Reichard JD, Sleeman JM, Streicker DG, Towner JS, Wang LF. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog 2020; 16:e1008758. [PMID: 32881980 PMCID: PMC7470399 DOI: 10.1371/journal.ppat.1008758] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (β-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of β-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.
Collapse
Affiliation(s)
- Kevin J. Olival
- EcoHealth Alliance, New York, New York, United States of America
| | - Paul M. Cryan
- US Geological Survey, Fort Collins Science Center, Ft. Collins, Colorado, United States of America
| | - Brian R. Amman
- US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David S. Blehert
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Cara E. Brook
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Kevin T. Castle
- Wildlife Veterinary Consulting, Livermore, Colorado, United States of America
| | | | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | | | - Hume Field
- EcoHealth Alliance, New York, New York, United States of America
- Bat Conservation International, Austin, Texas, United States of America
| | - Winifred F. Frick
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Amy T. Gilbert
- US Department of Agriculture, National Wildlife Research Center, Ft. Collins, Colorado, United States of America
| | - David T. S. Hayman
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Hon S. Ip
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | | | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Rebekah C. Kading
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeffrey M. Lorch
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Alison J. Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - Kendra L. Phelps
- EcoHealth Alliance, New York, New York, United States of America
| | - Raina K. Plowright
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | | | - Jonathan M. Sleeman
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Scotland, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Jonathan S. Towner
- US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
52
|
Grisnik M, Bowers O, Moore AJ, Jones BF, Campbell JR, Walker DM. The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol Ecol 2020; 96:5710932. [PMID: 31960913 DOI: 10.1093/femsec/fiz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
Since its introduction into the USA, Pseudogymnoascus destructans (Pd), the fungal pathogen of white-nose syndrome, has killed millions of bats. Recently, bacteria capable of inhibiting the growth of Pd have been identified within bat microbial assemblages, leading to increased interest in elucidating bacterial assemblage-pathogen interactions. Our objectives were to determine if bat cutaneous bacteria have antifungal activity against Pd, and correlate differences in the bat cutaneous microbiota with the presence/absence of Pd. We hypothesized that the cutaneous microbiota of bats is enriched with antifungal bacteria, and that the skin assemblage will correlate with Pd status. To test this, we sampled bat microbiota, adjacent roost surfaces and soil from Pd positive caves to infer possible overlap of antifungal taxa, we tested these bacteria for bioactivity in vitro, and lastly compared bacterial assemblages using both amplicon and shotgun high-throughput DNA sequencing. Results suggest that the presence of Pd has an inconsistent influence on the bat cutaneous microbial assemblage across sites. Operational taxonomic units (OTUs) that corresponded with cultured antifungal bacteria were present within all sample types but were significantly more abundant on bat skin relative to the environment. Additionally, the microbial assemblage of Pd negative bats was found to have more OTUs that corresponded to antifungal taxa than positive bats, suggesting an interaction between the fungal pathogen and cutaneous microbial assemblage.
Collapse
Affiliation(s)
- Matthew Grisnik
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| | - Olivia Bowers
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| | - Andrew J Moore
- Tennessee Technological University, Department of Biological Sciences, 1100 N. Dixie Ave, Cookeville, Tennessee 38505, USA
| | - Benjamin F Jones
- Tennessee Technological University, Department of Biological Sciences, 1100 N. Dixie Ave, Cookeville, Tennessee 38505, USA
| | - Joshua R Campbell
- Tennessee Wildlife Resources Agency, 5105 Edmondson Pike, Nashville, Tennessee 37211, USA
| | - Donald M Walker
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| |
Collapse
|
53
|
Lemieux-Labonté V, Dorville NASY, Willis CKR, Lapointe FJ. Antifungal Potential of the Skin Microbiota of Hibernating Big Brown Bats ( Eptesicus fuscus) Infected With the Causal Agent of White-Nose Syndrome. Front Microbiol 2020; 11:1776. [PMID: 32793178 PMCID: PMC7390961 DOI: 10.3389/fmicb.2020.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (Eptesicus fuscus), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of E. fuscus in the context of Pd has not been done. In January 2017, we captured hibernating E. fuscus, sampled their skin microbiota, and inoculated them with Pd or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) Pd infection would not disrupt the skin microbiota of Pd-resistant E. fuscus; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with Pd. Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of Pd-inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, Pseudomonas and Rhodococcus are known for antifungal potential against Pd and other fungi. Thus, in contrast to hypothesis 1, Pd infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of E. fuscus, suggesting potential associations between the bat skin microbiota and resistance to the Pd infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.
Collapse
Affiliation(s)
| | - Nicole A. S.-Y. Dorville
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K. R. Willis
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
54
|
Micalizzi EW, Smith ML. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can J Microbiol 2020; 66:593-599. [PMID: 32485113 DOI: 10.1139/cjm-2020-0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome, has killed millions of bats across eastern North America and continues to threaten new bat populations. The spread and persistence of P. destructans has likely been worsened by the ability of this fungus to grow as a saprotroph in the hibernaculum environment. Reducing the environmental growth of P. destructans may improve bat survival. Volatile organic compounds (VOCs) are attractive candidates to target environmental P. destructans, as they can permeate through textured environments that may be difficult to thoroughly contact with other control mechanisms. We tested in hibernaculum sediment the performance of VOCs that were previously shown to inhibit P. destructans growth in agar cultures and examined the inhibition kinetics and specificity of these compounds. Three VOCs, 2-methyl-1-butanol, 2-methyl-1-propanol, and 1-pentanol, were fungicidal towards P. destructans in hibernaculum sediment, fast-acting, and had greater effects against P. destructans than other Pseudogymnoascus species. Our results suggest that use of these VOCs may be considered further as an effective management strategy to reduce the environmental exposure of bats to P. destructans in hibernacula.
Collapse
Affiliation(s)
- Emma W Micalizzi
- Department of Biology, Nesbitt Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Nesbitt Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Myron L Smith
- Department of Biology, Nesbitt Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Nesbitt Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
55
|
Genome-Wide Changes in Genetic Diversity in a Population of Myotis lucifugus Affected by White-Nose Syndrome. G3-GENES GENOMES GENETICS 2020; 10:2007-2020. [PMID: 32276959 PMCID: PMC7263666 DOI: 10.1534/g3.119.400966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.
Collapse
|
56
|
Bernard RF, Reichard JD, Coleman JTH, Blackwood JC, Verant ML, Segers JL, Lorch JM, White J, Moore MS, Russell AL, Katz RA, Lindner DL, Toomey RS, Turner GG, Frick WF, Vonhof MJ, Willis CKR, Grant EHC. Identifying research needs to inform white‐nose syndrome management decisions. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Riley F. Bernard
- Department of Ecosystem Science and ManagementPennsylvania State University University Park Pennsylvania USA
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| | | | | | - Julie C. Blackwood
- Department of Mathematics and StatisticsWilliams College Williamstown Massachusetts USA
| | - Michelle L. Verant
- Biological Resource DivisionWildlife Health Branch Fort Collins Colorado USA
| | - Jordi L. Segers
- Canadian Wildlife Health Cooperative Charlottetown Prince Edward Island Canada
| | - Jeffery M. Lorch
- United States Geological Survey National Wildlife Health Center Madison Wisconsin USA
| | - John White
- Bureau of Natural Heritage ConservationWisconsin Department of Natural Resources Madison Wisconsin USA
| | - Marianne S. Moore
- College of Integrative Science and ArtsArizona State University Mesa Arizona USA
| | - Amy L. Russell
- Department of BiologyGrand Valley State University Allendale Michigan USA
| | - Rachel A. Katz
- United States Fish and Wildlife Service Hadley Massachusetts USA
| | - Daniel L. Lindner
- United States Forest ServiceNorthern Research Station Madison Wisconsin USA
| | | | | | - Winifred F. Frick
- Department of Ecology and Evolutionary BiologyUniversity of California Santa Cruz California USA
- Bat Conservation International Austin Texas USA
| | - Maarten J. Vonhof
- Department of Biological SciencesWestern Michigan University Kalamazoo Michigan USA
- Institute of the Environment and SustainabilityWestern Michigan University Kalamazoo Michigan USA
| | | | - Evan H. C. Grant
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| |
Collapse
|
57
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
58
|
Arias M, Gignoux-Wolfsohn S, Kerwin K, Maslo B. Use of Artificial Roost Boxes Installed as Alternative Habitat for Bats Evicted from Buildings. Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michelle Arias
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901
| | - Sarah Gignoux-Wolfsohn
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901
| |
Collapse
|
59
|
Fletcher QE, Webber QMR, Willis CKR. Modelling the potential efficacy of treatments for white‐nose syndrome in bats. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Quinn E. Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
| | - Quinn M. R. Webber
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
- Cognitive and Behavioural Ecology Interdisciplinary Program Memorial University of Newfoundland St. John's NL Canada
| | - Craig K. R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C‐FIR) University of Winnipeg Winnipeg MB Canada
| |
Collapse
|
60
|
Perry RW, Jordan PN. Survival and persistence of tricolored bats hibernating in Arkansas mines. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
White-nose syndrome (WNS) has caused large declines in bat populations across eastern North America, making information on demographics of affected species critical to determining their risk for extinction. We used Cormack–Jolly–Seber models to estimate apparent survival rates of hibernating tricolored bats (Perimyotis subflavus) for 5 years in four small abandoned mines in the Ouachita Mountains of Arkansas, located within the WNS endemic area of the United States. Populations in individual mines varied greatly in survival rates, with one mine displaying annual survival rates as high as 0.706 and another as low as 0.101. Differences in survival among bats in different mines could not definitively be attributed to WNS, but may have varied based on a combination of WNS, disturbance, mine climate, and other unknown factors. Further, some hibernacula may have served as temporary winter shelter for young transient males. Sites housing small colonies of hibernating bats may result in high survival rates despite WNS, and protecting these smaller sites may be important for overall species perseverance.
Collapse
Affiliation(s)
- Roger W Perry
- Southern Research Station, U.S. Forest Service, Hot Springs, AR, USA
| | - Phillip N Jordan
- Southern Research Station, U.S. Forest Service, Hot Springs, AR, USA
| |
Collapse
|
61
|
Systematic Review of the Roost-Site Characteristics of North American Forest Bats: Implications for Conservation. DIVERSITY 2020. [DOI: 10.3390/d12020076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Continued declines in North American bat populations can be largely attributed to habitat loss, disease, and wind turbines. These declines can be partially mitigated through actions that boost reproductive success; therefore, management aimed at promoting availability of high-quality roosting habitat is an important conservation goal. Following the principles of the umbrella species concept, if co-occurring species share similar roost-tree preferences, then management practices targeting one species may confer conservation benefits to another. We conducted a systematic review of roost-site characteristics of thirteen species inhabiting eastern temperate forests to: (1) synthesize existing knowledge across species; (2) assess niche overlap among co-occurring species; and (3) evaluate the potential for currently protected species to serve as conservation umbrellas. We performed multivariate ordination techniques to group species based on the seven most-reported roost-site characteristics, including tree species, diameter at breast height, tree health, roost type, tree height, canopy closure, and roost height. Species sorted into three roosting guilds: (1) southern wetland inhabitants; (2) foliage specialists; and (3) dead tree generalists. Myotis septentrionalis and Perimyotis subflavus had significant roost-niche overlap with five and four other species respectively, and their existing protections make them suitable umbrellas for other bats in the North American eastern temperate forests.
Collapse
|
62
|
White JA, Freeman PW, Otto HW, Lemen CA. Winter Use of a Rock Crevice by Northern Long-Eared Myotis (Myotis septentrionalis) in Nebraska. WEST N AM NATURALIST 2020. [DOI: 10.3398/064.080.0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jeremy A. White
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182
| | - Patricia W. Freeman
- School of Natural Resources and University of Nebraska State Museum, University of Nebraska–Lincoln, Lincoln, NE 68583
| | - Hans W. Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tuscon, AZ 85721
| | | |
Collapse
|
63
|
Urbina J, Chestnut T, Schwalm D, Allen J, Levi T. Experimental evaluation of genomic DNA degradation rates for the pathogen Pseudogymnoascus destructans (Pd) in bat guano. PeerJ 2020; 8:e8141. [PMID: 31998550 PMCID: PMC6977466 DOI: 10.7717/peerj.8141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome in bats (WNS), has led to dramatic declines of bat populations in eastern North America. In the spring of 2016, WNS was first detected at several locations in Washington State, USA, which has prompted the need for large scale surveillance efforts to monitor the spread of Pd. Pd is typically detected in bats using invasive methods requiring capturing and swabbing individual bats. However, Pd can also be detected in guano, which may provide an efficient, affordable, and noninvasive means to monitor Pd in bats across North America. The widespread implementation of Pd surveillance in guano is hindered by substantial uncertainty about the probability of detecting Pd when present, and how this probability is influenced by the time since defecation, local environmental conditions, the amount of guano sampled, and the original concentration of DNA shed in the guano. In addition, the expected degradation rate of Pd DNA depends on whether the Pd DNA found in guano represents extracellular DNA fragments, intracellular DNA from dead Pd fungal cells, or from intracellular and viable Pd cells. While this is currently unknown, it has been posited that most environmental DNA, such as Pd found in guano long after defecation, is fragmented extracellular DNA. Using non-viable isolated DNA at precise quantities, we experimentally characterized the degradation rates of Pd DNA in guano samples. We spiked 450 guano samples with Pd gDNA in a 10-fold dilution series from 1 million to 1,000 fg and placed them in variable environmental conditions at five sites at Mount Rainier National Park in Washington State, which is a priority location for Pd surveillance. We evaluated DNA degradation over 70 days by quantifying the amount of DNA in samples collected every 14 days using real-time quantitative PCR (qPCR). Our sampling period was from July 10th to September 17th 2018 which overlaps with bat movement between summer roosts as well as movement from maternity colonies fall swarms. We detected Pd DNA in guano 56 and 70 days after inoculation with 1 million and 100,000 fg respectively, while the lowest quantity (1,000 fg) was detected until 42 days. Detection probability was variable among sites and lower where samples were left exposed without overhead cover. If Pd is shed as extracellular DNA in guano at quantities above 1,000 fg, then guano collection is likely to provide an effective tool for environmental screening of Pd that can be employed in an early detection and rapid response framework throughout Washington and other regions where this disease is rapidly emerging.
Collapse
Affiliation(s)
- Jenny Urbina
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Tara Chestnut
- Mount Rainier National Park, National Park Service, Ashford, WA, United States of America
| | - Donelle Schwalm
- Department of Biology, University of Maine-Farmington, Farmington, ME, United States of America
| | - Jenn Allen
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Taal Levi
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
64
|
Leivers SJ, Meierhofer MB, Pierce BL, Evans JW, Morrison ML. External temperature and distance from nearest entrance influence microclimates of cave and culvert-roosting tri-colored bats ( Perimyotis subflavus). Ecol Evol 2019; 9:14042-14052. [PMID: 31938502 PMCID: PMC6953682 DOI: 10.1002/ece3.5841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
Many North American bat species hibernate in both natural and artificial roosts. Although hibernacula can have high internal climate stability, they still retain spatial variability in their thermal regimes, resulting in various "microclimates" throughout the roost that differ in their characteristics (e.g., temperature and air moisture). These microclimate components can be influenced by factors such as the number of entrances, the depth of the roost, and distance to the nearest entrance of the roost. Tri-colored bats are commonly found roosting in caves in winter, but they can also be found roosting in large numbers in culverts, providing the unique opportunity to investigate factors influencing microclimates of bats in both natural and artificial roost sites. As tri-colored bats are currently under consideration for federal listing, information of this type could be useful in aiding in the conservation and management of this species through a better understanding of what factors affect the microclimate near roosting bats. We collected data on microclimate temperature and microclimate actual water vapor pressure (AWVP) from a total of 760 overwintering tri-colored bats at 18 caves and 44 culverts. Using linear mixed models analysis, we found that variation in bat microclimate temperatures was best explained by external temperature and distance from nearest entrance in both caves and culverts. External temperature had a greater influence on microclimate temperatures in culverts than caves. We found that variation in microclimate AWVP was best explained by external temperature, distance from nearest entrance, and proportion from entrance (proportion of the total length of the roost from the nearest entrance) in culvert-roosting bats. Variation in microclimate AWVP was best explained by external temperature and proportion from entrance in cave-roosting bats. Our results suggest that bat microclimate temperature and AWVP are influenced by similar factors in both artificial and natural roosts, although the relative contribution of these factors differs between roost types.
Collapse
Affiliation(s)
| | - Melissa B. Meierhofer
- Natural Resources InstituteTexas A&M UniversityCollege StationTexas
- Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationTexas
| | - Brian L. Pierce
- Natural Resources InstituteTexas A&M UniversityCollege StationTexas
| | - Jonah W. Evans
- Wildlife Diversity ProgramTexas Parks and Wildlife DepartmentBoerneTexas
| | - Michael L. Morrison
- Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationTexas
| |
Collapse
|
65
|
Baloun DE, Webber QMR, McGuire LP, Boyles JG, Shrivastav A, Willis CKR. Testing the "Fasting While Foraging" Hypothesis: Effects of Recent Feeding on Plasma Metabolite Concentrations in Little Brown Bats ( Myotis lucifugus). Physiol Biochem Zool 2019; 92:373-380. [PMID: 31120325 DOI: 10.1086/704080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plasma metabolite concentrations can be used to understand nutritional status and foraging behavior across ecological contexts including prehibernation fattening, migration refueling, and variation in foraging habitat quality. Generally, high plasma concentrations of the ketone β-hydroxybutyrate, a product of fat catabolism, indicate fasting, while triglycerides indicate recent feeding and fat accumulation. In recent studies of insectivorous bats, triglyceride concentration increased after feeding as expected, but β-hydroxybutyrate also unexpectedly increased rather than decreased. An aerial-hawking foraging strategy is energetically demanding, and thus it has been hypothesized that foraging by insectivorous bats requires catabolism of stored fat. We tested this hypothesis by quantifying plasma β-hydroxybutyrate and triglyceride concentration following feeding in little brown bats (Myotis lucifugus) that were temporarily housed in individual cages to prevent flight. We provided a fixed amount of food and collected blood samples at different intervals after feeding to produce variation in plasma metabolite concentrations. Plasma triglyceride concentration responded as predicted, but similar to previous studies and contrary to our prediction, when flight was eliminated plasma β-hydroxybutyrate concentration responded similarly to triglyceride. Thus, it is unlikely that the unexpected plasma β-hydroxybutyrate patterns observed in previous studies were related to flight. The mechanism underlying this unexpected pattern remains unknown, but the response has been consistent in all studies to date. Thus, plasma metabolite analysis provides an effective tool for studies of nutritional status, although more work is needed to understand why insectivorous bats respond differently than other taxa.
Collapse
|
66
|
Lilley TM, Prokkola JM, Blomberg AS, Paterson S, Johnson JS, Turner GG, Bartonička T, Bachorec E, Reeder DM, Field KA. Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis. Oecologia 2019; 191:295-309. [PMID: 31506746 PMCID: PMC6763535 DOI: 10.1007/s00442-019-04499-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Abstract Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00442-019-04499-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Jenni M Prokkola
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Erik Bachorec
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
67
|
Bernard RF, Evans J, Fuller NW, Reichard JD, Coleman JTH, Kocer CJ, Campbell Grant EH. Different management strategies are optimal for combating disease in East Texas cave versus culvert hibernating bat populations. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Riley F. Bernard
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania
- U.S. Geological Survey, Patuxent Wildlife Research Center, S. O. Conte Anadromous Fish Laboratory Turners Falls Massachusetts
| | - Jonah Evans
- Texas Parks and Wildlife Department Boerne Texas
| | - Nathan W. Fuller
- Department of Biological Sciences Texas Tech University Lubbock Texas
| | | | | | | | - Evan H. Campbell Grant
- U.S. Geological Survey, Patuxent Wildlife Research Center, S. O. Conte Anadromous Fish Laboratory Turners Falls Massachusetts
| |
Collapse
|
68
|
Kramer AM, Teitelbaum CS, Griffin A, Drake JM. Multiscale model of regional population decline in little brown bats due to white-nose syndrome. Ecol Evol 2019; 9:8639-8651. [PMID: 31410268 PMCID: PMC6686297 DOI: 10.1002/ece3.5405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/11/2019] [Indexed: 01/26/2023] Open
Abstract
The introduced fungal pathogen Pseudogymnoascus destructans is causing decline of several species of bats in North America, with some even at risk of extinction or extirpation. The severity of the epidemic of white-nose syndrome caused by P. destructans has prompted investigation of the transmission and virulence of infection at multiple scales, but linking these scales is necessary to quantify the mechanisms of transmission and assess population-scale declines.We built a model connecting within-hibernaculum disease dynamics of little brown bats to regional-scale dispersal, reproduction, and disease spread, including multiple plausible mechanisms of transmission.We parameterized the model using the approach of plausible parameter sets, by comparing stochastic simulation results to statistical probes from empirical data on within-hibernaculum prevalence and survival, as well as among-hibernacula spread across a region.Our results are consistent with frequency-dependent transmission between bats, support an important role of environmental transmission, and show very little effect of dispersal among colonies on metapopulation survival.The results help identify the influential parameters and largest sources of uncertainty. The model also offers a generalizable method to assess hypotheses about hibernaculum-to-hibernaculum transmission and to identify gaps in knowledge about key processes, and could be expanded to include additional mechanisms or bat species.
Collapse
Affiliation(s)
- Andrew M. Kramer
- Department of Integrative BiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Ashton Griffin
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - John M. Drake
- Odum School of Ecology and Center for Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
69
|
Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci Rep 2019; 9:9158. [PMID: 31235813 PMCID: PMC6591354 DOI: 10.1038/s41598-019-45453-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
Tools for reducing wildlife disease impacts are needed to conserve biodiversity. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in North American bat populations and threatens several species with extinction. Few tools exist for managers to reduce WNS impacts. We tested the efficacy of a probiotic bacterium, Pseudomonas fluorescens, to reduce impacts of WNS in two simultaneous experiments with caged and free-flying Myotis lucifugus bats at a mine in Wisconsin, USA. In the cage experiment there was no difference in survival between control and P. fluorescens-treated bats. However, body mass, not infection intensity, predicted mortality, suggesting that within-cage disturbance influenced the cage experiment. In the free-flying experiment, where bats were able to avoid conspecific disturbance, infection intensity predicted the date of emergence from the mine. In this experiment treatment with P. fluorescens increased apparent overwinter survival five-fold compared to the control group (from 8.4% to 46.2%) by delaying emergence of bats from the site by approximately 32 days. These results suggest that treatment of bats with P. fluorescens may substantially reduce WNS mortality, and, if used in combination with other interventions, could stop population declines.
Collapse
|
70
|
Gehman AM, Satterfield DA, Keogh CL, McKay AF, Budischak SA. To improve ecological understanding, collect infection data. Ecosphere 2019. [DOI: 10.1002/ecs2.2770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alyssa‐Lois M. Gehman
- Odum School of Ecology University of Georgia Athens Georgia USA
- Hakai Institute End of Kwakshua Channel, Calvert Island British Columbia Canada
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| | - Dara A. Satterfield
- Odum School of Ecology University of Georgia Athens Georgia USA
- Smithsonian Migratory Bird Center Smithsonian Conservation Biology Institute Washington D.C. USA
| | - Carolyn L. Keogh
- Odum School of Ecology University of Georgia Athens Georgia USA
- Department of Environmental Sciences Emory University Atlanta Georgia USA
| | | | - Sarah A. Budischak
- Odum School of Ecology University of Georgia Athens Georgia USA
- W. M. Keck Science Department of Claremont McKenna College Claremont California USA
- W. M. Keck Science Department of Pitzer College Claremont California USA
- W. M. Keck Science Department of Scripps College Claremont California USA
| |
Collapse
|
71
|
McGuire LP, Mayberry HW, Fletcher QE, Willis CKR. An experimental test of energy and electrolyte supplementation as a mitigation strategy for white-nose syndrome. CONSERVATION PHYSIOLOGY 2019; 7:coz006. [PMID: 30805191 PMCID: PMC6382055 DOI: 10.1093/conphys/coz006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Fungi are increasingly recognised as harmful pathogens of wildlife. White-nose syndrome (WNS) is a fungal disease that has killed millions of hibernating bats in North America. High mortality has driven research to identify management strategies for the disease. Increased energy expenditure and fat depletion, as well as fluid loss, hypotonic dehydration and electrolyte depletion appear to be key aspects of WNS pathophysiology. Bats with WNS spend energy too quickly and also lose fluids containing water and electrolytes from lesions on exposed skin surfaces. During periodic arousals, bats often drink water but, in most of the WNS-affected area, food is not available during winter and, therefore, they cannot maintain energy balance or replace lost electrolytes. Therefore, providing a liquid caloric/electrolyte/nutrient supplement could be useful for treating WNS. We studied captive, hibernating little brown bats (Myotis lucifugus) to test whether providing supplemental energy and electrolytes (a 1:1 dilution of unflavoured Pedialyte) to hibernating bats could reduce severity of WNS symptoms and increase survival. Infected bats in the Pedialyte-supplemented group generally avoided the Pedialyte and preferentially drank plain water. We did not observe any differences in survival, arousal frequency or blood chemistry, but bats in the Pedialyte-supplemented group had higher fungal load and more UV fluorescence than the control group that was only provided with water. Supplemental electrolytes would be an attractive management strategy because of their low cost and logistic feasibility but our results suggest this approach would be ineffective. However, it could be useful to conduct preference experiments with multiple dilutions and/or flavours of electrolyte solution. Although they did not prefer Pedialyte in our experiment, bats in the hand readily drink it and electrolyte supplementation remains an important tool for rehabilitation of captive bats recovering from WNS and other causes of dehydration.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada
- Present Address: Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - Heather W Mayberry
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada
- Present Address: Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. Mississauga, ON, Canada
| | - Quinn E Fletcher
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada
| | - Craig K R Willis
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada
| |
Collapse
|
72
|
Cheng TL, Gerson A, Moore MS, Reichard JD, DeSimone J, Willis CKR, Frick WF, Kilpatrick AM. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J Anim Ecol 2019; 88:591-600. [PMID: 30779125 DOI: 10.1111/1365-2656.12954] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
The persistence of populations declining from novel stressors depends, in part, on their ability to respond by trait change via evolution or plasticity. White-nose syndrome (WNS) has caused rapid declines in several North America bat species by disrupting hibernation behaviour, leading to body fat depletion and starvation. However, some populations of Myotis lucifugus now persist with WNS by unknown mechanisms. We examined whether persistence of M. lucifigus with WNS could be explained by increased body fat in early winter, which would allow bats to tolerate the increased energetic costs associated with WNS. We also investigated whether bats were escaping infection or resistant to infection as an alternative mechanism explaining persistence. We measured body fat in early and late winter during initial WNS invasion and 8 years later at six sites where bats are now persisting. We also measured infection prevalence and intensity in persisting populations. Infection prevalence was not significantly lower than observed in declining populations. However, at two sites, infection loads were lower than observed in declining populations. Body fat in early winter was significantly higher in four of the six persisting populations than during WNS invasion. Physiological models of energy use indicated that these higher fat stores could reduce WNS mortality by 58%-70%. These results suggest that differences in fat storage and infection dynamics have reduced the impacts of WNS in many populations. Increases in body fat provide a potential mechanism for management intervention to help conserve bat populations.
Collapse
Affiliation(s)
- Tina L Cheng
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California.,Bat Conservation International, Austin, Texas
| | - Alexander Gerson
- Department of Biology, University of Massachusetts, Amherst, Amherst, Massachusetts
| | - Marianne S Moore
- College of Integrative Science and Arts, Arizona State University, Mesa, Arizona
| | | | - Joely DeSimone
- Department of Biology, University of Massachusetts, Amherst, Amherst, Massachusetts
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Winifred F Frick
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California.,Bat Conservation International, Austin, Texas
| | - Auston Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California
| |
Collapse
|
73
|
Holz P, Hufschmid J, Boardman WSJ, Cassey P, Firestone S, Lumsden LF, Prowse TAA, Reardon T, Stevenson M. Does the fungus causing white-nose syndrome pose a significant risk to Australian bats? WILDLIFE RESEARCH 2019. [DOI: 10.1071/wr18194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
ContextPseudogymnoascus destructans is the fungus responsible for white-nose syndrome (WNS), which has killed millions of hibernating bats in North America, but also occurs in bats in Europe and China without causing large-scale population effects. This is likely to be due to differences in species susceptibility and behaviour, and environmental factors, such as temperature and humidity. Pseudogymnoascus destructans is currently believed to be absent from Australia.
AimsTo ascertain the level of risk that white-nose syndrome poses for Australian bats.
Methods This risk analysis examines the likelihood that P. destructans enters Australia, the likelihood of the fungus coming in contact with native bats on successful entry, and the potential consequences should this occur.
Key results This risk assessment concluded that it is very likely to almost certain that P. destructans will enter Australia, and it is likely that bats will be exposed to the fungus over the next 10 years. Eight cave-dwelling bat species from southern Australia are the ones most likely to be affected.
ConclusionsThe risk was assessed as medium for the critically endangered southern bent-winged bat (Miniopterus orianae bassanii), because any increase in mortality could affect its long-term survival. The risk to other species was deemed to range from low to very low, owing to their wider distribution, which extends beyond the P. destructans risk zone.
Implications Although Australia’s milder climate may preclude the large mortality events seen in North America, the fungus could still significantly affect Australian bat populations, particularly bent-winged bats. Active surveillance is required to confirm Australia’s continuing WNS-free status, and to detect the presence of P. destructans should it enter the country. Although White-nose Syndrome Response Guidelines have been developed by Wildlife Health Australia to assist response agencies in the event of an incursion of WNS into bats in Australia, these guidelines would be strengthened by further research to characterise Australian cave temperatures and hibernating bat biology, such as length of torpor bouts and movement over winter. Risk-mitigation strategies should focus on education programs that target cavers, show-cave managers and tourists, particularly those who have visited regions where WNS is known to occur.
Collapse
|
74
|
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 2018; 9:1734-1750. [PMID: 36595968 PMCID: PMC10022473 DOI: 10.1080/21505594.2018.1548685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Alexander D Botvinkin
- Epidemiology Department, Irkutsk State Medical University, Irkutsk, Russian Federation
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Tyumen, Russian Federation.,Department of Biochemistry, Ural State Medical University, Ekaterinburg, Russian Federation
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Škrabánek
- Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic.,Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
75
|
DiRenzo GV, Zipkin EF, Grant EHC, Royle JA, Longo AV, Zamudio KR, Lips KR. Eco-evolutionary rescue promotes host-pathogen coexistence. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1948-1962. [PMID: 30368999 DOI: 10.1002/eap.1792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Emerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation. Despite decades of research, little is known about host-pathogen coexistence post-outbreak when low host abundances and cryptic species make these interactions difficult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (Bd) in 2004. During 2010-2014, we surveyed amphibians in Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian survival and recruitment rates between infected and uninfected hosts. Average apparent monthly survival rates of uninfected and infected hosts were both close to 96%, and the expected number of uninfected and infected hosts recruited (via immigration/reproduction) was less than one host per disease state per 20-m site. The secondary driver of host-pathogen coexistence was spatial variation in pathogen transmission as we found that transmission was highest in areas of low abundance but there was no support for the source-sink hypothesis. Our results indicate that changes in the host community (i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conservation managers trying to understand underlying host-pathogen interactions and provides new opportunities to study disease dynamics in remnant host populations decimated by virulent pathogens.
Collapse
Affiliation(s)
- Graziella V DiRenzo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elise F Zipkin
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Evan H Campbell Grant
- U.S. Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, Turners Falls, Massachusetts, 01376, USA
| | - J Andrew Royle
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, 20708-4017, USA
| | - Ana V Longo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| | - Kelly R Zamudio
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14583, USA
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| |
Collapse
|
76
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
77
|
Pinter-Wollman N, Jelić A, Wells NM. The impact of the built environment on health behaviours and disease transmission in social systems. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170245. [PMID: 29967306 PMCID: PMC6030577 DOI: 10.1098/rstb.2017.0245] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2018] [Indexed: 01/08/2023] Open
Abstract
The environment plays an important role in disease dynamics and in determining the health of individuals. Specifically, the built environment has a large impact on the prevention and containment of both chronic and infectious disease in humans and in non-human animals. The effects of the built environment on health can be direct, for example, by influencing environmental quality, or indirect by influencing behaviours that impact disease transmission and health. Furthermore, these impacts can happen at many scales, from the individual to the society, and from the design of the plates we eat from to the design of cities. In this paper, we review the ways that the built environment affects both the prevention and the containment of chronic and infectious disease. We bring examples from both human and animal societies and attempt to identify parallels and gaps between the study of humans and animals that can be capitalized on to advance the scope and perspective of research in each respective field. By consolidating this literature, we hope to highlight the importance of built structures in determining the complex dynamics of disease and in impacting the health behaviours of both humans and animals.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea Jelić
- Department of Architecture, Design and Media Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Nancy M Wells
- Department of Design and Environmental Analysis, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
78
|
Lilley TM, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas M. Lilley
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Finnish Museum of Natural HistoryUniversity of Helsinki Helsinki Finland
| | - Jani Anttila
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | | |
Collapse
|
79
|
Willis CKR. Trade-offs Influencing the Physiological Ecology of Hibernation in Temperate-Zone Bats. Integr Comp Biol 2018; 57:1214-1224. [PMID: 28985332 DOI: 10.1093/icb/icx087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Seasonality of temperature and food availability can lead to trade-offs between the benefits of immediate reproduction and costs associated with mortality risk from starvation, inclement weather, or predation. Hibernating mammals exhibit an enormous seasonal shift in physiology and behavior and provide a useful system to examine the effect of this trade-off on key events in the annual cycle. Most of what we understand about the ecological energetics and phenology of hibernation comes from studies of rodent hibernators such as ground squirrels, chipmunks, and dormice. Temperate-zone, insectivorous bats, however, provide another useful model system to examine trade-offs influencing seasonal change within individuals. Here, I review recent studies from my laboratory on little brown bats (Myotis lucifugus) from central Canada to understand the interplay between capacity for energy storage, energy expenditure during hibernation, and the timing of key events in the annual cycle of hibernating mammals. These studies have relied on measurements of body condition to assess energetic status, biologging of skin temperature using temperature telemetry, and use of passive transponders (i.e., PIT tags) to quantify emergence timing. In general, these studies suggest that, in part due to constraints associated with flight, bats exhibit unique, or at least unusual, adaptations for extreme energy savings during winter. The results also support the optimization hypothesis that current energetic status and future energy requirements influence energy expenditure during hibernation and the timing of emergence from hibernation in spring. Taken together, this work provides insight into the influence of reproductive timing and energy availability on hibernation behavior and physiology. It also has implications for understanding responses of bat populations to anthropogenic impacts like climate change and white-nose syndrome.
Collapse
Affiliation(s)
- Craig K R Willis
- Department of Biology and Centre for Forest Inter-disciplinary Research, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B2E9
| |
Collapse
|
80
|
Observed Resiliency of Little Brown Myotis to Long-Term White-Nose Syndrome Exposure. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2018. [DOI: 10.3996/102017-jfwm-080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
White-nose syndrome (WNS) is a disease that has killed millions of bats in eastern North America and has steadily been spreading across the continent. Little brown myotis Myotis lucifugus populations have experienced extensive declines; however, some localized populations have remained resilient, with bats surviving multiple years past initial WNS exposure. These persistent populations may be critical to species recovery, and understanding mechanisms leading to this long-term survival and persistence may provide insight into overall bat and disease management. We monitored a maternity colony of little brown myotis on Fort Drum Military Installation in northern New York between 2006 and 2017 to determine basic demographic parameters and find evidence of what may be leading to resiliency and persistence at this site. Total colony size declined by approximately 88% from 2008 to 2010 due primarily to impacts of WNS. Counts of all adults returning to the colony stabilized during 2010–2014 (mean = 94, range 84–101) and increased after 2014 (mean = 132, range = 108–166). We captured 727 little brown myotis (575 females, 152 males) and banded 534 individuals (389 females, 145 males) at the colony. The majority of sampled bats showed evidence of recent past WNS infection and exposure to Pseudogymnoascus destructans, and we documented pervasive presence and limited viability of the fungus within the colony's main roosting structure. We recaptured 98 individually marked females in years after initial banding, and some individuals survived at least 6 y. Ninety-one percent of all adult females, 93% of recaptured bats, and 90% of 1-y-old females (i.e., bats recaptured the first year after initial capture as juveniles) showed evidence of reproduction during the monitoring period. Using mark–recapture models, we estimated annual survival rates of juvenile and adult little brown myotis during 2009–2016 and examined whether reproductive condition or evidence of recent infection of WNS had any effect on survival. Annual survival rates were similar between juveniles and adults, but highly variable, ranging from 41.0 to 86.5%. Models indicated that neither evidence of recent past exposure to WNS nor reproductive status were related to survival. No one parameter stood out as being responsible for this colony's continued existence, and it is likely that many interwoven factors were responsible for the observed resilience. Although relatively high reproductive effort from all females (i.e., both1-y-old and >1-y-old ) and intermittently suitable survival rates have led to the continued persistence of, and population increases in, this summer colony, mortality from WNS and inherently low reproductive potential still seemed to be limiting population growth. Until there is a better understanding of this overall potential resiliency in little brown myotis, we recommend considering minimizing disturbance and direct human involvement within these persisting populations to allow whatever natural recovery that may be occurring to evolve uninterrupted.
Collapse
|
81
|
Verant ML, Bohuski EA, Richgels KLD, Olival KJ, Epstein JH, Blehert DS. Determinants of Pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome. J Appl Ecol 2018; 55:820-829. [PMID: 29610540 DOI: 10.1111/1365-2664.13070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.
Collapse
Affiliation(s)
- Michelle L Verant
- School of Veterinary Medicine, University of Wisconsin-Madison and U.S. Geological Survey - National Wildlife Health Center
| | | | | | | | | | | |
Collapse
|
82
|
Maslo B, Stringham OC, Bevan AJ, Brumbaugh A, Sanders C, Hall M, Fefferman NH. High annual survival in infected wildlife populations may veil a persistent extinction risk from disease. Ecosphere 2017. [DOI: 10.1002/ecs2.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
- Rutgers Cooperative Extension; New Jersey Agricultural Experiment Station, Rutgers; The State University of New Jersey; 88 Lipman Drive New Brunswick New Jersey 08901 USA
| | - Oliver C. Stringham
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
| | - Amanda J. Bevan
- Department of Ecology, Evolution and Natural Resources, Rutgers; The State University of New Jersey; 14 College Farm Road New Brunswick New Jersey 08901 USA
| | - Amanda Brumbaugh
- Sanders Environmental, Inc.; 322 Borealis Way Bellefonte Pennsylvania 16823 USA
| | - Chris Sanders
- Sanders Environmental, Inc.; 322 Borealis Way Bellefonte Pennsylvania 16823 USA
| | - MacKenzie Hall
- Endangered and Nongame Species Program; NJ Division of Fish and Wildlife; 1 Van Syckels Road Clinton New Jersey 08809 USA
| | - Nina H. Fefferman
- Ecology & Evolutionary Biology; The University of Tennessee; 1416 Circle Drive Knoxville Tennessee 37996 USA
| |
Collapse
|
83
|
Davy CM, Donaldson ME, Rico Y, Lausen CL, Dogantzis K, Ritchie K, Willis CK, Burles DW, Jung TS, McBurney S, Park A, McAlpine DF, Vanderwolf KJ, Kyle CJ. Prelude to a panzootic: Gene flow and immunogenetic variation in northern little brown myotis vulnerable to bat white-nose syndrome. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host ( Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size ( Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses.
Collapse
Affiliation(s)
- Christina M. Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Yessica Rico
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Catedrático CONACYT, Instituto de Ecología A.C., Centro Regional del Bajío, Avenida Lázaro Cárdenas 253, Pátzcuaro, Michoacán 61600, México
| | - Cori L. Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC V0G 1M0, Canada
| | - Kathleen Dogantzis
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Kyle Ritchie
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Craig K.R. Willis
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Douglas W. Burles
- Gwaii Haanas National Park Reserve/Haida Heritage Site, P.O. Box 37, Queen Charlotte City, BC V0T 1S0, Canada
| | - Thomas S. Jung
- Yukon Department of Environment, P.O. Box 2703, Whitehorse, YT Y1A 2C6, Canada
| | - Scott McBurney
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Allysia Park
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Donald F. McAlpine
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
| | - Karen J. Vanderwolf
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
- Canadian Wildlife Federation, 350 Promenade Michael Cowpland Drive, Kanata, ON K2M 2G4, Canada
| | - Christopher J. Kyle
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
84
|
Bernard RF, Willcox EV, Parise KL, Foster JT, McCracken GF. White-nose syndrome fungus, Pseudogymnoascus destructans, on bats captured emerging from caves during winter in the southeastern United States. BMC ZOOL 2017. [DOI: 10.1186/s40850-017-0021-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
85
|
Czenze ZJ, Jonasson KA, Willis CKR. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate. Physiol Biochem Zool 2017. [DOI: 10.1086/692623] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
86
|
Hayman DTS, Cryan PM, Fricker PD, Dannemiller NG. Long‐term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory Hopkirk Research Institute Massey University Palmerston North New Zealand
| | - Paul M. Cryan
- U.S. Geological Survey Fort Collins Science Center Fort Collins CO USA
| | | | - Nicholas G. Dannemiller
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| |
Collapse
|